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Abstract. The paper describes a novel adaptive fuzzy logic controller based
energy management concept (A-FLC-EM) for a stand-alone photovoltaic (PV)
hybrid system with battery and hydrogen storage path. The reference applica-
tion is a single family home. The basic idea is to switch and optimally adjust the
energy management parameters according to identified changes of distinct long-
term energy supply and/or demand situations. Key elements of the offline learning
phase are the analysis of the energy time series and the automatic determination
of distinct energy situations on the basis of a segmentation algorithm and a vector
of suitable statistical features calculated for a short-term, sliding observation win-
dow. A bottom-up approach is used, ranking and selecting statistical features that
are particularly good at distinguishing certain long-term energy situations. The
selected features form the basis for a clustering algorithm to detect and describe
distinct energy situations. For each energy situation, the calculation of optimal
energy management parameters is performed for a training data set employing
particle swarm optimization (PSO). The performance of the novel A-FLC-EM
is demonstrated compared to a conventional fuzzy logic controller based energy
management (FLC-EM) with an all-year fixed parameter setting. Qualitative and
quantitative improvements as well as further challenges are discussed.

Keywords: photovoltaics (PV) · stand-alone hybrid system · hybrid energy
storage system (HESS) · adaptive energy management · fuzzy logic controller
(FLC) · particle swarm optimization (PSO)

1 Introduction

In order to achieve the CO2 reduction targets of the Paris Climate Protection Agreement,
a rapid shift away from fossil fuels and a rapid expansion of renewable energies, in par-
ticular photovoltaics and wind energy, is essential [1]. According to [2], short-term and
long-term energy storage systems play an important role in stabilizing the energy system
and efficiently and economically balancing fluctuations in energy supply and demand at
different time scales. With the further rapid expansion of photovoltaics, which are par-
ticularly flexible, less location-dependent and can be easily integrated in a decentralized
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Fig. 1. Structure of the investigated PV hybrid system

Fig. 2. Structural overviewof the novel, adaptive fuzzy logic controller based energymanagement
(A-FLC-EM).

manner, seasonal energy storage tasks are becoming increasingly relevant in addition to
the use of battery storage for self-consumption optimization and as day-night balancing.

Hybrid energy storage solution consisting of a lithium-ion battery and a hydrogen
storage path are well known in the field of off-grid electrification and stand-alone power
supply systems [3].

In this paper we chose a simple reference application of a stand-alone photo-
voltaic (PV) hybrid system with battery and hydrogen storage for a single family home
(s. Figure 1). Numerous example applications demonstrate the great potentials of this
HESS configuration [3–6] and point out both the necessity of a good, adapted design
and sizing [5] of installed capacities and powers of the energy storage components and
the importance of an intelligent energy management (EM) for the optimal control of the
power flows within the HESS [4]. There are energy management concepts [4, 6, 7], with
fuzzy logic controller based approaches being commonly used. This paper describes a
novel adaptive fuzzy logic controller based energy management concept (A-FLC-EM)
for stand-alone photovoltaic (PV) hybrid system with battery and hydrogen storage path
(s. Figure 2).

The basic idea is to switch and optimally adjust the energy management parameters
according to identified changes of distinct long-term energy supply and/or demand situ-
ations. The basis for the novel A-FLC-EM is, in a first step, the offline identification of
characteristic energy situations in historical measurement and training data of PV and
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load profiles using methods of unsupervised data mining. In a second step, the determi-
nation of suitable energy management parameters for the respective segments and the
respective energy situation is performed employing particle swarm optimization. During
online operation, the energy situations described in advance are identified with the help
of a classification algorithm. On this basis, decisions are made for the adaptation of the
energy management parameters.

The paper is structured as follows. Section 2 gives an overview of the reference
application, PV and load time series, component models and the conventional FLC-EM.
Section 3 presents the developed methodology for identifying distinct energy situations
by analyzing statistical features over a short-term, sliding observation window. The
overall methodological concept for pattern recognition in energy time series including
feature extraction and feature evaluation is presented and demonstrated for the PV and
load profiles of the reference application. Section 4 introduces the novel A-FLC-EM,
describes the tuning and optimization of the EM-parameters, explains the Cluster-then-
predict classification concept for online-use and presents results from performance tests
and comparison of the novel A-FLC-EM with a conventional FLC-EM (with constant
energy management parameters for the whole year). Section 5 summarizes the results
and gives a brief outlook on current and future research and application.

