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Abstract. Prosumer households with photovoltaic systems face the problem of
occasionally generating electricity that cannot be used within the house but must
be fed into the electricity grid. This is not desired since with changing policies in
Germany, the feed-in tariff has been reduced considerably and the cost of power
consumed from the grid has increased significantly. To consumemore solar power
instead of feeding it into the grid the excess solar power can be consumed by
a bidirectional electric vehicle present at the household. Additionally, this sys-
tem can supply power to the household if solar power is insufficient. This study
presents howbidirectional electric vehicles can optimise the self-consumption
of solar photovoltaic energy and increase the self-sufficiency of the loads in
a household and a community (i.e. group of households) by a hierarchical
structure of control systems: car, household and community. They are opti-
mising power flow locally and additionally consider information from the over-
and underlying controllers. The car controller is a bidirectional charging station
where the electric vehicle is connected. It takes user preferences that are used
by the household controller to perform power optimisation by handling the mis-
match between generation and demand. The community level controller performs
an on-the-top optimisation which reduces the power flow between the commu-
nity and the electricity grid. The effect of the proposed system is investigated
on a reference distribution grid simulated in the software package DIgSILENT
PowerFactory whereas the control framework is developed in Python. Real load
and irradiation profiles are used to execute the simulations. The results show that
there is a 31% and 48% increase in the self-consumption and self-sufficiency on
a household level whereas a 30% and 50% increase on a community level when
the coordinated control system is implemented.

Keywords: Vehicle-to-Grid · Self-Sufficiency · Self-Consumption · Prosumer
Household · Electric Vehicles

1 Introduction

The United Nations Climate Change conference held at Glasgow in 2021 made targets
to limit the global temperature rise to 1.5 °C [1]. Such targets are only possible if there is
a change in social habits by integrating distributed renewable energy sources, adopting
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zero-emission electric vehicles (EV), along with the right political framework to support
these changes. The number of solar photovoltaic (PV) installations have increased since
the year 2000 after the German Renewable Energy Act was introduced [2]. The feed-in-
tariff for a PV system was 51 EUR cents/kWh in 2000 [2] which has been reducing over
the years to a value of 8.56 EUR cents/kWh in 2021 for a 10kW system [3]. With the
energy cost of 32.16 EUR cents/kWh [4] in 2021 it is desirable for a household prosumer
to consume most of its generated energy rather than feeding it into the grid.

A mismatch between the time of generation and consumption of PV is observed
which leads to a feed-in of excess PV into the grid. This excess PV can be consumed
by introducing a battery backup to the system. With increased self-consumption (SC)
of PV due to the batteries, the self-sufficiency (SS), a factor indicating the amount of
consumption being sufficed by the generation, also increases. A study by the Fraunhofer
Society shows that a PV system with a lithium-ion battery increased the SC by 82% as
compared to the conventional system without batteries [5].

EVs can substitute stationary batteries since a car on average is parked 22 h at home
or at the officewith 16 h of uninterrupted parking as per amobility survey in six European
countries [6]. The number of new battery EVs has increased by 83% in 2021 as compared
to 2020 in the year-end report of the German Federal Motor Transport Authority [7].
German ministries are targeting to have between seven to ten million EVs on road by
2030 [8].

Unidirectional EV as a replacement of a stationary battery storage has been inves-
tigated in [9–11] on a household level. Comparing a system with EV as a storage to a
system without storage, an improvement was seen in the SC of the system but not by
a great amount due the mismatch between the availability of the EV at home and the
time of PV generation. The SS had reduced in [9] as the household consumption had
increased due to an addition of an EV in the house. In [10], SS and SC were found to
be lower with an EV in the house as compared to when it was not present. To increase
the SC, the EV will have to charge during the day which will require a change in social
habits or an increase in charging stations near the workplace as PV is produced normally
when people are at work [11]. Smart charging techniques have to be implemented to
see better results of EVs being used as battery storage systems for a household. SC and
SS are higher with a controlled smart charging strategy by 8.7% and 6.9% respectively
when comparing with an uncontrolled strategy in [12].

