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Slavomír Hrček1(B) , Róbert Kohár1 , Michal Lukáč1 , Ján Šteininger2 ,
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Abstract. The excellent operating properties of the mechanisms are conditioned
by the quality design of the geometry of the individual components. Roller and
ball bearings, which are frequently used components, have no exception and are
an important part of them. One of the important parameters for a geometry design
of antifriction bearings elements is sliding velocity. This article discusses the
proposed algorithm for calculating sliding velocities between rolling elements
and raceways of spherical roller bearings. Sliding velocities caused by different
rolling radii along the rolling element profile and thus adversely effect of their
abrasion. Using this algorithm can be quantified these adverse effects and the
internal geometry of the spherical roller bearings can be modified to minimize
the impact of sliding velocities. For this experimental study, a fully parametric 3D
virtualmodel of spherical rolling bearingswas created in the PTC/Creo Parametric
CAD system and a FEM analysis was done in Ansys/Workbench CAE software.
This work was done at University of Žilina, Faculty of Mechanical Engineering,
Department of Design and Machine Elements.

Keywords: Spherical Roller Bearings · Sliding Velocities · Algorithm · FEM

1 Introduction

Ball and roller bearings were historically called antifriction bearings because of the
low friction properties associated with them. Actually, the major portion of friction
associated with rolling bearings is caused by sliding motions in the contacts between
components. Contacts between components, which are rolling elements and raceways,
rolling elements and cage, roller ends and roller guide flanges, and cage rails, and inner
or outer ring lands [1]. Rolling element bearings are typical tribological components.
They utilize low frictional rolling contacts between rolling elements and raceways to
support load while permitting constrained and low resistant motion of one body relative
to another [2]. One component that causes friction between the roller and the raceways
is the sliding velocities that occur when the rolling radii along the roller bodies are
too different. This article discusses the proposal of an algorithm to determine sliding
velocities for rolling bearings [1].
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Fig. 1. Roller–raceway contact showing bulge due to rolling deformation [1].

1.1 Deformation

The balls or rollers in a bearing are mainly subjected to loads perpendicular to the
tangent plane at each contact surface. Because of these normal loads, the rolling elements
and raceways are deformed at each contact, producing according to Hertz, a radius of
curvature of the common contacting surfaces equal to the harmonic mean of the radii
of the contacting bodies. For a roller of diameter D, bearing on a cylindrical raceway of
diameter di, the radius of curvature of a contact surface is

R = diD

di + D
(1)

Because of the deformation indicated above and because of the rolling motion of the
roller over the raceway, which requires a tangential force to overcome rolling resistance,
raceway material is squeezed up to form a bulge in the forward portion of the contact as
shown in Fig. 1.

A depression is subsequently formed in the rear of the contact area. Thus, an addi-
tional tangential force is required to overcome the resisting force of the bulge. The bulge
is very small and the friction force is insignificant [1].

1.2 Elastic Hyteresis

As may be observed in the discussion, as a rolling element under compressive load
travels over a raceway, the material in the forward portion of the contact in the direction
of rolling undergoes compression while the material in the rear of the contact is relieved
of stress. It is recognized that as load is increasing, a given stress corresponds to a smaller
deflection than when load is de creasing. The area between the curves (see Fig. 2) is
called the hysteresis loop, and it represents an energy loss (friction power loss).

Generally, friction due to elastic hysteresis is very small compared with other types
of friction occurring in rolling bearings [1].

In [1, 3] is mentioned that Drutkowsky verified this by experimenting with balls
rolling between flat plates. Friction coefficients as low as 0.0001 is for 12.7 mm chrome
steel balls rolling on chrome steel plates under normal loads of 356 N. In [4] Greenwood
evaluated the rolling resistance due to elastic hysteresis. They found that the frictional
resistance is substantially less than that due to sliding if the normal load is sufficiently
large.
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Fig. 2. Hysteresis loop for elastic material subjected to reversing stresses [1].

Drutkowski in [5] also demonstrated the linear dependence of rolling friction on
the volume of stressed material. In [3, 5] Drutkowski showed the dependence of elastic
hysteresis on the material under stress and the specific load on the contact area.

1.3 Microslip

If a radial cylindrical roller bearing had rollers and raceways of exactly the same lengths,
if the rollers were accurately guided by frictionless flanges, and if the bearing operated
with zero misalignment under moderate speed, then gross sliding in the roller–raceway
contacts would not occur. Gross sliding refers to the total slip of one surface over another.
Depending on the elastic properties of the contacting bodies and the coefficient of friction
between the contacting surfaces, microslip could occur. The coefficient of friction can be
defined as the ratio of the tangential force F to the normal force Q (see Fig. 3). Microslip
is defined as the partial sliding of one surface relative to the other:

μ = F

Q
(2)

In [5], Reynolds first referred to microslip when, in his experiments involving rolling
of an elastically stiff cylinder on rubber, he observed that since the rubber stretched in
the contact zone, the cylinder rolled forward a distance less than its circumference in
one complete revolution about its axis. This experiment was conducted in the absence
of a lubricating medium, that is, dry contact.

