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Abstract. This study discusses the dynamic analysis of the COVID-19 spread
model in the SIHCR population with time delay to represent the behavior of the
spread of COVID-19 with time delay. The SIHCRmodel divides the human popu-
lation into five subpopulations, namely Susceptible (S), Infected (I), Hospitalized
(H), Critical (C), andRecovered (R). The dynamic analysis is carried out by deter-
mining the equilibrium point, the basic reproduction number (R0), and stability
analysis of the equilibrium point. The result of this study is two equilibrium points,
namely the disease-free equilibrium point (E0) and the endemic equilibrium point
(E1). Then the basic reproduction number (R0) was calculated using the given
parameters and produce the valueR0 > 1. The stability analysis can be obtained by
linearization around the equilibrium points. The disease-free equilibrium point is
unstable and the endemic equilibrium point is locally asymptotically stable. Next,
simulation of the SIHCRmodel with and without time delay was carried out under
disease-free and endemic conditions. Simulations are carried out using variations
in the value of the delay time to determine the dynamic behavior of the model. In
disease-free and endemic conditions, it shows differences in the dynamic behavior
of the model. The smaller the delay time, the condition is almost the same as the
SIHCR model without time delay towards stability. Meanwhile, the greater the
delay time, the longer the SIHCR model leads to stability. So it can be concluded
that the time delay affects the stability of the SIHCR model.

Keywords: Mathematical Model of SIHCR · Dynamic Analysis · Basic
Reproduction Number · Time Delay

1 Introduction

The spread of COVID-19 which continues to grow in various parts of the world, has
an impact on the number of daily cases of COVID-19 which is increasing. This has
an impact on the occupancy rate of inpatient and ICU beds in hospitals [1]. Research
on the spread model of COVID-19 has been studied previously by [2–5]. The spread
of COVID-19 can be represented by a mathematical model in the SIHCR population
which divides the individual population into five compartments, namely: Susceptible
(S) is a subpopulation of individuals who can be infected by COVID-19, Infected (I)
is a subpopulation of individuals who are infected and can transmit COVID-19 but do
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Fig. 1. The Compartment Diagram of SIHCR Model with Time Delay

not hospitalized, Hospitalized (H ) is a subpopulation of individuals who is positive
for COVID-19 and hospitalized, Critical (C) is a subpopulation of individuals who is
positive for COVID-19 and is receiving intensive care in the ICU due to an increasingly
critical condition, and Recovered (R) is a subpopulation of individuals who recover and
will not be susceptible to COVID-19 infection [6].

The SIHCR model in this study uses a time delay (τ ). The time delay is used to
determine how fast the rate of spread of the disease from Infected (I) to Hospitalized
(H ) andHospitalized (H ) to Critical (C). The use of time delay can consider theCOVID-
19 spread model where the rate of spread does not only depend on the present time (t)
but also depends on the past time (t − τ) [7]. The model for the spread of COVID-19 in
the SIHCR population with time delay can be illustrated in Fig. 1.

Changes in the number of individuals in each compartment are influenced by several
parameters, so that a system of differential equations is obtained as follows:

dS
dt = � − βSI − μSS
dI
dt = βSI − αI I(t − τ1) − γ I − μI I
dH
dt = αI I(t − τ1) − αHH (t − τ2) − θHH
dC
dt = αHH (t − τ2) − θCC − δCC
dR
dt = γ I + θHH + θCC − μRR

(1)

The initial values of the variables and parameters used in the model of the spread of
COVID-19 in the SIHCR population with time delay in Table 1 and 2.

Based on this explanation, we will study the dynamic analysis of the COVID-19
spread model in the SIHCR population with time delay assuming τ1 = τ2 = τ .

2 Method

The following are the stages of research in conducting a dynamic analysis of the COVID-
19 spread model in the SIHCR population with time delay [10]:

1. Determine the disease-free equilibrium point
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Table 1. The Initial Value of SIHCR Model with Time Delay (corona.jakarta.go.id, 2021)

Variable Description Initial Value

N (0) The individual population in DKI Jakarta 10609681 person

S(0) The initial subpopulation of susceptible individuals infected with
COVID-19

8907422 person

I(0) The initial subpopulation of infected individuals with COVID-19 858198 person

