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Abstract. This study examines the potential of energy arbitrage in the
German electricity market as a way to increase the return on investment
of battery storage technologies. The main goal is to develop and estimate
the performance of automated arbitrage strategies for households using
Tesla Powerwall energy storage. Based on historical prices of the German
intraday electricity market, artificial intelligence algorithm is developed
to find feasible charging and discharging strategies for battery storage.
This is done by employing a Deep Q-Learning approach of Reinforcement
Learning. As a baseline, a simple Expert System algorithm is suggested,
that is based on buy/sell at fixed price approach. The maximal possi-
ble return from the arbitrage is explored by a linear optimization of the
system under perfect price foresight. The Reinforcement Learning algo-
rithm is found to achieve only ∼ 35% of the maximal return which is only
5% more than the simplistic Expert system. Finally, the performance of
both algorithms is compared to the already available results at other
electricity markets.

Keywords: Energy storage arbitrage · Artificial intelligence ·
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1 Introduction

In an effort to mitigate climate change, the German government has established
plans to increase the share of renewable energy in gross electricity consumption
to at least 80% by 2030 and to reduce greenhouse gas emissions by 95% by 2050
compared to 1990 levels. At the beginning of 2020, 43% of the German power
has been produced from renewable sources, e.g., wind, sun, water, and biomass.
While conventional power plants traditionally provide the backup infrastructure
to balance out mismatches between renewable power supply and demand, other
balancing schemes have to step in place in order to reach these long term goals.
Most importantly, an expansion of power transmission and energy storage is
planned to shift energy in space and time more flexibly. However, in contrast
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to transmission grid expansion, the expansion of storage technologies requires
shorter planning phases as well as less inter-regional coordination. Storage tech-
nologies also come along with a list of system-beneficial qualities such as support
for frequency regulation, voltage support as well as grid stabilization [Eyer and
Corey, 2011]. In particular, fast reacting storage technologies as batteries have
noiseless operation, low maintenance, high efficiency, and few installation con-
straints [Leadbetter and Swan, 2012].

The main concern about battery energy storage is its cost. The current design
of the power market does not offer sufficient financial incentive for the essen-
tial expansion of the storage. To attract more investments in energy storage
units, special tools and policies that stimulate sufficient return on investment
are required. Primary economic advantage of the storage is that it can make use
of the energy price fluctuations by charging at times when there is an excess of
energy on the market and therefore the prices are low, and selling the energy
at peak load times when the prices are high, known as energy arbitrage. Under
current market setup, arbitrage is one of the major revenue sources for storage
in electricity markets [Krishnamurthy et al., 2017]. Development of storage tech-
nologies in the recent decade and increase of its deployment among commercial
consumers as well as households, prompted multiple studies to find an opti-
mal strategy for storage behavior, especially, examining possibilities of arbitrage
as a way to maximize the returns. Various optimization approaches have been
applied to the problem: Linear Programming models, Mixed Integer Linear Pro-
gramming [Krishnamurthy et al., 2017], Stochastic Optimization model [Shang
and Sun, 2016], as well as more sophisticated techniques, such as Reinforcement
Learning [Cao et al., 2020],[Harrold et al., 2021]. Even though, existing literature
recognizes that arbitrage operations did not break-even in the recent past [Metz
and Saraiva, 2018], mainly, due to high investment cost, it is expected that price
arbitrage could play an important role in the competitiveness of energy storage
in the nearest future [Campana et al., 2021]. Positive developments in arbitrage
are the wide-spread occurrences of negative electricity prices in the recent years
in some electricity markets, including Germany [Metz and Saraiva, 2018]. Some
research [Wankmüller et al., 2017] suggests that storage facilities that pursue
arbitrage purposes should use only the most profitable opportunities to increase
the Net Present Value, considering the life span of the battery. Currently, one
of the most promising approaches to solve the problem of profit maximisation
in arbitrage is Reinforcement Learning (RL), specifically, Deep Reinforcement
Learning (DRL). DRL combines the advantages of Reinforcement Learning and
Deep Learning and it has already achieved convincing results in the field of
Artificial Intelligence (AI) [Lee and Choi, 2019].