Controlled strategies which incorporate not only charging the EVwith excess PV but
also discharging when consumption is greater in the house will further increase the SS of
the system which is only possible if the EV has capabilities of bidirectional power flow.
The concept of Vehicle-to-Grid (V2G) where the EV can charge as well as discharge, has
been used in [13–15] for a household. There is a 13% increase in SC with bi-directional
charging strategies as compared to unidirectional in [13]. Techno-economic analysis for
a span of ten years is shown in [14], where a bi-directional EV can reduce the operational
expense with respect to the electricity cost by 37% but has effects on the EV’s battery
lifetime which is reduced by 12%. It is found that same level of SC and SS can be
achieved when a battery storage is replaced by a bidirectional EV but can vary based
on the EV battery capacity, the driving profile and number of hours an EV is parked at
home [15].
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Studies on a community level i.e. on a group of households are conducted in [9] and
[10]. The results show a decrease in the SS of the community when adding an EV to each
household without any optimisation or V2G capabilities, because they act as additional
load in the household. Centralized charging, a central unit which decides on the charging
power of theEV, anddecentralized smart charging strategies are used in [12]withoutV2G
capabilities on a community level. A complex algorithm and an advance communication
infrastructure are required in centralized smart charging, whereas the decentralized or
distributed charging of EV is conducted on a user level which is less complex and has low
privacy violations. Centralized strategies outperformed decentralized strategies which
was indicated with an increase in the SC value of the community.

Research on bi-directional charging is only performed on a household level, none of
the papers presented in the literature discusses V2G capable EVs used in optimising the
community’s SCor SS. In this study, a controller based hierarchicalmodelwas developed
to improve the SC and SS of a household and a community using bi-directional EVs
connected to each household. Agent based modelling was performed to optimise the
household and the community to make it less dependent on the grid. Real load and PV
irradiation profiles from Hochschule für Technik und Wirtschaft (HTW), Berlin database
were used to calculate the household consumption and generation [16, 17]. The model
was implemented on a reference grid form the project MONA 2030 and the simulations
were carried out for one week in the summer and winters to examine the seasonal
performance of the controllers.

2 Methodology

In this section, basic grid element models used for energy optimisation are described.
The controller architecture using these models is also illustrated.

2.1 Model Elements

2.1.1 Grid

Project MONA 2030 [18], an open source reference grid is used for the simulation.
It focused on optimisation of transmission and distribution grids with high renewable
energy feed-in. In total there are 9 representative grids categorizing various city sizes,
population and if it’s in a rural or urban location. Grid type 5 has been selected for
this study based on the number of houses in the model and has features similar to a
small town as per [18]. The grid has 14 households which were modified in DIgSILENT
PowerFactory to include a PV system and an EV to each household as seen in Fig. 1.

2.1.2 Solar Photovoltaic

The time series power output of a solar PV systemwasmodelled using the PVLIB library
for each of the households in the community. PVLIB is a library written for Python. It
is a toolbox developed by the Sandia National Laboratories which is used to design
and model all aspects related to PV systems [19]. The ModelChain class method of
PVLIB was used, that required inputs like system size, inverter data, PV panel data and
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Fig. 1. Grid structure with grid elements and controllers

a time series weather data that gives a time series power data as an output. One minute
resolution time series weather data was taken from the HTW Berlin database [16].

2.1.3 Loads

Representative electrical load profiles for residential households taken from the HTW
Berlin database are used [17]. It is an open-source data of 74 German single-family
households accounting all the electrical loads including cooking stove,washingmachine,
refrigeration and lighting loads. The average annual consumption of all the 74 profiles
is 4.7 MWh which is a good estimate of a household of 4 members in a family [20].

2.1.4 Electric Vehicle

Honda e, an EV manufactured by Honda Motor Company Ltd. Was selected to
be modelled as an EV for the study. It has bidirectional charging capabilities with
charge/discharge power of 6.6 kW and a battery capacity of 35.5 kWh.

