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Abstract. This paper presents a mathematical model for dynamics of HIV trans-
mission by considering a saturated incidence type interaction for the human to
human sexual transmission. The equilibria of the model are discovered, and the
basic reproduction number is calculated. The analysis shows that if the basic
reproduction number is less than unity, the disease-free equilibrium is locally
and globally asymptotically stable. It is proved using differential equation theory
and a comparison theorem. The Lyapunov function and the LaSalle invariance
principle show that the endemic equilibrium is globally asymptotically stable if
the basic reproduction number is greater than unity. According to the sensitivity
analysis, the effective contact rate was more sensitive to the basic reproduction
rate than the treatment rate. The numerical simulations show that as the satura-
tion incidence rate increases, the force of infection decreases. The prevalence of
HIV/AIDS decreases as the saturation rate increases.

Keywords: HIV dynamics · basic reproduction number · saturated incidence ·
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1 Introduction

The development of the HIV/AIDS epidemic in the world has caused HIV/AIDS to
become a global problem and is increasingly becoming a public health problem. In order
to accelerate the acceleration of efforts to tackle HIV and AIDS in the world, it is very
important to integrate prevention efforts with care, support, and treatment, both of which
are important components and complement each other. Efforts to provide care, support,
and treatment with antiretroviral therapy can be used to slow the spread of the HIV virus
in the body. The prevention and control of HIV/AIDS is a public health priority due to
the global pandemic and the 27 million fatalities that have occurred since the illness was
discovered in 1981([1]). In order to achieve the best results, the strategic approach to
combating the HIV epidemic emphasizes the need for more intensive, comprehensive,
integrated, and coordinated efforts to prevent and control HIV/AIDS. To reduce the
HIV/AIDS epidemic, treatment and prevention are required.

Mathematical modeling is critical in managing and controlling an epidemic of infec-
tious diseases such as HIV/AIDS. A saturated incidence function is preferable for mod-
eling the inhibitory effect of a change in behavior or the crowding effect of an infected

© The Author(s) 2023
E. Susanti et al. (Eds.): ICGT 2022, AER 221, pp. 207–221, 2023.
https://doi.org/10.2991/978-94-6463-148-7_22

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-148-7_22&domain=pdf
https://doi.org/10.2991/978-94-6463-148-7_22


208 Marsudi et al.

individual. The rate at which new cases of infection emerge in a community is known
as the incidence rate of a disease when researching epidemiology mathematically [2].
The infection incidence rate provides information about the frequency of new illnesses
brought on by contact between people who are susceptible and those who are infected.
Due to demographic changes or modifications in the behavior of the ill, there are numer-
ous contacts between susceptible individuals and infected individuals that are saturated
at high levels, hence the model uses incidence rates of saturation (see [3–6] and the
references therein).

Studies [7–9] describe a model of HIV/AIDS screening of uninfected people and
treatment (therapy) of those who are screened. And it was found that these actions
had an effect on preventing the transmission of HIV/AIDS. This research develops a
model of the HIV/AIDS epidemic with a saturated incidence rate and treatment. It is
examined whether the endemic equilibrium linked to the basic reproduction number and
the particular endemic equilibrium are stable. The analytical results are then validated
using numerical simulations that are run after that.

The rest of the paper is organized as follows: Sect. 2 describes the HIV model’s
formulation, followed the model analysis in Sect. 3. It is demonstrated in this section
that both the endemic equilibrium and the disease-free equilibrium are globally stable.
Section 4 examines the sensitivity of the basic reproduction number. Section 5 displays
the numerical simulations of the model. This section includes a numerical simulation
to evaluate the effects of increasing the saturation rate. Finally, all of the results are
summarized in Sect. 6.

2 Formulation of the Model

Our HIV/AIDSmodel includes saturated treatment and incidence rates. We consider the
total population who are sexually active at time t, denoted byN(t). In addition to the total
population divided into five compartments, S(t) denotes susceptible or HIV negative,
I1(t) denotes HIV positive or individuals in the asymptomatic stage of infection, I2(t)
denotes pre-AIDS individuals, T (t) denotes treated individuals, and A(t) denotes AIDS
patients who are not receiving ARV therapy.