2 Reference Application

2.1 System Structure and Component Models

Figure 1 shows the coupling structure of the reference application. While the power of
the lithium-ion battery storage PB can provide the instantaneous net power PNet between
the PV system with power PPV and the load power PLoad , the control of the electrolyzer
power PEL or fuel cell power PFC leaves degrees of freedom for a higher-level energy
management. Power converter modules connect the voltage variable component side
with a common high voltage DC-bus, on which the sum of all power flows is balanced:

PB(t) = PPV (t) − PLoad (t) + PFC(t) − PEL(t) (1)

For the technical optimization of the HESS, the efficiency and the stress of the compo-
nents are considered in particular. The criterion for good efficiency in a stand-alone PV
system with a hydrogen storage path is the relative hydrogen surplus compared to the
initial value, in particular through utilization of the PV generation power by an increase
of the self-consumption qSC , which is defined as the ratio between the amount of PV
energy used and the amount of total PV energy generated:

qSC = EPV ,used

EPV
(2)

The evaluation of the energy throughput and the cyclic stress of the lithium-ion
battery is based on the criterion of equivalent full cycles kFEC , which is calculated from
the total cyclic energyEB,acc, the nominal voltageUnom and the nominal capacityQB,nom

of the battery:

kFEC = EB,acc

2UnomQB,nom
(3)
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Fig. 3. Efficiency maps for modeling the loss behavior of battery, electrolyzer and fuel cell.

For a good utilization of the battery, kFEC should not be too small. However, to achieve
a high overall efficiency of the HESS, unnecessary conversion and transfer of energy
from the hydrogen storage to the battery should be avoided. The energy of the hydrogen
storage path should be supplied directly to the load if possible. To maximize the lifetime
of electrolyzer and fuel cell, it is important to reduce the number of their start-stop cycles.
This can be achieved by continuous operation with only slight modulation of the output
power. The simulation studies in this paper work with a coarse temporal resolution of 10
min. Therefore, the loss behavior of battery, electrolyzer and fuel cell is modeled by the
efficiency maps shown in Fig. 3. The sizing of battery, electrolyzer and fuel cell is based
on preliminary investigations and the available components of the experimental system.
For the lithium-ion battery (AKASOL neeoRack) the efficiencymapwas experimentally
determined [25]. Six batterymodules with a total energy content of 33 kWh are used. The
C-rate of the battery is limited to 11

h . . The rated power of the electrolyzer is 2700W and
of the fuel cell 1500 W. The efficiency curves of the hydrogen conversion components
have also been determined experimentally (s. Fig. 3).

2.2 Conventional FLC-EM

Several studies highlight the use of conventional fuzzy logic controllers (FLC) as an
effective means of controlling power flows in HESS [4–14]. Conventional energy man-
agement concepts for stand-alone applications are mainly based on two input variables,
the state of charge of the battery storage SOCB, which should stay within certain limits in
order to guarantee security of supply and the net power PNet to be balanced on the energy
bus. The input and output variables of the FLC-EM are described by membership func-
tions (MSF) and linked by the fuzzy rule base and inference mechanism. For a detailed
description of conventional FLC-EM the reader is referred to [15]. In this work a fuzzy
logic controller according to Mamdani is used (s. Fig. 4). The numbers of membership
functions and associated rules are chosen as little as possible in order to keep the overall
energy management comprehensible and the search space for the optimization based
tuning algorithm small. The number of membership functions for the input variables
are chosen to be three for SOCB [low, good, high], two for the normalized net power
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Fig. 4. Conventional FLC-EM with only three rules, a reduced number of MSFs and MoM
aggregation

Fig. 5. PV power profile of reference application (installed PV peak power is 12 kW).

PNet_n [negative, positive] and three for the output variable the normalized power of the
hydrogen converters PH2_n [negative, zero, positive]. Negative output values indicate
operation of the electrolyzer and positive values operation of the fuel cell. The rela-
tively smooth characteristic diagram of the reduced FLC implementation (s. Fig. 4) is
achieved by choosing the mean of the maximum instead of the often proposed centroid
defuzzification method.