2.2 Indicators

The results of the simulations will be quantified and examined based the following
indicators:

2.2.1 Self-consumption

SC is defined as the fraction of self-consumed PV energy to the total PV energy generated
[21], it can be represented by Eq. 1.

SC =
∫ t=t2

t=t1

PPVconsumed

PPVgeneration
· dt ∗ 100 [%] (1)

where PPVconsumed is the self-consumed PV power and PPVgeneration is the generated PV
power between the times t1 and t2.
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2.2.2 Self-sufficiency

SS is defined as the fraction of loads supplied by the total consumed generation i.e. the
consumed generation (Pconsumed generation) to the total loads of the entity (in this case a
household or a community) (Ptotal consumption) [21], it can be represented by Eq. 2.

SS =
∫ t=t2

t=t1

Pconsumed generation

Ptotal consumption
· dt ∗ 100 [%] (2)

2.2.3 Dependency on the Grid

Dependency on the grid (DotG) is a self-defined factor that indicates howmuch energy is
being exchanged between an entity and the electricity grid. It is a time invariant function,
which is calculated at the end of the simulation period based on the amount of energy
consumed form the grid (Egrid consumed ) and the amount of energy feed into the grid
(Egrid feed−in) as seen in Eq. 3. It is additionally calculated as a percentage by comparing
the value with a predefined base case as seen in Eq. 4.

DotG = Egrid consumed + Egrid feed−in [kwh] (3)

DotGPercentage = DotG

DotGbase case
∗ 100 [%] (4)

2.3 Energy Optimisation Model

The model aims to optimise the power flows to increase the SS and SC, and reduce the
DotGbyusing controllers connected to the car, household and the community namelyCar
Controller (CR), Home Controller (HC) and Community Controller (CC) respectively.
Hierarchal architecture was used to design them so they can interconnect with its lower
and/or higher-level controller. They were tailored to be scalable so that the model can be
implemented on any grid structure. Such controller layout as shown in Fig. 2 is called a
multi agent control [22]. The higher priority controller(s) are independent of the lower
one, for example, if the CC is not functional, it doesn’t affect the functioning of the HC
and CR. The region of interest of the controllers defines the working boundaries of their
control actions as shown in in Fig. 1.

For a discrete time step (T ) of simulation, the controllers in Python set and com-
municate the values of the model elements to PowerFactory that performs load flow
calculation. The results of the load flow calculations are retrieved in Python where the
controllers perform their analysis. Based on the results of the analysis, the new control
actions for the model elements are set for the next time step. The simulations were of
one minute time step (T = 60 s) as all the data i.e. load profiles and PV irradiation data
were in one minute resolution. The controllers set their target actions based only on
the calculations in the current time step. The controllers do not integrate any prognosis
algorithms.
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Fig. 2. Controller hierarchal architecture

2.3.1 Car Controller

The CR is like a bi-directional charging station connecting the EV with the household
as seen in Fig. 1. It takes input from the user when the EV is connected to it. The
inputs include the time when the EV will leave the house (Timeleave), the desired state
of charge (SoC) the vehicle should have when it leaves the house (SoCtarget) and the
charging mode. The user has an option to choose from two charging modes, i) Normal
Charging (NC) mode and ii) Optimised Charging (OC) mode. The NC mode resembles
a unidirectional, traditional charging mode which charges the EV once it is connected
to the CR whereas the OC mode is the bi-directional charging mode which charges or
discharges the EV based on the algorithm of the HC. If the HC is not present, the EV
falls back to the NC mode.

The main function of the CR is to physically charge or discharge the car based on
power setpoints calculatedby itself (NCmode) or givenbyHC(OCmode).Other features
include protecting the EV from charging with a power greater than the allowed charging
limits, as well as protecting the EV’s battery from overcharging or deep discharging.