In this paper, the possibility of energy storage arbitrage as a way to increase
the return on investment in the German intraday electricity market is studied.
First, the maximal possible return from the energy arbitrage is estimated using
historical data by performing linear optimization of the problem given perfect
price foresight. This is then used as an idealistic upper bound for different arbi-
trage strategies to be used under uncertainty. The main objective of the study
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is to develop and estimate the performance of automated arbitrage strategies.
First, an Expert System is introduced as a baseline algorithm to estimate the
return using a simplistic arbitrage strategy. Then, an advanced Deep Reinforce-
ment Learning approach for arbitrage is presented. Finally, the performance of all
algorithms with respect to each other is estimated and compared to the already
available results at other electricity markets.

2 Modeling

2.1 Theoretical Background

To make use of energy arbitrage, a storage device buys power at times when the
prices are low and sells it at times when the prices are high. Therefore the profit
f over T discrete time steps with an assigned duration of Δt is given by

f(d) =
T∑

t=1

η p(t) d(t)Δt (1)

where d(t) is the power dispatch of the storage device in kW and p(t) is the
electricity price in e/kWh at time t. The objective of an operating strategy is
to maximize the profit, i.e.

max
d

f(d) (2)

The optimal dispatch d(t) defines at which rate the storage should be charged
(d(t) < 0), discharged (d(t) > 0), or kept idle (d(t) = 0) to gain profit from the
energy trading. The state of charge of the battery e(t), which corresponds to the
net amount of energy stored in the storage at t, is defined as

e(t) =
t∑

t′=1

η Δt max (d(t′), 0) +
1
η

Δt min (d(t′), 0) (3)

where η describes the charging and discharging efficiencies and η2 is the round-
trip efficiency. The energy storage is bound to a maximal storage capacity
emax, i.e.

e(t) < emax, ∀t (4)

In the same way, the dispatch is bound to a maximal discharging and charging
capacity, i.e.

dmin ≤ d(t) ≤ dmax, ∀t (5)

Unless otherwise stated, the discharge is assumed to have only three possible
values d = [dmin, 0, dmax], which means that charge/discharge occurs always at
maximal rate. Moreover, the maximal charge and discharge rates are considered
to have the same power P , −dmin = dmax = P .



66 M. Bilousova et al.

2.2 Input Data

For this study, the European Power Exchange (EPEX SPOT) intraday historical
market data for Germany for the years 2019 and 2020 were chosen as price data
p(t) [epexspot, 2020]. In the Day Ahead (DA) and Intraday (ID) electricity
market, prices can fall below zero. This happens when highly inflexible power
generation (including weather-dependent renewables such as wind and solar)
coincides with low demand. With the rising share of renewable energy in the
market, occurrence of negative prices has become more frequent. Secondly, the
trade on the ID market goes on continuously. ID market serves to balance out
the real-time demand and allows last minute adjustments. Electricity can be
traded up to 5 min before delivery through hourly, half-hourly or quarter-hourly
contracts. Therefore, it is the most volatile market with the highest range of
price fluctuations, see Fig. 1 where the two market prices are compared. These
two factors make ID market the most appealing for the arbitrage. To align the
model with the input price data, the time-dependence of all quantities is set to
a temporal resolution of Δt = 15 min.

The technical parameters of the battery storage is aligned to reported val-
ues of the Tesla Powerwall 2 which can be considered representative for anal-

Fig. 1. Comparison of Day Ahead and Intraday electricity prices for the first week of
January 2019.

Fig. 2. Storage state of charge with the linear optimization for January 2019. The
results correspond to the optimization shown in Fig. 3.
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ogous home energy storage solutions. It has a storage capacity of 13.5 kWh
and a dispatch capacity of 5 kW. The battery has 100% depth of discharge
and 90% round trip efficiency [Tesla, 2022]. The warranty for non-solar self-
consumption is 37.8 MWh of aggregate throughput, which equals to 2800 full
charging/discharging cycles. At the time of writing, the price of the battery
including software and installation is about 12200 EUR. In the following chap-
ters, unless stated otherwise, the parameters of the Tesla Powerwall 2 will be
used for the storage, i.e. P = 5 kW, Emax = 13.5 kWh and η = 0.9.