2.3 PV and Load Profiles

The determination and description of typical energy situations is based on learning data
with a duration of one year each. For the testing of the new A-FLC-EM, validation data
of four other comparable annual cycles are used, which were not used in the learning
process. The PV generation capacities are calculated on the basis of a single-diode
equivalent circuit model. Measured data of global radiation and temperature at a site
in Berlin from 2017 to 2020 are used for this purpose. The orientation of the PV plant
is 35° south. The JAM60S20 polycrystalline PV module with a peak power of 380 W
was used. The measurement data are made freely available by the Berlin University of
Applied Sciences [26].

Figure 5 shows an example of the calculated power profile of a PV system with
an installed peak power of 12 kW for the year 2017, which was used for the further
investigations. The load profiles used in the paper are based on a set of measured data
from 74 private households, which is also freely available [16]. For the validation phase,
a load profile with a length of four years was constructed. For this purpose, selected
load profiles that were similar in terms of maximum peak power (∅ 8.03 kW), annual
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Fig. 6. Load power profiles and characteristic values of four representative, similar single-family
households (from a database of 74 profiles, [16]).

Fig. 7. Concept for automatic data processing and detection of long-term energy situations in
energy time series.

energy consumption (∅ 4335.5 kWh), base load (∅ 213 W), peak load (∅ 1.42 kW),
and standard deviation (∅ 488.4) were combined (s. Fig. 6).

3 Pattern Search Concept

3.1 Methodological Concept

The proposed method for identifying long-term energy situations belongs to the domain
of unsupervised learning and is a hybrid algorithm of segmentation and pattern recog-
nition shown in Fig. 7. Direct subsequence time series clustering is controversial [17].
In this paper, the goal is to examine energy time series in a shorter sliding observation
window for a variety of statistical features that behave consistently over long periods of
time and thus allow conclusions to be drawn about homogeneity intervals and distinct
energy situations (as well as phases of transition in between). A bottom-up segmen-
tation algorithm adapted from [18] can be used to rank the most informative features
by evaluating the number of changing points according to a constant error criterion. In
order to avoid features with very similar characteristics (without additional information
gain), in a second step of the feature evaluation, after defining the quality of individual
features, the similarities to neighboring features are checked in a descending order. The
top-n features obtained in this way form the basis for a more in depth pattern analysis. A
visual representation of a two-dimensional projection of the feature space using princi-
pal component analysis can provide initial indications of the number of distinct patterns
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Fig. 8. Multivariant description of the original energy time series by a vector of features for a
short-term sliding observation window.

present. In an iterative process, features and patterns are evaluated both graphically and
according to evaluation criteria using clustering algorithms to separate different energy
situations from each other.

3.1.1 Feature Extraction

In the first step, the proposed pattern recognition works by transferring the original
time series to symbolic sequences described by a vector of statistical features. With the
help of a short-term, sliding observation window of defined length, a multidimensional
representation of the original data is achieved (s. Fig. 8). In this context, time series
are defined in general form as a set of n observations of d-dimensional vectors Y =[
y1, . . . , yn

]
with yi ∈ R

d , i = 1 . . . n corresponding to temporally ordered observations.
Each window is bounded by its length with the two parameters start point τi,start and
end point τi,end be chosen. Two adjacent segments are separated by a defined step size
i (in the course of this study one day) and can then be moved overlapping in time
(τi−1,end > τi,start). As a representation of a time period, a feature vector is determined
inmultivariant form, resulting in an i×d matrixX of features as a discretizedmultivariant
description of the original time series Y .

The description of time series segments is based on a vector of features. Those
features can be found in different areas of data processing, from basic and descriptive
statistics, to studies from signal processing in the image domain, to descriptive param-
eters from probabilistics in model building. A comprehensive collection of such func-
tions is provided by the toolbox hctsa (highly comparative time-series analysis) [19]
especially developed for analyzing time series in MATLAB. Within full scope more
than 7700 different characteristic feature calculations are implemented. However, as the
number increases, the programmed computational effort increases sharply and it seems
reasonable to make a preselection for the specific use case:

• Features from descriptive statistics, such as mean, standard deviation, kurtosis, skew-
ness, form the basis for the quantitative description of time series sections and are
comparatively easy to interpret.