H (0) The initial subpopulation of hospitalized individuals 984 person

C(0) The initial subpopulation of critical individuals 148 person

R(0) The initial subpopulation of individuals recovering from
COVID-19

842929 person

2. Determine the endemic equilibrium point
3. Determine the basic reproduction number
4. Analyze the local stability of the disease-free equilibrium point
5. Analyze the local stability of the endemic equilibrium point

The following are the stages of research in simulating the spread of COVID-19 in
the SIHCR population:

1. Simulating the SIHCR model without time delay
2. Simulating the SIHCR model with time delay

3 Result and Discussion

3.1 The Dynamic Analysis of SIHCR Model with Time Delay

3.1.1 The Disease-Free Equilibrium Point

The equilibrium point of a system is the point at which the system does not change with
time or is stable [5]. This equilibrium point analysis assumes that the population change
is constant, meaning that the system of Eqs. (1) must satisfy dS

dt = 0, dI
dt = 0, dH

dt =
0, dC

dt = 0, dR
dt = 0. To obtain a stable equilibrium point, it is assumed when the model

is without time delay where τ1 = τ2 = 0 [11]. In the disease-free problem it is assumed
(I = 0) which means that there is no spread of disease in the population. So that the
disease-free equilibrium point is obtained as follows Eq. 2:

E0(S0, I0,H0,C0,R0) = E0

(
�

μS
, 0, 0, 0, 0

)
(2)

3.1.2 The Endemic Equilibrium Point

The endemic equilibrium point indicates the condition in which there is a spread of dis-
ease in the population, so in this condition it is assumed (I �= 0). T endemic equilibrium

http://corona.jakarta.go.id
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Table 2. The Initial Parameters Value of SIHCR Model with Time Delay

Parameter Description Value Units Source

� Natural birth rate 0.001 Individual per day [8]

β Transmission rate from
susceptible individuals
to infected individuals

0.17 Individual per day [2]

γ Recovery rate of
infected individuals

0.05 Individual per day [2]

μS Natural death rate of
susceptible individuals

0.001 Individual per day [9]

μI Natural death rate of
infected individuals

0.003 Individual per day [9]

μR Natural death rate of
recovered individuals

0.002 Individual per day [9]

αI Probability of infected
individuals to be
hospitalized as the
condition worsens

0.01 Percent [3]

αH Probability of
hospitalized individuals
becomes critical
individuals due to a
worsening condition that
requires intensive care in
the ICU

2 × 10−5 Percent [3]

θH Recovery rate of
hospitalized individuals

0.027 Individual per day [3]

θC Recovery rate of critical
individuals

0.0009 Individual per day [3]

δC Death rate of critical
individuals

0.003 Individual per day [3]

t Time 90. Day [9]

τ1 Time delay for infected
individuals to
hospitalized individuals

Varies Day Based on simulation

τ2 Time delay for
hospitalized individuals
to critical individuals

Varies Day Based on simulation
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point E1(S∗, I∗,H∗,C∗,R∗) of the system in Eq. (3) is:

S∗ = αI+γ+μI
β

I∗ = �β−μS (αI+γ+μI )
β(αI+γ+μI )

(3)

with �β − μS(αI + γ + μI ) > 0 and �β > μS(αI + γ + μI )

H∗ = αI (�β − μS(αI + γ + μI ))

β(αI + γ + μI )(αH + θH )

C∗ = αHαI (�β − μS(αI + γ + μI ))

β(θC + δC)(αI + γ + μI )(αH + θH )

R∗ = (�β − μS(αI + γ + μI ))(γ (θC + δC)(αH + θH ) + θHαI (θC + δC) + θCαHαI )

μRβ(θC + δC)(αI + γ + μI )(αH + θH )

3.1.3 Basic Reproductive Number

T basic reproduction number can be obtained from the maximum eigenvalues by con-
structing the Next Generation Matrix [10]. Then the matrix F is obtained, namely the
transmission matrix and the matrix V , namely the transition matrix [12] as follows:

F =
⎡
⎢⎣

β�
μS

0 0

0 0 0
0 0 0

⎤
⎥⎦

and

V =
⎡
⎣αI + γ + μI 0 0

−αI αH + θH 0
0 −αH θC + δC

⎤
⎦

From matrix F and matrix V , the Next Generation Matrix is obtained as follows:

K = FV−1 =
⎡
⎢⎣

β�
μS (αI+γ+μI )

0 0

0 0 0
0 0 0

⎤
⎥⎦

The value used as the basic reproduction number is the spectral radius or the dominant
absolute eigenvalue [13], so that is obtained