3 Results

3.1 Linear Optimization

The maximal possible profit reachable in a setup presented in Sect. 2.1 can be
calculated using linear optimization approach. The computational implementa-
tion uses the PyPSA package [Brown et al., 2018] as an interface to create the
linear problem which is solved using the Gurobi solver.

The results of the linear optimization are presented in Figs. 3, 2. The opti-
mization suggests that the maximal possible profit in 2019 is 337e for energy
arbitrage with the Tesla Powerwall 2. The profit is monotonously and almost
linearly accumulated through the whole year as can be seen from Fig. 3. This
can be achieved with rather active and rapid response to the electricity price
dynamics. Figure 2 illustrates the response of the storage to the electricity price
dynamics. One can observe that in order to obtain the maximal profit the storage
is almost never idle and reacts to almost all electricity price changes by charging
or discharging.

3.2 Expert System

An Expert System (ES) is a computer program that reproduces the behavior of a
human expert in a distinct domain of knowledge [Liebowitz, 1995]. ES have been
successfully applied in various spheres since 1980-s and have emerged as useful,

Fig. 3. Maximal possible profit gained in one year from energy arbitrage with the Tesla
Powerwall 2 storage. Electricity prices are from the EPEX intraday German market
data for year 2019. The maximal profit from the energy arbitrage with given storage
is 327e.
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deployable systems worldwide [Liebowitz, 1991]. For the given energy arbitrage
problem, a model that sells and buys energy at a fixed threshold was set up. In
such approach, the energy dispatch solely depends on price dynamics and has
a completely determined behavior. The used Expert System can be formulated
with the following rules for energy dispatch:

dES(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P ⇐ p(t) > ptr & E < Emax (discharge/sell)

0 ⇐ p(t) > ptr & E = Emax (idle)

0 ⇐ p(t) = ptr (idle)

0 ⇐ p(t) < ptr & E = 0 (idle)

−P ⇐ p(t) < ptr & E > 0 (charge/buy)

(6)

The Expert System has only one parameter, the threshold price ptr, which
defines its performance. The sensitivity of the system to the value of ptr was esti-
mated by performing a scan in a range ptr ∈ {min p(t),max p(t)}. The results
of the scan are presented in Fig. 5 where the total annual profit of arbitrage for
the EPEX 2019 data is presented. The mean value has shown to be the optimal
threshold ptr for the ES 5. That is, when the storage is not full and the price of
electricity is below mean the storage always charges (buys electricity); when the
price of electricity is above mean the storage discharges (sells electricity). With
the given strategy of an ES algorithm, energy storage managed to earn approxi-
mately 100e for the year 2019, as well as for the year 2020. That is only ∼30%
of the maximal possible value obtained from the linear optimization. During one
year trading period the battery went through 700 full charge/discharge cycles,
while the maximal possible number of cycles per year is ∼1500. As a result, ES
strategy lets the storage stay idle in total for almost half of the time.

Figure 4 presents state of charge of the battery following the Expert System
strategy. The storage responds only to significant changes in electricity price.
During relatively long periods of time when the price is continuously higher or
smaller than the threshold, the storage doesn’t perform any actions and hence
loses the ability to profit.

3.3 Reinforcement Learning

Reinforcement Learning (RL) is a computational approach to learning from
interaction. It provides a mathematical framework for an agent (algorithm) to
learn various strategies and find the actions that maximize numerical rewards.
RL has been applied to various problems and has shown good results in the
field of autonomous driving, industrial control etc [Guan et al., 2015a]. In the
recent years, there has been a rising number of research in the field of electricity
markets, energy storage, management in microgrids, electrical vehicle charg-
ing, energy arbitrage etc. In [Guan et al.,2015b], RL is applied to optimize the
charging and discharging strategy of battery energy storage systems in industrial
parks. In [Cao et al.,2020], authors apply DRL to optimize the battery energy
arbitrage considering an accurate battery degradation mode. In [Guan et al.,
2015a] RL was applied to minimize electricity bills of residential energy storage
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systems [Xu et al., 2019a]. RL was also used to learn a market clearing strategy
for the local event-driven market in [Chen and Su, 2019] by using a Q-learning
accounting for different rewards across multiple episodes. In [Xu et al., 2019b]
DRL approach was enhanced by incorporating the proximal policy optimization
(PPO) algorithm with a recurrent neural network to represent the price time
series. In [Wang and Zhang, 2018] authors derive a temporal arbitrage policy for
storage via Reinforcement Learning for the New England real-time electricity
market data. They show that their RL algorithm performs significantly better
than online modified greedy algorithm offered in [Qin et al., 2016].