2.3.2 Home Controller

The HC optimises SS at individual household level by regulating charge/discharge
behaviour of EVs in OC mode (OC EVs). The residual power flow regulation at
household-grid interface is achieved through monitoring, logging and controlling
individual OC EV powers at each time step considering the following aspects:

• Residential loads (Phousehold )
• Loads of EVs in NC mode (PNC,EV )
• Photovoltaic infeed (PPV )
• Departure times of individual OC EVs
• Target SoC limits of individual OC EVs
• Battery capacity (Ebatt) of individual OC EVs

The residual power (Presidual) between monitoring intervals is proportionally dis-
tributed among OC EVs under the target SoC constraints and their availability. The new
power set-point (POC,EV ) for an OC EV between the two simulation time steps (t, t +T )

is governed by the following relationship:

POC,EV
k,t+T = −Presidual

t · Ebatt
k∑i=α

i=1 Ebatt
i

(5)
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Fig. 3. Overview of the Home Controller

Fig. 4. Flow of events for the Community Controller’s functioning

where,α is the number ofOCEVs connected to theHC, kεN; 1 ≤ k ≤ α and tεmT ; mεN

The Presidual at household-grid interface is calculated by aggregating all power
inflows (+ve) and outflows (-ve) on the interface at monitoring intervals. A generic
structure of the HC is depicted in Fig. 3.

2.3.3 Community Controller

The CC optimises power flow based on the community-grid interaction considering the
total in/out flow of power. It performs an on-the-top optimisation using the OC EVs to
reduce the DotG of the community and making it as self-sufficient as possible. The CC
receives information from the HCs and performs its control algorithm. The results from
the CC are power values assigned to each HC which they have to consume or generate
additionally using their OC EV(s). As the CC has lower priority than the HC and the
CR, the commands from the CC can be overwritten by the higher priority controllers if
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charging power and/or storage conditions are violated. The CC performs its optimisation
in the following situations:

• When there is power outflow to the grid, it instructs the HCs to consume the excess
generation, which leads to an increase in the SC

• When there is power inflow from the grid, it instructs the HCs to generate power to
suffice the loads resulting an increase in the SS

Not all HCs are instructed by the CC to consume or generate excess power. They are
selected based on inputs from the HC, which are, the amount of power exchange with the
grid and the charging or discharging power of the EV(s) present at that respective HC.
If there is no OC EV present at the HC, it is not selected by the CC for its optimisation
as it cannot control any aspect of that HC. The selection of HC is done so as to not alter
the state of the HCs which are already well-optimised by its OC mode algorithm. The
distribution of power to the selected HCs is done using a weighted distributed model.
This model distributes a value (M) to Z number of receivers, where each receiver has a
weight (x) and based on the weight, the value M is distributed to them. The same model
is used by the HCs to distribute the power value received from the CC to its CRs (i.e.
the OC EVs). Figure 4 shows the flow of events concerning the CC at each time step of
the simulation.

2.4 Simulation Setup

Two scenarios will be simulated A) single household and B) community (group of 14
households). In each of these scenarios, three sub scenarios will be simulated i) with
only CR connected i.e. EV will be in NC mode, ii) with CR and HC connected i.e.
EV will be in OC mode and iii) with all the controllers (only for scenario B as A is
just a single household). Each scenario (A and B) and sub scenarios (i, ii, iii) will be
simulated for a duration of oneweek (Monday - Sunday) once in summer (15th – 21st June
2020) and once in winter (21st – 27th December 2020). The EV parameters (SoCinitial,

SoCtarget, SoCreduction, Timeleave, Timereturn), load and PV values set for the simulation
are given in Table 1 of Appendix A.

3 Results and Discussion

Note: A scenario or system addressed by ‘with CR’ implies that the system neither has
the HC nor the CC connected and the EV is in NC mode. Similarly, ‘with HC’ means
that the system has the CR and the HC connected but the CC is not connected and the
EV is in OC mode. On the same lines, ‘with CC’ has all the three controllers i.e. CR,
HC and CC connected in the system and all the EVs are in OC mode.