R0 = β�

μS(αI + γ + μI )
(4)
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3.1.4 The Local Stability Analysis of Disease-Free Equilibrium Point

Analysis of the stability of the equilibrium point in the system of nonlinear Eqs. (1) can
be obtained by linearization using the Taylor series around the equilibrium point [10].
First, the nonlinear system of Eqs. (1) is linearized around the disease-free equilibrium
point, so that is obtained

JE0 =

∣∣∣∣∣∣∣∣∣∣∣

λ + βl0 + μS βS0 0 0 0
−βl0 λ − βS0 + γ + μl + αl e

−λτ 0 0 0
0 −αl e

−λτ λ + θH + αH e−λτ 0 0
0 0 −αH e−λτ λ + θC + δC 0
0 −γ −θH −θC λ + μR

∣∣∣∣∣∣∣∣∣∣∣
= 0

Suppose τ = 0, with the help of Maple software, the characteristic equation of the
matrix JE0 is obtained as follows:

a0λ
5 + a1λ

4 + a2λ
3 + a3λ

2 + a4λ + a5 = 0 (5)

Note that the values of the roots of the characteristic Eq. (5) can be analyzed for
stability if they meet the stability requirements based on the Routh-Hurwitz criteria for
n = 5, as follows

a0.a1.a2.a3.a4.a5 > 0

Next, substitute the parameter values in Table 2 to see the stability of the disease-free
equilibrium point specifically, so that is obtained

a0 = 1 > 0
a1 = −0.07308 < 0
a2 = −0.003429302 < 0
a3 = −0.000021036792 < 0
a4 = −4.0232462 × 10−8 < 0
a5 = −2.2550892 × 10−11 < 0

Based on these results, it can be seen that the disease-free equilibrium point is unsta-
ble, because there areRouth-Hurwitz criteria that are notmet, namelya1, a2, a3, a4, a5 <

0.Next, calculate the eigenvalues of the characteristic Eq. (5). Using the parameter values
in Table 2, which are as follows

λ1 = −0.001
λ2 = −0.002
λ3 = −0.0039
λ4 = −0.02702
λ5 = 0.107

Based on these results, it can be seen that there is one positive eigenvalue, namely
λ5 > 0 and four negative eigenvalues, namely λ1, λ2, λ3, λ4 < 0. Thus, the stability
property of the disease-free equilibrium point in the SIHCR population is unstable.
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3.1.5 The Local Stability Analysis of Endemic Equilibrium Point

Next, an analysis of the local stability of the endemic equilibrium point is carried out
by linearizing the system of nonlinear Eqs. (1) around the endemic equilibrium point,
so that is obtained

JE1 =

∣∣∣∣∣∣∣∣∣∣∣

λ + βl∗ + μS βS∗ 0 0 0
−βl∗ λ − βS∗ + γ + μl + αl e

−λτ 0 0 0
0 −αl e

−λτ λ + θH + αH e−λτ 0 0
0 0 −αH e−λτ λ + θC + δC 0
0 −γ −θH −θC λ + μR

∣∣∣∣∣∣∣∣∣∣∣
= 0

First, find the local stability of the endemic equilibrium point when τ = 0. The
characteristic equation obtained from the matrix JE1 is

b0λ
5 + b1λ

4 + b2λ
3 + b3λ

2 + b4λ + b5 = 0 (6)

Note that the values of the roots of the characteristic Eq. (6) can be analyzed for
stability if they meet the stability requirements based on the Routh-Hurwitz criteria for
n = 5, as follows

i. b0 > 0
ii. b1 > 0
iii. b1b2 − b0b3 > 0
iv. c1 > 0
v. d1 > 0

where

c1 = (b1b2−b0b3)b3−(b1b4−b0b5)b1
b1b2−b0b3

d1 = (b1b4−b0b5)c1− (b1b2−b0b3)b5
b1b2−b0b3

c1

Next, substitute the parameter values in Table 2 to see the stability of the endemic
equilibrium point specifically, so that is obtained

b0 = 1 > 0
b1 = 0.0356184127 > 0
b1b2 − b0b3 = 0.000008746836505 > 0
c1 = 0.000001598597917 > 0
d1 = 5.116130591 × 10−10 > 0

Based on these results, it can be seen that the endemic equilibrium point is stable,
because it meets the Routh-Hurwitz criteria. Furthermore, the eigenvalues from the
characteristic Eq. (6) will be calculated using the parameter values in Table 2, so that is
obtained

λ1 = −0.002
λ2 = −0.0039
λ3 = −0.02702
λ4 = −0.001349206349 + 0.0102557126618201 I
λ5 = −0.001349206349 − 0.0102557126618201 I
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Based on these results, it can be seen that all eigenvalues have a negative real part.
Thus it can be concluded that the stability property of the endemic equilibrium point in
the SIHCR population when τ = 0 is locally asymptotically stable.