The model is based on the following assumptions:

(1) It is hypothesized that susceptible people become infected by sexual interaction with
asymptomatic, pre-AIDS, and treated people who have a different transmission rate.
The saturated incidence rate is the pace at which an infection spreads.

(2) It is assumed that the incidence rate is saturated and that the mixing of susceptible
and infectious is homogeneous.

(3) The susceptible avoid making sexual contact with AIDS patients because they are
too sick to engage in sexual activity.

(4) All parameters are nonnegative.
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Fig. 1. Schematic diagram of the model (1).

Figure 1 depicts a flow diagram of the dynamics of each compartment. The corre-
sponding systems of differential equations and descriptions of the parameters are given
in (1) and Table 1.

dS

dt
= � − β(I1 + k1I2 + k2T )S

1 + ω(I1 + I2 + T )
− μS,

dI1
dt

= β(I1 + k1I2 + k2T )S

1 + ω(I1 + I2 + T )
− (σ1 + μ)I1,

dI2
dt

= σ1I1 − (δ + σ2 + μ)I2,

dT

dt
= δI2 − (σ3 + μ)T ,

dA

dt
= σ2I2 + σ3T − (α + μ)A,

(1)

With initial conditions of model (1) are

S(0) = S0, I1(0) = I01 , I2(0) = I02 , T (0) = T 0, A(0) = A0 . (2)

3 Analysis of the Model

3.1 Positivity and Boundedness

It is critical to show that the solutions of model (1) with positive initial conditions (2)
are always positive.

Lemma 1. If ((S(t), I1(t), I2(t), T (t), A(t)) be a solution of model (1) with
nonnegative initial conditions and the feasible region � defined by.

� =
{
(S, I1, I2,T ,A) ∈ R5+

∣∣∣∣ S + I1 + I2 + T + A ≤ �

μ

}
, (3)
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then the solution of model (1) is ninnegative for all t > 0.

Proof . Since λ is function of I1, I2 and T with the initial condition are all positive,
let t1 = sup{t > 0 : S > 0, I1 > 0, I2,T > 0,A > 0 in [0, t]}.

The first equation of the model (1) is expressed as

dS

dt
= � − [λ(I1, I2,T ) − μ]S. (4)

Solving the Eq. (4) we get

d

dt

[
S(t) exp

{
μt +

∫ t

0
λ(I1(u), I2(u),T (u))du

}]

= � exp

{
μt +

∫ t

0
λ(I1(u), I2(u),T (u))du

}
.

(5)

The result is derived by integrating and rearranging both sides of (5) from t = 0 to
t = t1,

S(t1) = S(0) exp

{
−
(

μt1 +
∫ t1

0
λ(I1(u), I2(u),T (u))du

)}

+ exp

{
−
(

μt1 +
∫ t1

0
λ(I1(u), I2(u),T (u))du

)}

×�

∫ t1

0
exp

{
μx +

∫ x

0
λ(I1(u), I2(u),T (u))du

}
dx

> 0,

(6)

The same reasoning is used to show that I1 > 0, I2 > 0, T > 0, and A > 0 for all
t > 0. The proof of Lemma 1 is completed. �
Lemma 2. The closed region � defined above is positively invariant set for the model
(1) with nonnegative initial conditions in R5+.

Proof . Here N = S + I1 + I2 + T + A. The rate of change of the total population N
is obtained from equation of the model (1) gives

dN

dt
= � − μN − α A ≤ � − μN .

Using a comparison theorem on differential inequalities from Lakshmikantham et al.
[13] it can be shown that

N (t) ≤ N (0)e−μt + �

μ
(1 − e−μt). (7)

This follows N (t) ≤ �
/

μ if N (0) ≤ �
/

μ. Further, if N (0) > 

/

μ, then either
the solution enters � or N(t) reduces asymptotically to �

/
μ as t → ∞. Thus, the

closed region � is positively invariant. �
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Table 1. Parameters of the HIV model.