3.1 Single Household

3.1.1 Functionality of the Home Controller

The functionality of the HC is explained with the help of Fig. 5 which compares the
deficit of the household (i.e. the amount of power being consumed or generated from/to
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Fig. 5. Deficit, EV charging power and its state of charge in a single household scenario with car
controller (A) and with home controller (B)

Fig. 6. Dependency on the grid, self-consumption and self-sufficiency of the household in awinter
week (A) and in a summer week (B)

the grid), the charging power of the EV and its SoC under the variation with CR and
with HC. Different colours in the SoC line represent the current EV operation mode, red
being NC mode and green is the OC mode. The black colour in the SoC line represents
unavailability of the EV i.e. not present at home. Once the EV returns back, the drop
seen in the black line of the SoC graph is the reduction in its SoC as it has travelled
some distance when it was away. For all the simulations, the drop was set to 20% which
is equivalent to 50 km of travel.

In Fig. 5 (A), by seeing the deficit, it can be said that the household is always
consuming power or feeding in the excess PV power into the grid. On the other hand,
in the with HC case (graph B), it stays close to zero. Only if the EV is not present at
home or the EV has reached its maximum SoC limit (90% in this case) as seen on 16th

to the 19th of June it differs significantly from zero. The OC EV plays a major role in
balancing the deficit. When there is no PV generation, the SoC of the OC EV reduces
as it discharges to the loads and once the PV starts generating power, the OC EV is
charged with the excess PV in the household which can be seen with an increase in the
SoC value. The instruction of charging and discharging of the OC EVs are given by the
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HC. Between times 11:00 to 14:00, the deficit values of (A) and (B) are same as there is
no EV present to perform the optimisation. Deviations from zero in the deficit values in
(B) appear since control actions are lagging by a single time step.

3.1.2 Performance of the Home Controller

Controllers are benchmarked using three performance indicators (i.e. DotG, SC and
SS) described in the methodology. These indicators are shown in Fig. 6, to compare the
outcomes of thewith CR andwith HC case in awinterweek (graphA) and a summerweek
(graph B). The green bar represents the total amount of energy that has been consumed
by the household from the grid and the peach bar is the total feed-in of energy from the
household to the grid. The total bar represents the DotG in kWh. On the secondary y-
axis, the DotG percentage is shown which is calculated by keeping the with CR scenario
as a base case (i.e. 100%). It can be read as the DotG of the with HC case is 45% of the
with CR case in (B). The red and purple lines represent the SC and SS respectively.

The DotG in the summer week (Fig. 6 (B)) reduces by 55%. The reduction in feed-
in to the grid is because of the increase in the SC. On the other hand, the reduction in
consumption from the grid is because ofOCEV’s bi-directional capability of discharging
to the loads in the household. The SS also increases as more loads are being sufficed by
the consumed generation (i.e. the generation that has been consumed by the loads or by
the EV) in the household. There is still a large amount of feed-in in the summer week
which is due to i) the EV reaches its maximum SoC limit so it cannot consume any more
PV power, ii) the absent time - when the EV is not available, the excess PV during the
absent time is fed into the grid.

In the winter week (Fig. 6 (A)), the total PV generation is only 10% of the total
PV generation of the summer week. Hence there is more consumption from the grid as
compared to the summer week which results in a lower decrease in the DotG value. In
the winter week, a higher feed-in can be noticed in the with HC case as compared to
the with CR case which is due to the design limitation of the controller. The controller
makes decisions based on time (t) for the next time step (t + T ). If there are high loads
at time t, then the EV discharges at time t + T to suffice those high loads. At t + T , if
the loads reduce, the EV still discharges based on the decision made at time t. As the

Fig. 7. Sensitivity analysis of loads and PV system size of a household by comparing the with
CR and with HC case using the indicators
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Fig. 8. Sensitivity analysis by varying the absent time of the EV

EV discharges more than the loads in the household, there is feed-in of power by the EV
into the grid.