Next, analyze the local stability of the endemic equilibrium point when τ �= 0 or
(τ > 0). The first step is to find the determinant of the matrix JE1 using the cofactor
expansion method, so that the eigenvalues are obtained

λ1 = −A1 − μS , λ2 = −μR, λ3 = −θC − δC

If substitute the parameter values in Table 2, so that is obtained

λ1 = −0.002698412698
λ2 = −0.002
λ3 = −0.0039

it can be seen that the eigenvalues λ1, λ2 and λ3 have negative real parts. The other two
eigenvalues are found using the following equation

λ2 + 0.01702λ + 0.01e−λτ λ − 0.0003 + 0.0002702e−λτ = 0 (7)

The solution of characteristic Eq. (7) is in pure imaginary form, namely λ = iω with
ω > 0 [14, 15]. Substituting λ = iω into Eq. (7), so that is obtained

(iω)2 + 0.01702iω + 0.01iωe−(iω)τ − 0.0003 + 0.0002702e−(iω)τ = 0

(
−ω2 + 0.01ω sin(ωτ) − 0.0003 + 0.0002702 cos(ωτ)

)
+ i(0.01702ω

+ 0.01ω cos(ωτ) − 0.0002702 sin(ωτ)) = 0
(8)

Then separate the real and imaginary parts of Eq. (8), so that is obtained

−ω2 − 0.0003 = −0.01ω sin(ωτ) − 0.0002702 cos(ωτ) (9)

0.01702ω = −0.01ω cos(ωτ) + 0.0002702 sin(ωτ) (10)

Eliminate Eqs. (9) and (10) to τ by squaring each side of the equation, then add up
the results of the square so that is obtained

ω4 +
(
0.017022 + 0.0006

)
ω2 + 0.00032 = 0.012ω2

(
sin2(ωτ) + cos2(ωτ)

)

+ 0.00027022
(
sin2(ωτ) + cos2(ωτ)

)

ω4 +
(
0.017022 − 0.012 + 0.0006

)
ω2 + 0.00032 − 0.00027022 = 0

ω4 + 0.00079ω2 + 1.699 × 10−8 = 0 (11)

The next step is to find the root of Eq. (11) using Maple software so that the value
of is obtained as follows:

ω1 = 0.02770455301
ω2 = −0.02770455301
ω3 = 0.004705118773
ω4 = −0.004705118773
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Note that the root of the characteristic equation is purely imaginary, namely λ = iω,
so that the value of λ is obtained as follows:

λ1 = 0.02770455301 I
λ2 = −0.02770455301 I
λ3 = 0.004705118773 I
λ4 = −0.004705118773 I

Then look for the value of the time delay τ . by substituting each value of ω that has
been obtained into Eqs. (9) and (10). First, substitute each value of ω into Eq. (9) as
follows:

Substituting ω1 = 0.02770455301 into Eq. (9), so that is obtained

0.0004675422575 = − 0.0002770455301 sin(0.02770455301τ )

− 0.0002702 cos(0.02770455301τ ) (12)

Substituting ω2 = −0.02770455301 into Eq. (9), so that is obtained

0.0004675422575 = 0.0002770455301 sin(−0.02770455301τ )

− 0.0002702 cos(−0.02770455301τ ) (13)

Substituting ω3 = 0.004705118773 into Eq. (9), so that is obtained

0.0002778618573 = −0.00004705118773 sin(0.004705118773τ )

− 0.0002702 cos(0.004705118773τ ) (14)

Substituting ω4 = −0.004705118773 into Eq. (9), so that is obtained

0.0002778618573 = 0.00004705118773 sin(−0.004705118773τ )

− 0.0002702 cos(−0.004705118773τ ) (15)

Then substitute each value of ω into Eq. (10) as follows:
Substituting ω1 = 0.02770455301 into Eq. (10), so that is obtained