Parameter Description Values References

� Recruitment rate of susceptible 5000 Assumed

β The effective contact rate 0.00008 Assumed

k1 The relative infectiousness of persons in the P class 0.15 [1]

k2 The relative infectiousness of persons in the T class 0.0016 [1]

δ Pre-AIDS treatment rates 0.57 Assumed

σ 1 The rate at which infected patients progress to pre-AIDS
status

0.57 [1]

σ 2 The rate at which pre-AIDS patients advance to AIDS
patients

0.22 [1]

σ 3 The rate at which treated persons progress to AIDS
patients

0.18 [1]

μ Natural mortality rate 0.0196 [10]

α AIDS-induced death rate 0.33 [1]

ω Psychological or inhibiting effect measurement 4 [1]

3.2 Disease-Free Equilibrium and Basic Reproduction Number

The disease-free equilibrium of the model (1) is obtained by using I1 = I2 = T = A = 0
in the steady state conditions. It is easy to see that the disease-free equilibrium of the
model (1) is given by

E0 =
(
S0, I01 , I02 , T 0, A0

)
=
(

�

μ
, 0, 0, 0, 0

)
. (8)

To determine the basic reproduction number of the model (1), we will use the next
generation matrix approach described by van den Driessche and Watmough [11]. Let
X = (I1, I2, T , A, S)T . We transform model (1) into a matrix

(9)

where
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The Jacobian matrices F and V at the disease-free equilibrium E0 are given by

F =

⎡
⎢⎢⎢⎣

β�
μ

βk1�
μ

βk2�
μ

0

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ ,

V =

⎡
⎢⎢⎣

Q 0 0 0
−σ1 K 0 0
0 −δ L 0
0 −σ2 −σ3 M

⎤
⎥⎥⎦ ,

(10)

with

Q = σ1 + μ, K = δ + σ2 + μ,L = σ3 + μ, M = α + μ.

The basic reproduction number of the model (1) will be the spectral radius of the
matrix FV−1 designated and defined as (1)

R0 = β�

μQ
+ β�k1σ1

μQK
+ β�k2δσ1

μQKL
. (11)

Here, the basic reproduction number shows how many new infections one HIV-positive
person typically causes in a population when treatment is being used as a control.

3.3 Stability of Disease-Free Equilibrium

The following theorem both locally and globally stablely expresses the disease-free
equilibrium of model (1).

Theorem 1. In the model (1), the disease-free equilibrium,E0 , is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

Proof . The Jacobian matrix of the model (1) at the disease-free equilibrium E0 is
given by

J0 =

⎛
⎜⎜⎜⎜⎜⎝

−μ −β�
μ

−β�k1
μ

−β�k2
μ

0

0 −Q + β�
μ

β�k1
μ

β�k2
μ

0

0 σ1 −K 0 0
0 0 δ −L 0
0 0 σ2 σ3 −M

⎞
⎟⎟⎟⎟⎟⎠

. (12)

The characteristic roots corresponding to matrix J0 are λ1 = −μ, λ2 = −M and
the remaining three roots of the characteristic roots of the matrix J1

J1 =
⎛
⎜⎝

−Q + β�
μ

β�k1
μ

β�k2
μ

σ1 −K 0
0 δ −L

⎞
⎟⎠ . (13)
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The matrix J2 is reduced to echelon form using an elementary row operation, giving
us the results shown below.

J2 =
⎛
⎜⎝

−j11
β�k1

μ
β�k2

μ

0 −j22 − β�k2σ1
β�−Qμ

0 δ −j33

⎞
⎟⎠ (14)

where

j11 = Qμ − β�

μ
= Q

(
1 − β�

Qμ

)
, j22 =

K
(
1 − β�

Qμ
− β�k1σ1

KQμ

)

1 − β�
Qμ

,

j33 = L(1 − R0)

1 − β�
Qμ

.