3.1.3 Sensitivity Analysis of the Home Controller

Figure 7 shows a graph of sensitivity analysis by varying the PV system size and the loads
in the household. By varying the system size, one can get an idea how the controllers
behave throughout the year, as PV and load output do not remain the same. As well as
it gives an idea how system design plays a role in reducing the DotG. In Fig. 7, on the
x-axis are the different PV system sizes, whereas on the y-axis are the different loads of
the household. Graph (A) is the difference of SC values between the with HC and with
CR case (SCwithHC − SCwithCR), same is for graph (B) with the SS values. Graph C is
the DotG values of the with HC case keeping the with CR case as 100%.

The highest SC can be achieved at 0.25x+ 2y (1.5 kWp of PV system (51 kWh/week)
and 156 kWh/week of load) of 89% but has the lowest value of SS of 37%. Similarly,
at 2x + 0.25y (12 kWp of PV system (409 kWh/week) and 20 kWh/week of load) the
highest SS can be achieved with 97% but has the lowest SC of 22%. Having a larger PV
system for fewer loads or having a smaller PV system for larger loads is not practically
and economically feasible for a consumer or a grid operator. A perfect match of the
system design can be made by seeing DotG value where the black line represents the
best fit system design ratio between the loads and the PV system size. This leads to the
conclusion that system design plays an important role to get the best outcome of the
controllers. With low loads and high PV, one cannot expect to consume all the PV due to
the EV’s battery storage constraints. Nevertheless, since all the differences are positive
and the DotG values are less than 100%, the system with controllers always perform
better than the traditional system (with CR case).

Not always will an EV be present at home, results of SC, SS and DotG for different
absent times can be seen in Fig. 8. The PV irradiation used for this sensitivity analysis
is the same which is used in the summer week. DotG bar plots are shown only for the
with HC case, solid lines are SS and SC values with HC, whereas the dashed lines are of
the with CR case. The DotG percentage is calculated taking with CR case as base case
(i.e. set to 100%) for each respective sensitivity analysis simulation.

In Fig. 8 (A), with longer absence times of the car the value of DotG is increasing
which means it’s getting closer to the with CR case value (100%). This is because there
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Fig. 9. DotG, SC and SS of a community for a winter week (A) and for a summer week (B)

is no storage available as the EV is not present for a long time, which results in lower
consumption of PV and fewer loads being sufficed by the OC EV. The value of SC and
SS in the with HC case decrease with increasing absent times, but always remain higher
than with CR case.

In Fig. 8 (B), with later departure times of the car the value of DotG is seen with a
decreasing trend as the EV charges with the PV power when it leaves later during the
day rather than charging from the grid when it leaves before the PV starts generating.
The high feed-in in all the cases is due to i) EV reaching its SoC maximum limit and
ii) the EV’s absent times. The difference of the SC and SS values between the with HC
and with CR case keep on increasing when moving from left to right. The with CR case
only performs better if the EV arrives home when the PV system is generating power as
it can consume the excess power during its charging. On the other hand, in the with HC
case, the EV’s charging power is always optimised based on the PV generation in the
household.

3.2 Community

Simulation results for the community based on the system setup and scenarios described
in Sect. 2.4 are shown in this section. Figure 9 shows a graph of DotG, SC and SS
for a community in a winter week (A) and a summer week (B). The simulations were
performed comparing three scenarios with CR, with HC and with CC.

The DotG reduces in both the graphs when a HC is introduced to the system. A
larger decrease can be observed in the summer week than in the winter week. This is
due to the higher PV generation in summer which is consumed by the EV because of
its OC mode and thereby reducing the feed-in. When a CC is added to the community,
the DotG further reduces in the summer week as the excess PV in one household can be
consumed by EV(s) in other households in the community. Similarly, the excess loads in
one household can be sufficed by the EV(s) in another household. In the winter week, the
DotG increases a little in the with CC case due to the design limitation of the controller
as explained in the previous section. SS and SC increase with the integration of each
level of controller. High values of SC can be achieved in a winter week in all the cases as
compared to a summer week due to high loads and low amount of PV generation. More
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loads are being sufficed by the consumed PV in the summer week than the winter week
so the SS values are higher in the summer.