One of the main problems of successful energy arbitrage is finding the pat-
terns of the electricity price. Despite the data being quite stochastic, it is still
possible to distinguish certain trends. Figure 7 illustrates the Fourier modes of
the electricity price, it can be seen that German electricity market has pro-
nounced daily, weekly, monthly, seasonal and yearly modes. Figure 6 shows that
the prices are often lower on the weekend, which goes in line with the fact that
demand is higher during the working days. To consider these temporal periodic
and systematic trends in the energy arbitrage, we train a deep Reinforcement
Learning algorithm.

This is done by creating an environment (storage and energy market) and
an agent (arbitrage algorithm) that interact with each other through selling and
buying electricity, hence, performing the arbitrage. Then the optimal arbitrage
strategy is obtained by performing a Deep Q-learning [Mnih et al., 2013]. The
objective of the Deep Q-learning is to obtain a neutral network that is capable
of mapping the state of the environment to the most effective action (Fig. 8).

In the following, the environment is described by its state si which is then
used by the agent to decide the best action at the given timestep ti. The state
reads as a 7-dimensional vector:

si =
{

H(ti), dw(ti), dm(ti), m(ti),

p(ti), p(ti−1), e(ti)
}

,
(7)

where each component of the vector correspond to hour, day of the week, day
of the month, month, state of charge, electricity price, previous electricity price,

Fig. 4. Storage state of charge it January 2019 following the Expert System strategy.
The results correspond to the Expert System arbitrage shown in Fig. 5.
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Fig. 5. Profit gained in one year by the Expert System from energy arbitrage with
the Tesla Powerwall 2 storage. Electricity prices are from the EPEX intraday German
market data for the year 2019. Upper: Performance (Profit) of the Expert System as
a function of the threshold price ptr Lower: Dependence of the profit and time for ES
with 2019 mean electricity price as ptr.

respectively, at a timestep ti. The agent is capable of three actions ai:

ai =

⎧
⎪⎨

⎪⎩

1 (discharge/sell)
0 (idle)

−1 (charge/buy)
(8)

Executing an action ai in a specific state s(ti) provides a reward ri to the agent
which allows him to estimate the success of the action. Through its learning
the agent explores outcomes of different actions at different states and thus
“memorizes” the actions that lead to the highest rewards. Here we follow the
reward function ri suggested in [Wang and Zhang, 2018]:

ri =

⎧
⎪⎪⎨

⎪⎪⎩

(
p(ti) − p(ti)

)
P (discharge/sell)

0 (idle)(
p(ti) − p(ti)

)
P (charge/buy)

(9)

where the average price pi is calculated by

p(ti) = (1 − η) p(ti−1) + η p(ti), (10)

with η = 0.01.
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The agent is trained by performing deep Q-learning, which we implement
using a well-developed machine learning framework PyTorch [Paszke et al., 2022].
In the implementation, we follow instructions from [Paszke, 2022] and adapt
to the current problem, i.e., state size and number of actions. The training is
performed on the 2019 EPEX intraday energy price data.

The best performance of the RL optimal arbitrage policy gains only ∼
115e which is only 15% improvement over the simple Expert System. The per-
formance of the RL approach is presented in Fig. 9. The RL arbitrage strategy
is prone to the drawback of the ES which doesn’t react to small changes in
electricity prices and as a result the storage stays idle for most of the time.

A possible explanation for the poor performance of the RL approach is the
definition of the reward function ri. The agent obtains the highest reward when
the electricity prices change largely, and, hence, it favors to stay idle and wait
until large fluctuations of the electricity price to maximize its reward. However,
finding a different rewarding function which will encourage rapid reactions on
fine price dynamics is not straightforward and requires a separate study.