• Due to the fluctuating energy supply and the periodicity of energy time series, both
in the PV and load profile, further information content can be inferred in an image
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domain. The fast Fourier transformation as well as the wavelet transformation and
decomposition are computational methods used to analyze the power spectrum. Fea-
tures can be calculated from certain ranges of the spectra of Fast Fourier or Wavelet
Transform.

• Entropy measures from information theory and symbolic transforms further extend
the search range. However, the interpretability of the features can sometimes become
difficult. At this point, we should point out the strength of unsupervised learning
methods, which provide concise results in the presence of unknown results in a defined
search space.

With these considerations in mind, a standard set of 362 features was selected for the
study of the energy time series, although individual features are also run with different
sets of input parameters. For example, different wavelet basis functions can be used for
the wavelet decompositions, or the level of decomposition can be varied.

3.1.2 Feature Evaluation

The goal of the feature evaluations is to find out from the broad field of possible features
those that are particularly well suited for the following clustering. Classical approaches
of feature subset selection problems can be found in the literature [20–23], but are
hardly considering temporal causality of data points in time series or are related to
classification rather than clustering tasks. For this reason, feature selection is formulated
for the present study according to its own stationarity criterion. The evaluation of a
bottom-up segmentation algorithmwith uniform error criterion is based on the thesis: the
fewer segments are found, the more homogeneous are the identified energy situations –
the informative value about long-term energy situations increases with the output of
a low value. The coefficient of variation is subsequently used with a threshold value
to exclude features with a nearly constant course from consideration. Similarly, the
Euclidean distance measure compares the similarity between two adjacent features,
after which those with nearly identical trajectories are grouped.

3.1.3 K-Means Pattern Analysis

Unsupervised pattern recognitionmethods are used to explore local and global structures
in the energy time series data. k-Means is a clustering algorithm that can assign a number
of data points N to a number of clusters K . The objective function minimizes the within-
cluster sum of squares

Jm =
∑K

i=1

∑N

kεXi
‖xk − ci‖2 (4)

where Xi is a set of data points of the i-th cluster and ci is the mean for that points over
cluster i. After randomly initializing the cluster centers, during an iterative process the
center of each cluster is determined according to Eq. (5):

ci =
∑Ni

k=1xk
Ni

, xkεXi (5)
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Fig. 9. Top-5 features for PV profile segmentation.

Fig. 10. Principle component analysis of five dimensional feature vector of PV profile with
clusters of distinct energy situations.

The properties of the algorithm, a strict partitioning of all data points assuming
spherical clusters, must be considered in the evaluation, as well as the need for further
evaluation criteria to find the optimal number of patterns. The use of normalized data
must also be considered. Otherwise, unequal weighting will occur during calculation of
distances between data points.

3.2 Analysis of PV Profile

To analyze and describe typical situations in the PV profile (reference year 2017), the
first step is to calculate a selection of 362 suitable features for a rolling window of
width three days according to the algorithm described in Sect. 3.1. The reconstruction
error as a stop criterion for segmentation was set to 0.2. The five best rated features in
descending order are shown in Fig. 9 with their feature names. A detailed interpretation
of the features would go beyond the scope of this study. Reference is made to the hctsa
toolbox [19], whose documentation lists the function names and other sources.

The clustering results particularly follow the first feature WL_fBM _p3, which
strongly influences the principle component PC1 (s. Fig. 10) and indicate a seasonal
change in energy situation to be considered for the energy management. Although the
exact interpretation is excluded, it should be mentioned, that the value WL_fBM _p3 is
calculated via a wavelet decomposition and the estimated standard deviations of detail
coefficients.
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Fig. 11. Top-5 features for load profile segmentation.

Fig. 12. Principle component analysis of load profile segmented into three clusters using top-5
features and k-Means clustering algorithm.

It can be summarized that with the help of the algorithm it was possible to iden-
tify features for persistent, slowly changing energy situations. The distinction between
summer and winter operation is described surprisingly accurately by a single feature.
In contrast, the dynamic courses of the other features in the ranking, which follow the
smoothed course of the annual generation potential, appear less unexpected.