0.0004715314922 = −0.0002770455301 cos(0.02770455301τ )

+ 0.0002702 sin(0.02770455301τ ) (16)

Substituting ω2 = −0.02770455301 into Eq. (10), so that is obtained

−0.0004715314922 =0.0002770455301 cos(−0.02770455301τ )

+ 0.0002702 sin(−0.02770455301τ ) (17)

Substituting ω3 = 0.004705118773 into Eq. (10), so that is obtained

0.00008008112152 = −0.00004705118773 cos(0.004705118773τ )

+ 0.0002702 sin(0.004705118773τ ) (18)
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Substituting ω4 = −0.004705118773 into Eq. (10), so that is obtained

−0.00008008112152 =0.00004705118773 cos(−0.004705118773τ )

+ 0.0002702 sin(−0.004705118773τ ) (19)

Then by using Maple software, the time delay value τ is obtained as follows:
The time delay value from Eq. (12), (13), (16) and (17) is

τ1 = 177

The time delay value from Eq. (14), (15), (18) and (19)

τ2 = 100

The time delay value that has been obtained is not used when simulating the model
because it has a value that is too large, so it requires highMatlab software specifications.
Therefore, when the simulation will use a small value of the time delay which will be
explained in the next discussion.

3.2 The Simulation on SIHCR Model Without and With Time Delay

3.2.1 The Simulation on the SIHCR Model in Disease-Free Condition

Simulation on the SIHCRmodel in disease-free conditions was carried out whenR0 < 1.
The parameter values used are approximately the parameter values in Table 2. This is
because the stability of the disease-free equilibrium point using the parameter values
in Table 2 will result in an unstable disease-free equilibrium point. Thus, the parameter
values used are as follows:

� = 0.001; β = 0.1; γ = 0.07; μS = 0.001; μI = 0.003; μR = 0.002;
αI = 0.036; αH = 0.000083; θH = 0.054; θC = 0.0015; δC = 0.003

Based on these parameters, the value of R0 = 0.92 is obtained which indicates the
population is in a disease-free condition. Furthermore, simulations were carried out in
disease-free conditions using the SIHCR model without and with time delay. First, a
simulation on the SIHCR model without time delay will be carried out in disease-free
conditions.

Based on Fig. 2, it can be seen that the Susceptible, Infected, Hospitalized, Criti-
cal, and Recovered populations experienced a decrease in the number of populations
towards the equilibrium point within 90 days. Note that the graph shows that the
spread of COVID-19 in the population continued to decrease over time until COVID-19
disappeared.

Furthermore, simulation of the SIHCR model with time delay in disease-free condi-
tions was carried out. In this section, three simulations are carried out using variations
of the time delay parameter values presented in Table 3.

The following is a graph of the results of each simulation of the SIHCR model with
time delay in disease-free conditions (Figs. 3, 4 and 5).
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Fig. 2. Graph of SIHCR Model Without Time Delay When R0 < 1

Table 3. Parameter Value of Time Delay τ

Parameter Simulation 1 Simulation 2 Simulation 3

τ 0.01 0.05 0.1

Fig. 3. Graph of SIHCR Model With Time Delay When R0 < 1 with τ = 0.01

Fig. 4. Graph of SIHCR Model With Time Delay When R0 < 1 with τ = 0.05

Based on simulation 1, simulation 2, and simulation 3 for the SIHCR model with
time delay in disease-free conditions, it shows that there are differences in the behavior
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Fig. 5. Graph of SIHCR Model With Time Delay When R0 < 1 with τ = 0.1

Fig. 6. Graph of Infected Class With and Without Time Delay When R0 < 1

of each population with respect to time when using variations in the time delay value.
The smaller the time delay given, the faster the SIHCR model leads to stability. On
the other hand, the greater the time delay given, the longer the SIHCR model leads to
stability.

Furthermore, simulations were carried out in the Infected class with andwithout time
delay in disease-free conditions. In this section, the value of the time delay parameter is
used as shown in Table 3. The following is a graph of the results of each simulation of
the Infected class with and without delay in disease-free conditions.

Based on Fig. 6, there are differences in the behavior of the Infected class with and
without time delay in disease-free conditions. The Infected class with time delay shows
that it takes longer to reach stability than the Infected class without time delay.