3.2.1 Sensitivity Analysis of the Community Controller

Sensitivity analysis of different PV sizes is performed on the community as seen in
Fig. 10. The irradiation values used are the same which are used in the summer week
simulation. The DotGmagnitude (in kWh) is plotted against DotG percentage where the
with CR case is used as a base case i.e. 100%. The markers on the graph represent the
configuration of the system with respect to the controllers. PV 100% is the PV system
size used in Fig. 9. PV75%, PV50% and PV25% represents 75%, 50% and 25% of the
PV system size used in PV100% respectively.

With reduction in the PV system size, the magnitude of DotG (kWh) in the with
CR case reduces, but it’s not the same in the with HC and with CC case. If the PV size
reduces considerably (from PV50% to PV25%), the system cannot suffice itself with the
amount of self-consumed PV, so the energy has to be consumed from the grid, which
results in a high DotG value. Similar effect can be seen in Fig. 9 (A), where a winter
week is simulated.

In Fig. 10, the difference between the DotG percentage in the with HC and with
CC case are 12%, 15%, 17% and 1% in the PV100%, PV75%, PV50% and PV25%
respectively. The difference reduces drastically after a certain point which can be seen
in the PV25% case. Hardly any change can be seen between the with HC and with CC
case in PV25% because of the low PV generation. The amount of PV which is generated
is self-consumed by the loads in the house so the EV has to charge from the grid where
as in the other cases (PV 100%, 75% & 50%) the EV is charged by the excess PV in
the household, or by the excess PV which is available in the community. In conclusion,
in the PV25% case, the HC optimises the households by consuming all the PV, which
leads to a small margin left for the CC to optimise the community.

Figure 11 shows the probability distribution of the deficit in the community (i.e.
the amount of power being exchanged between the community and the grid) when the
summer week is simulated. X-axis shows the absolute deficit in bins of 2 kW and y-
axis indicates the relative frequency which states how often the deficit in a particular
bin occurs. 100% on the y-axis equals to total number of time steps of the simulation
(10,080 time steps). Figure A, B and C show simulations of the community with CR,
with HC and with CC respectively.

Fig. 10. Sensitivity analysis of the community controller with different PV system sizes
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Fig. 11. Probability distribution curve of the deficit value of the community

The highest relative frequency in Fig. 11 (A) is of the bin 2–4 kW. It shifts to the first
bin 0–2 kW in the with HC and with CC case. By comparing the relative frequency of
the 0–2 kW bin in the three plots, the relative frequency increased by 24% in with CR to
with HC plot and by 20% when moving from with HC to with CC plot. The largest bin
observed in graph (A) is 98–100 kW. This reduces in the with HC (graph B) and with CC
(graph C) case to a value between 70–76 kW. The reason for a high deficit in graph (A)
is because of the EVs (which are all in NC mode) charging once they are connected to
the CR. At the start of the simulation all EVs have an SoCinitial of 15% and they charge
themselves till they reach SoCtarget which is 50%. 14 EVs charging themselves together
with a power of 6.6 kW each results in a total of 92 kW plus the loads of the 14 houses
which makes it such a high value of deficit. This situation is not very realistic as same
arrival times of all EVs in the community is not very likely. Similar situation can be seen
at the start of the simulation in Fig. 5 (A) where the EV charges at 00:00 on the 16th of
July with a power of 6.6 kW until it reaches its SoCtarget. Between 40–80 kW, the graph
shows high power exchange from the grid. This is due to the charging of those EVs from
the grid which leave early in the morning and arrive late in the evening (EVs of house
2, 3, 4, 5, 6 and 7 in Table 1 found in the appendix).

Reduction in the magnitude of deficit and increase in the frequency of the lower
deficit values indicate that there is more power transfer within the community than
between the community and the grid which results in a lower DotG.