Fig. 6. Electricity price dynamics in summer 2019. Blue bands correspond to weekends
when the prices are systematically lower.

Fig. 7. Fourier modes of the electricity price. German electricity market has pro-
nounced modes (vertical lines) which can be associated with hourly, daily, weekly,
monthly, etc., periodic trends.
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3.4 Performance Comparison

Result comparison of linear optimization, Expert System and Reinforcement
Learning algorithms is demonstrated in Fig. 10. The performance of the ES
algorithm with a fixed threshold (profit of ∼ 100e) is similar to the perfor-
mance of a more complex RL approach with a dynamic threshold value (profit
of ∼ 115e). Reinforcement Learning offers only about 15% more returns. How-
ever, the returns of both algorithms are more than three times lower than the
maximal possible returns obtained from the linear optimization performed with
PyPsa (∼ 337e). Taking into account the initial investment of ∼ 12200 EUR,
the approximate breakeven time would be more than 100 years in the scenario
where battery degradation is not considered and average electricity does not
change significantly on yearly average basis.

To compare performance of ES with the results of the RL algorithm applied
in similar research, the ES developed within this study was applied to the data
for the New England US energy market used in [Wang and Zhang, 2018]. For this
comparison, the capacity and parameters of the battery were set up as in [Wang
and Zhang, 2018]. As shown in the Fig. 11 results of RL algorithm developed in
the corresponding paper are analogous to the results of the Expert System with
the buy/sell threshold set at the average price of electricity annually. RL yearly
yields 40000 $ [Wang and Zhang, 2018] and our simplistic ES returns for the same
period approx. 39000 $. The maximal possible return was examined with linear

Fig. 8. Storage state of charge in January 2019 using the Reinforcement Learning
approach. The results correspond to the RL arbitrage shown in Fig. 9.

Fig. 9. Cumulative profit obtained from the Reinforcement Learning approach (green)
compared to the Expert System results (purple).
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Fig. 10. Result comparison of linear optimization (orange), Expert System (purple)
and Reinforcement Learning (green) algorithms. The results correspond to the Rein-
forcement learning in Fig. 9.

Fig. 11. Result comparison of linear optimization (orange), Expert System (blue) and
Reinforcement Learning by [Wang and Zhang, 2018](dashed line) algorithms.

optimization the same as for the Tesla Powerwall for the German market. The
linear optimization suggests that the maximal return at New England Market
with 8MWh storage is 126000 $. This shows that both RL algorithms, the one
developed within this study as well as the RL algorithm developed by [Wang
and Zhang, 2018] perform similarly relative to the simple Expert System and
explore only 1/3 of the maximal possible profit.

4 Conclusions

Different strategies for energy arbitrage with the Tesla Powerwall 2 storage are
studied. The results of the study show that energy arbitrage in the German
electricity market is in general possible. Intraday market is the most attractive
market for the arbitrage operations due to its balancing function and frequent
wide price spread over short periods of time. Nevertheless, as previously men-
tioned in [Metz and Saraiva, 2018], arbitrage does not break even within life
span of the battery to justify the investment in the battery storage technolo-
gies for the purpose of monetary gains. However, if we consider battery storage
as a necessary technology to balance supply and demand in a highly volatile
renewable energy system, price arbitrage would be a benefit. This study demon-
strated that use of a simple deterministic algorithm, expert system, with a fixed
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buy/sell threshold yields similar returns as application of a more sophisticated
DRL approach. However, both approaches reach only up to ∼ 30% of the max-
imal possible return which was estimated with linear optimization. The simple
expert system was also applied to the New England US energy market data used
in [Wang and Zhang,2018] and compared to the results of their RL algorithm.
Similarly to the German electricity market, the profit of both algorithms was
about ∼ 30% of the maximal possible profit. Moreover, as mentioned in [Gao
and Yu, 2021], even when the performance of DRL-based algorithms in distribu-
tion system applications is promising, the learned control policies are embedded
in deep neural networks and therefore are hard to interpret as compared to
the Expert System. This, in its turn, leads to practical difficulties and limited
possibilities to check algorithm for safety properties.
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