3.2.2 The Simulation on the SIHCR Model in Endemic Condition

The simulation on the SIHCRmodel in endemic conditionswas carried outwhenR0 > 1.
The parameter values used are the parameter values in Table 2. Based on the parameter
values in Table 2, the R0 = 2.69 value is obtained which indicates the population is
in endemic conditions, so that the endemic equilibrium point is locally asymptotically
stable. Furthermore, simulations in endemic conditionswere carried out using theSIHCR
model without and with time delay. First, a simulation of the SIHCRmodel without time
delay will be carried out in endemic conditions.
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Fig. 7. Graph of SIHCR Model Without Time Delay When R0 > 1

Based on Fig. 7, it can be seen that the Infected and Hospitalized populations have
increased in population. This shows that there is a spread of COVID-19 in a population.
Thus, if R0 > 1 then the endemic equilibrium point is locally asymptotically stable.

Furthermore, simulation of the SIHCRmodel with time delay in endemic conditions
was carried out. In this section, three simulations are carried out using variations in the
value of the time delay parameter which are presented in Table 3. The following is a
graph of the results of each simulation of the SIHCRmodel with time delays in endemic
conditions (Figs. 8, 9 and 10).

Fig. 8. Graph of SIHCR Model With Time Delay When R0 > 1 with τ = 0.01

Fig. 9. Graph of SIHCR Model With Time Delay When R0 > 1 with τ = 0.05
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Fig. 10. Graph of SIHCR Model With Time Delay When R0 > 1 with τ = 0.1

Fig. 11. Graph of Infected Class With and Without Time Delay When R0 > 1

Based on simulation 1, simulation 2, and simulation 3 for the SIHCR model with
time delay in endemic conditions, it shows that there are differences in the behavior of
each population with respect to time when using variations in the time delay value. The
smaller the time delay given, the faster the SIHCR model leads to stability. On the other
hand, the greater the time delay given, the longer the SIHCR model leads to stability.

Furthermore, simulations were carried out in the Infected class with and without
time delay in endemic conditions. In this section, the value of the time delay parameter
is used as shown in Table 3. The following is a graph of the results of each simulation
of the Infected class with and without delay in endemic conditions.

Based on Fig. 11, there are differences in the behaviour of the Infected class with and
without time delay in endemic conditions. The Infected class with time delay showed
longer peak days of infection and stability than the Infected class without time delay.

4 Conclusion

Based on the dynamic analysis of the model of the spread of COVID-19 in the SIHCR
population with and without time delay, it was obtained:

a. The disease-free equilibrium point is E0(S0, I0,H0,C0,R0) = E0

(
�
μS

, 0, 0, 0, 0
)
.

The stability analysis at the disease-free equilibrium point is unstable based on the
Routh-Hurwitz criteria and their eigenvalues.
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b. The endemic equilibrium point is E1(S∗, I∗,H∗,C∗,R∗), where

S∗ = αI + γ + μI

β

I∗ = �β − μS(αI + γ + μI )

β(αI + γ + μI )

H∗ = αI (�β − μS(αI + γ + μI ))

β(αI + γ + μI )(αH + θH )

C∗ = αHαI (�β − μS(αI + γ + μI ))

β(θC + δC)(αI + γ + μI )(αH + θH )

R∗ = (�β − μS (αI + γ + μI ))(γ (θC + δC)(αH + θH ) + θHαI (θC + δC ) + θCαHαI )

μRβ(θC + δC)(αI + γ + μI )(αH + θH )

The stability analysis at the endemic equilibrium point when τ = 0 and τ �=
0 are locally asymptotically stable based on the Routh-Hurwitz criteria and their
eigenvalues.

c. The basic reproduction number obtained is R0 = 2.69 > 1 (corona.jakarta.go.id,
2021), thus causing the COVID-19 disease to become endemic.

Based on the results of the numerical simulation of the SIHCR model with and
without time delay, it is obtained:

a. In disease free condition
Based on the simulation results when R0 < 1, it shows the difference in the

dynamic behavior of the SIHCR model with and without time delay. The smaller the
delay time, the condition is almost the same as the SIHCR model without time delay
towards stability. Meanwhile, the greater the delay time, the longer the SIHCRmodel
leads to stability.

b. In endemic condition
Based on the simulation results when R0 > 1, it shows the difference in the

dynamic behavior of the SIHCR model with and without time delay. The smaller the
delay time, the condition is almost the same as the SIHCR model without time delay
towards stability. Meanwhile, the greater the delay time, the longer the SIHCRmodel
leads to stability.
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