The matrix J0 has five negative characteristic roots because R0 = β�
μQ + β�k1σ1

μQK +
β�k2δσ1
μQKL < 1 implies 1 >

β�
μQ , ,

1 >
β�
μQ + β�k1σ1

μQK , and 1 >
β�
μQ + β�k1σ1

μQK + β�k2δσ1
μQKL .

Therefore, all of the Jacobi matrix’s eigenvalues J0 are negative, which implies if
R0 < 1, the model (1)’s disease-free equilibrium of is locally asymptotically stable.
We obtain the relation j33 > 0 if R0 > 1. As a result, the matrix J0 has at least one
eigenvalues with a positive real part. Thus, the disease-free equilibrium E0 is unstable.

In the following theorem, we looked at the global stability of the disease-free
equilibrium E0 and how to create an endemic equilibrium E1 using the Lyapunov
function.

Theorem 2. The disease-free equilibrium E0 of the model (1) is globally asymptotically
stable if R0 < 1.

Proof. We apply a comparison theorem that takes the approach from Khan et al. [12]
to demonstrate the global stability of the disease-free equilibrium of E0. In model (1),
the rate of change of the variables (I1, I2, T, and A) or the differential equation of the
infected individuals can be written as.

⎛
⎜⎜⎜⎜⎝

İ1
İ2
V̇
Ṫ
Ȧ

⎞
⎟⎟⎟⎟⎠ = (F − V )

⎛
⎜⎜⎝
I1
I2
T
A

⎞
⎟⎟⎠ − β(I1 + k1I2 + k2T )

1 + ω(I1 + I2 + T )

×

⎛
⎜⎜⎝

ω(I1 + I2 + T )S0 + (S0 − S)

0
0
0

⎞
⎟⎟⎠,

(15)
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where F and V as described in (10) and (11).

If S ≤ S0 for all t ≥ 0, we have

⎛
⎜⎜⎝
İ1
İ2
Ṫ
Ȧ

⎞
⎟⎟⎠ ≤ (F − V )

⎛
⎜⎜⎝
I1
I2
T
A

⎞
⎟⎟⎠ . (16)

Hence,

F − V =

⎡
⎢⎢⎢⎣

β�
μ

− Q βk1�
μ

βk2�
μ

0

σ1 −K 0 0
0 δ −L 0
0 σ2 σ3 −M

⎤
⎥⎥⎥⎦ . (17)

There are four eigenvalues of the matrix F −V , one eigenvalue is − M and the other
eigenvalues are obtained by reducing the matrix F−V to a matrix 3×3 and are obtained
matrix J1 as in (13). From the local stability results in Theorem 1, all eigenvalues of
the matrix J0 have a negative real part. Thus, model (1) is stable if R0 < 1. Thus,
(I1, I2, T , A) → (0, 0, 0, 0) as t → ∞. The comparison theorem ([13]) leads to the
conclusion that (I1, I2, T , A) → (0, 0, 0, 0) and S → �

μ
if t → ∞. �

3.4 Existence and Stability of the Endemic Equilibrium

Let E1 = (
S∗, I∗1 , I∗2 ,T ∗,A∗) represents any endemic equilibrium of the model (1).

Solving the equations of the model at steady states, the following components of E1 are
given:

S∗ = �

λ∗ + μ
, I∗1 = λ∗�

Q(λ∗ + μ)
, I∗2 = σ1I∗1

K
,

T ∗ = σ1δI∗1
KL

, A∗ = (σ1σ2L + σ3σ1δ)I∗1
KLM

,

(18)

where

λ∗ = Qμ

�ω(1 + w1 + w2) + Q
(R0 − 1). (19)

The globally asymptotic stability of the endemic equilibrium is proved below.

Theorem 3. If R0 > 1, then the endemic equilibrium E1 of the model (1) is globally
asymptotically stable.

Proof. Let R0 > 1 be such that the endemic equilibrium E1 = (S∗, I∗1 , I∗2 ,T ∗,A∗)
exists, and construct the following Lyapunov function V as:

V (t) = ln
[(
S − S∗)+(

I1 − I∗1
) + (

I2 − I∗2
) + (

T − T ∗)
+(

A − A∗) + 1
]
.