4 Conclusion

In this study, a hierarchical power (energy) optimisation model was built. The first
level optimises the household and the second level optimises the community by using
bidirectional EVs as controllable elements to increase the consumption of solar PV and
reduce the dependency on the electricity grid. The results show that a bidirectional EV
with controlled charging strategies improves the SC and SS of a household by 31%
and 48% whereas of the community by 30% and 50% respectively in comparison to an
uncontrolled unidirectional charging strategy.

System design, i.e. combination of loads and PV system size, plays a major role in
obtaining the best performance of the controller. With optimum sizing of the system,
the reduction in DotG can range from 50% to 30%. In addition, higher values of SC
(63%) and SS (93%) can be achieved if the EV stays home for a long period of time
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and leaves the home late in the evening. The combination of CR, HC and CC benefits
not only the consumer but also the grid operator. For consumers, there is less energy
consumption which results in financial savings. The grid operators can benefit from
reduced grid stresses since balancing generationwith consumption locally reduces power
import/export requirements from/to the grid.

Real loads and PV irradiation profiles were used in the simulations for realistic anal-
ysis. Future work could include using real mobility profiles to perform the simulations
and compare the results. Economic analysis, to find out how much a consumer can save
when she/he adopts a HC in her/his household, can be done to quantify the profitability
of the system. The effect of this control strategy on the grid stability and ancillary grid
support needs further investigations.

All the results obtained by the simulations are system design specific. Any change in
the system size (loads or PV) and EV parameters (SoCinitial, SoCtarget, battery capacity,
maximum charging/discharging power) and availability will change the outcome of the
simulation results but the trends of decrease in the DotG and increase in the SC and SS
are still correlated. It is concluded that the improvements in performance indicators of
the proposed controller strategy are significant with high PV penetration during summers
over uncontrolled charging strategy. The benefits are limited duringwinter weeks or with
low PV penetration.
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Appendix A

In Table 1, Timereturn - Time when the EV returns after it leaves the house; SoCreduction -
The amount of SoC that reduces when an EV returns back home, it is equivalent to 50 km
of driving distance. For scenario A, the parameters of column HomeSingle Household are
used and for scenario B (community), the parameters of column Home1 to Home14 are
used.



Multi Agent Control 449

Table 1. PV, load and EV parameters for simulation

Winter Week

Generation

[kWh/week]

Summer Week

Generation

[kWh/week]

Winter Week

Consumption

[kWh/week]

Summer Week

Consumption

[kWh/week]

SoCinitial

[in %]

SoCtarget

[in %]

Timeleave

[hh:mm]

Timereturn

[hh:mm]

SoCreduction

[in %]

HomeSingle Household 16.79 204.65 105.73 78.02 15 50 11:00 14:00 20

Home1 14.35 178.38 100.37 81.08 15 50 19:00 22:00 20

Home2 16.79 204.65 137.18 55.24 15 50 18:00 20:00 20

Home3 16.79 204.65 84.92 73.90 15 50 07:00 16:00 20

Home4 26.57 309.40 189.15 125.54 15 50 08:00 17:00 20

Home5 19.23 230.89 126.08 80.18 15 50 09:00 18:00 20

Home6 21.68 257.09 139.50 90.42 15 50 09:00 18:00 20

Home7 16.79 204.65 105.73 78.02 15 50 08:00 17:00 20

Home8 19.23 230.89 126.99 60.98 15 50 07:00 16:00 20

Home9 14.35 178.38 94.87 46.48 15 50 13:00 16:00 20

Home10 14.35 178.38 91.05 51.53 15 50 19:00 00:00 20

Home11 16.79 204.65 102.85 68.91 15 50 17:00 19:00 20

Home12 9.50 125.76 25.44 40.25 15 50 20:00 23:00 20

Home13 19.23 230.89 156.59 56.48 15 50 19:00 21:00 20

Home14 16.79 204.65 108.59 75.85 15 50 21:00 00:00 20

Solar PV Household Loads Electric Vehicle

Household
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