3.3 Analysis of Load Profile

Analogous to the recognition of energy situations in annual profiles of PV generation,
the pattern search method is also applied to the load profiles of the household year 2010
described in Sect. 3.2. The same set of statistical features from Sect. 3.1 is calculated
over an annual cycle over a sliding observation window with a length of three days. The
segmentation runs for all features with the same reconstruction error of 0.2. The five
best features obtained are shown in Fig. 11 below.

For the load profiles the principal component analysis shows less pronounced clusters
(s. Figure 12, left), which have to be evaluated in a differentiated way.

While the silhouette coefficient (SC) measures how similar a point in its own cluster
is compared to points in another cluster, the Davies-Bouldin index (DBI) is based on
a ratio between the distances within a cluster and the distances between clusters (s.
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Fig. 12, right). The two criteria are evaluated for a number of clusters from 2 to 10. The
optimum number of three clusters for the present data set is obtained for the highest SC
value and the lowest DBI value. Based on an initial qualitative observation, it is possible
to match the patterns with statements about the load demand in base load operation,
at medium consumption and at high consumption. A concrete assignment to distinct
energy situations cannot be made easily.

4 Adaptive Fuzzy Logic Controller Based Energy Management

In this section, the implementation of the A-FLC-EM concept based on identified energy
situations and descriptive features is presented. On the one hand, global parameter opti-
mization can be performed on distinct segments, on the other hand, the selection and
switching of EMparameters is encountered by a classification procedure. After an offline
learning phase, the concept is tested in a simulation-based online operation.

4.1 Optimization of EM Parameters

Due to the unsupervised learning methods used to detect energy situations and due to a
lack of understanding of the location of characteristic change points, it can be difficult to
perform FLC-EM typical expert-based adjustment of energy management parameters.
However, segmented time series of energy supply and/or demand give the opportunity to
compensate for these weak spots through algorithmic tuning of membership functions
locally. Metaheuristic optimization algorithms such as particle swarm optimization are
primarily suitable for solving such problems.

In this work, a particle swarm of size NS = 20 represents possible solutions to
the problem by multidimensional vectors that are iteratively adjusted. The search in
the solution space is described by Eqs. (7) and (8), which determine a position xi and
velocity vi of the particles. ε1,2 are random values between [0, 1] and α, β parameters
of a given learning rate, usually between [0, 2], here set equal to 1. After each iteration
k, the global best solution g∗ of the entire swarm is stored in addition to the individual
best solution of each particle x∗ [24].

vk+1
i = vki + αε1

[
g∗ − xki

]
+ βε2

[
x∗
i − xki

]
(6)

vk+1
i = xki + vk+1

i (7)

Besides the parameter settings of thePSO, a suitable fitness function f is introduced to
evaluate the operational objectives. This is minimized in favor of high system efficiency
and low component stress under the condition of supply security.

With a weighted sum, the relative hydrogen surplus at the end of the year kH2,Sur
in kg, the equivalent full cycles of the battery kFEC and the start-stop cycles of the
electrolyzer NCyc,EL and the fuel cell NCyc,FC are taken into account:

f = 1

2
kH2,Sur + 1

4
kFEC + 1

8
NCyc,EL + 1

8
NCyc,FC + E3

shed (8)

A penalty-term Eshed increases the costs exponentially in case of load shedding due
to lack of energy reserves.
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4.2 Cluster-Then-Predict Classification

Centroid-based clustering algorithms such as k-Means can label new observations based
on themodel created. At the same time, assigning new points to a cluster algorithm seems
misleading because the results of a clustering algorithm are imperfect – they represent
only a snapshot of a segmentation of the current data. How well they generalize to new
data is an open question. Also, it should be noted that the k-Means algorithm does not
fit all data bases, as it tends to detect only spherical structures with an approximately
uniform distribution of observations across patterns. The indications of patterns in this
paper are basedonobservations of the principle component analysis plots andon statistics
such as the Davies-Bouldin index or the silhouette coefficient. Despite the ambiguity of
a good clustering, in the case of PV time series, describable situations, in particular a
summer and winter operation, could be identified and their cluster centroids stored. In
online classification, new data points from a trailing window are assigned to the existing
clusters and used to select the EM parameter set. This very simple form of classification
is chosen because of the strong dependencies on the previous clustering results and is
called the cluster-then-predict approach. For each new data point in the form of a feature
vector xd the degree of membership to a pattern Ki is calculated based on the distance
to its centroids:

μKi(x) = 1/(x − cKi)2

1/(x − c1)2 + · · · + 1/(x − cKi)2
(9)

4.3 Performance Tests and Comparison

A brief presentation and discussion of the simulation results focuses on the comparison
between the conventional all-year fixed fuzzy logic controller based energymanagement
(FLC-EM) and the novel adaptive fuzzy logic controller based energy management
(A-FLC-EM) for the distinction between summer and winter operation. Based on the
pattern recognition segments in PV power profiles, controller parameters are optimized
separately employing a particle swarm optimization algorithm. Figure 13 shows the
resulting nonlinear output maps. The quantitative comparison in Table 1 shows slight
improvements in the evaluation criteria for each additional reference year 2 to 4. The
main indicator of improved system utilization is the increase in the relative hydrogen
surplus at the end of the simulation year kH2,Sur,a, corresponding to increases in the PV
self-consumption quota qSC . Annual load shedding EShed ,a as well as start-stop cycles
of the electrolyzer NCyc,EL and fuel cell NCyc,FC were reduced. The increase in full
equivalent cycles kFEC again indicates that the battery in the adaptive approach has an
increased energy throughput in order to use it for the increasingly longer operation times
of the electrolyzer.

A more detailed view in Fig. 14 shows on summer days (right) this larger cyclic
discharge margin of the battery to absorb the PV power peak, while on winter days (left)
an average higher SOC with adaptive fuzzy logic controller based energy management
is positively noticeable to buffer short-term load peaks.
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Fig. 13. Optimized controllers of A-FLC-EM for distinct energy situations in winter and summer.

Fig. 14. Qualitative comparison of A-FLC-EM and conventional FLC-EM for two typical days
in summer and in winter.

Table 1. Comparison of the performance of the conventional FLC-EMwith the novelA-FLC-EM.

Evaluation criteria FLC-EM A-FLC-EM

Year 2 3 4 2 3 4

qSC (%) 77.24 80.26 79.61 78.88 81.89 82.62

EShed ,a (kWh) 9.19 7.01 3.38 4.75 1.10 1.19

kH2,Sur,a (%) 19.39 17.68 21.96 20.68 19.00 24.46

NCyc,FC 59 75 86 51 81 84

TFC (h) 1572 1449 1440 1703 1611 1582

ηFC (%) 50.03 50.4 50.81 51.45 50.98 52.02

NCyc,EL 328 273 282 269 259 254

TEL (h) 2496 2331 2301 3439 3137 3238

ηEL (%) 59.7 60.04 59.76 60.22 59.64 60.23

kFEC 120.0 128.2 124.7 131.7 137.3 137.1

5 Summary and Outlook

A novel adaptive fuzzy logic controller based energy management concept for a stand-
alone photovoltaic hybrid system with battery and hydrogen storage path was presented
in this paper. A single-family house was selected as the reference application and
described on the basis of several years of measurement data for PV- and load profiles.
The basic idea of the new energymanagement concept to switch the energymanagement
parameters depending on identified changes of a pronounced long-term energy supply
and/or energy demand situation could be successfully demonstrated. In this context, the
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concept was first introduced in the offline learning phase to analyze the energy time
series and automatically identify different distinct energy situations based on a segmen-
tation algorithm and a vector of appropriate statistical features over a short-term sliding
observation window. For each identified energy situation, particle swarm optimization
was used to calculate the optimal energy management parameters of an FLC for a train-
ing data set. The performance of the novel A-FLC-EM was evaluated in comparison to
a conventional FLC-EMwith parameters fixed for the entire year. Significant qualitative
and quantitative improvements were achieved.

Further investigations are concerned with the introduction of more complex classi-
fication methods (e.g. based on fuzzy pattern classification) with a better separation of
classes in the high dimensional feature space. Furthermore, continuing investigations
on the suitability and application of different features are to be carried out. Also, the
adaptation law shall be extended and developed and investigated by smoothly fading
and not switching between controller parameters or their control outputs. Furthermore,
the presented methodology shall be investigated for other energy management concepts
(not only based on FLC) and shall be demonstrated also for other HESS configurations
in other application fields.
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