(20)
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Differentiating V (t) with respect to t along the solutions of model (1), we get

dV

dt
= ∂V

∂S

dS

dt
+ ∂V

∂I1

dI1
dt

+ ∂V

∂I2

dI2
dt

+ ∂V

∂T

dT

dt
+ ∂V

∂A

dA

dt

= 1

Z

(
dS

dt
+ dI1

dt
+ dI2

dt
+ dT

dt
+ dA

dt

)

= 1

Z

dN

dt
.

(21)

where
Z = (S − S∗) + (I1 − I∗1 ) + (I2 − I∗2 ) + (T − T ∗) + (A − A∗) + 1

= N − N ∗ + 1 .
From Eq. (21),

all the solutions of the model (1) satisfy S∗ + I∗1 + I∗2 + T ∗ + A∗ = �
μ

, and dN
dt ≤ �

μ
.

Thus, V = ln(N − N ∗ + 1) ≥ 0 and

dV

dt
= 1

N − N ∗ + 1

dN

dt

≤ 1

N − (�
/

μ) + 1
(� − μN )

= μ

N − (�
/

μ) + 1

(
�

μ
− N

)

= −μ

(
1

N − (�
/

μ)

)(
N − �

μ

)

= −μ < 0 .

Also, dV
/
dt = 0 if and only if S = S∗, I1 = I∗1 , I2 = I∗2 ,T = T ∗, andA = A∗.The

maximum invariant set of mode; (1) on the set
{
(S, I1, I2, T ,A) ∈ � : dV

dt = 0
}
is the

singleton {E1}. Then by LaSalle’s Invariance Principle [14], the endemic equilibrium E1
is globally asymptotically stable in the interior of � for R0 > 1. �

4 Sensitivity Analysis

The basic reproduction rate (R0) of model (1) depends on nine parameters, namely,
β, � μ, δ, η1, η2, σ1, σ2, and σ3. Among these parameters, we cannot control the
parameters� andμ through routine measurements in a community. The basic reproduc-
tion rate R0 is proportional to the initial disease transmission. This sensitivity analysis
was carried out by calculating the sensitivity index of the model parameters using the
approach of Chitnis et al. [15] and Marsudi et al. [16]. The sensitivity index of the basic
reproduction number R0, which depends on a parameter θ , is defined as

ϒ
R0
θ = ∂R0

∂θ

θ

R0
. (22)

Notice that if ϒ
R0
θ = +k (0 < k < 1) implies an increase (or decrease) of θ by10%,

increase (or decrease) R0 by k × 10%. On the other hand, ϒR0
θ = −k implies increase

(or decrease) of θ by10%, decrease (or increase) R0 by k × 10%.
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5 Numerical Simulations

In this section, we investigate the numerical behavior of the HIV/AIDS model (1) using
the Runge-Kutta method with the parameter values shown in Table 1 and the initial
values as follows (Marsudi et al. [16, 17]).

S(0) = 2912403, I(0) = 2408,P(0) = 539,

T (0) = 519,A(0) = 1024.
(23)

The numerical simulations are conducted using MATLAB and the results are
presented below.

5.1 Numerical Simulation of the Model

We present some simulations using the parameter values in Table 1 to illustrate the
analytic results obtained above.

First, we choose β = 0.0000015, numerical simulation gives R0 = 0.7196 < 1 and
the disease-free equilibrium E0 = (2.551020 × 105, 0, 0, 0, 0) is globally asympto-
tically stable (see Fig. 2). Figure 2 shows how, as time increases infinity, all solution
trajectories converge to the disease-free equilibrium. Figure 2 depicts the proof of the
disease-free equilibrium from Theorem 2 using the following initial conditions: (a)
N1(260000, 45, 30, 50, 35), (b) N2(255000, 40, 25, 45, 40), (c) N3 (250000, 35, 15, 30,
25), and (d) N4 (245000, 20, 10, 15, 10), respectively.

Second, we choose β = 0.00008, numerical simulation gives R0 = 38.251441 > 1
and the endemic equilibriumE1 = (2.550267×105, 2.50, 1.69, 5.11, 3.69) is globally
asymptotically stable (see Fig. 3). Figure 3 depicts the infinite-time convergence of all
solution trajectories to the endemic equilibrium. So, using the initial conditions: (a)
N1(260000, 45, 30, 50, 35), (b) N2(255000, 40, 25, 45, 40), (c) N3 (250000, 35, 15, 30,
25), and (d) N4 (245000, 20, 10, 15, 10), respectively, Fig. 3 depicts the proof of the
endemic equilibrium from Theorem 3.

5.2 Sensitivity Analysis of R0

We calculated the sensitivity index with respect to each parameter, and the results are
shown in Table 2. The parameters are ordered from most sensitive to least sensitive.
As shown in Table 2, the effective contact rate (β) has the highest sensitivity index
(ϒR0

β = 1), which means that any increase (or decrease) of 10% in β will be followed
by a increase (or decrease) of 10% in R0.

The second highest sensitivity index is associated with the rate of progression from
asymptomatic infection to pre-AIDS (σ 1). The sensitivity index of the rate of progression
of infectives individuals to pre-AIDS individuals is -0.868613. In this case, shows that
any increase (or decrease) of 10% in σ 1 will be followed by a decrease (or increase) of
8.68613% in R0. The interpretation of the sensitivity index for the additional parameters
is as follows: β and σ 1.

The sensitivity index of HIV/AIDS treatment rate is -0.066197, indicating that any
increase (or decrease) of 10% in σ 1 will be followed by a decrease (or increase) of
0.66197% in R0.
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Fig. 2. Globally stable behavior of the model (1) at the endemic equilibrium E0

5.3 Number of Active Cases for the Saturated Incidence

The psychological or inhibitory effect parameter (ω) is used to measure the satura-
tion impact, and the basic reproduction number (R0) does not explicitly depend on the
saturation rate. Figure 4 depicts a numerical simulation of the effects of increasing the
saturation rate. Figure 4(a) shows that increasing the saturation incidence rate reduces the
number of active cases for the saturated incidence. The force of infection (λ) decreased
as the saturation rate increased but did not reach zero, implying that the disease became
endemic in the population despite the impact of the treatment intervention (Fig. 4(b)).



218 Marsudi et al.

Fig. 3. Globally stable behavior of the model (1) at the endemic equilibrium E1

Table 2. Sensitivity Indices of R0

Parameter Sensitivity indices

β + 1.000000

σ 1 -0.868613

η1 + 0.095243

δ -0.066197

σ 2 -0.026669

η2 + 0.002901

σ 3 -0.002616
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Fig. 4. Number of active cases of the disease and contact rate for the HIV/AIDS model with
saturated incidence and treatment.

6 Conclusion

In this paper, we have developed and analyzed a mathematical model for dynamics of
HIV transmission by considering a saturated incidence type interaction for the human
to human sexual transmission including saturation incidence rates and treatment. There
are five state variables and eleven parameters in the model. The model is well-posed and
exists in a tractable area.We calculated the basic reproduction number, which is made up
of three parts: asymptomatic infectives, pre-AIDS individuals, and treated individuals.
The model has two equilibrium states. Theoretical results show that when the basic
reproduction number is less than unity, the disease-free equilibrium is stable (locally
and globally). If the basic reproduction number is greater than one, the endemic is
asymptotically stable both locally and globally. The Lyapunov function and the LaSalle
invariance principle were used to demonstrate that the disease-free equilibrium and
the endemic equilibrium are globally asymptotically stable. Our analytical results are
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supported by numerical simulations. The effective contact rate is the most sensitive
index to the fundamental reproduction rate, followed by the rate of progression from
asymptomatic infection to pre-AIDS. Finally, numerical simulations show that as the
saturation rate increases, the force of infection decreases. The prevalence of HIV/AIDS
decreases as the saturation rate increases.
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