Poritsky in [6] demonstrated the microslip or creep phenomenon in two dimensions
considering the action of a locomotive driving wheel, also dry contact. The normal load
between contacting cylinders was assumed to generate a parabolic stress distribution,
similar to a Hertzian stress distribution, over the contact surfaces (see Fig. 3).

Superimposed on this stress distribution with stresses σz was a tangential stress τx.
In this case, the local coefficient of friction in the contact is

μx = τx

σz
(3)
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Fig. 3. Rolling under action of surface tangential stress [1].

Using this model, Poritsky demonstrated the existence of a “locked” region over
which no slip occurs and a region of relative movement or slip over a contact area for
which it was historically assumed that only rolling occurred. This is illustrated in Fig. 4.
Cain in [8] further determined that in pure rolling the locked region coincided with the
leading edge of the contact area. It must be emphasized that the locked region can only
occur when the friction coefficient is very high as between two unlubricated surfaces.

In [9] is determined that a hard ball rolling in a closely conforming groove can roll
without sliding only on two narrow bands. Ultimately, Heathcote obtained a formula
for the rolling friction in this situation. While Heathcote slip is very similar to that
which occurs because of rolling element–raceway deformation, Heathcote’s analysis
takes no account of the ability of the surfaces to elastically deform and accommodate
the difference in surface velocities by differential expansion.

In [1] is mentioned that Johnson, expanded on the Heathcote analysis by slicing
an elliptical contact area, such as that in a ball–raceway contact, into differential slabs
of area as shown in Fig. 5 and thereafter applying the Poritsky analysis for each slab.
Johnson’s analysis using elastic tangential compliance demonstrates a lower coefficient
of friction; this assumes sliding rather than microslip. The Fig. 6 shows the locked and
slip regions that obtain within the contact ellipse.

1.4 Sliding Friction

Friction force parallel to the rolling direction is calculated by integrating over the contact
area from -a to + a and -b to + b. Let think q = x/a and t = y/b:

Fy = 3μQ

2πab

∫ +1

−1

∫ +
√

1−q2

−
√

1−q2

(
1 − q2 − t2

)1/2
dt dq (4)

where the sliding velocity direction coefficient, is + 1 or -1 depending on the direction
of sliding.



162 S. Hrček et al.

Fig. 4. Surface tangential actions; (b) surface strains; (c) locked and microslip regions [1].

Fig. 5. Ball–raceway contact ellipse showing locked region and microslip region radial ball
bearing [1].

Equation 4 is valid for operating conditions involving solid-film lubrication and
boundary lubrication where friction coefficient μ can be characterized as a constant [1].

1.5 Overall Surface Friction Shear Stress

When the lubricant film is insufficient to completely separate the surfaces in rolling
contact, that is forΛ < 3, some of the surface peaks, also called asperities, as illustrated
in Fig. 7, break through the lubricant film and contact each other. The sliding friction
shear stress during this asperity–asperity interaction occurs in the regime of boundary
lubrication and may be calculated using Eq. 4 for a ball–raceway or point contact [1].

Only a portion of the contact, however, operates in this manner; the remainder of the
contact surface operates according to fluid-film lubrication [1].
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Fig. 6. Surface tangential actions; (b) surface strains; (c) locked and microslip regions [1].

Fig. 7. Distributions of sliding velocity and surface friction shear stress over an elliptical area of
rolling element–raceway contact in a radially loaded, radial ball bearing [1].

2 Materials and Methods

2.1 Proposal of Algorithm for Calculation Sliding Velocity

The using of many advanced software tools are needed for calculation of sliding velocity
in rolling bearings. The loading determines real deformation and then the real rolling radii
include these deformations. The proper FEA software need to be used for determination.
The inner geometry of rolling bearing is too complicated. Therefore, a useful CAD
tool is recommended to use. Via this CAD tool should be possible also work with
parametric model. The FEA analysis results and mathematical calculations have to be
evaluated. We used origin script for results evaluation, which one has been created in
useful programming language. The Fig. 8 shows the algorithm for calculation of the
sliding velocities in rolling bearings.

2.2 Application of Algorithm at Spherical Roller Berings

VirtualModel of Spherical Rolling Bearing. For FEM analysis, a fully parametric 3D
virtual model of spherical rolling bearings was created in the PTC/Creo Parametric CAD
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Fig. 8. Algorithm to calculate sliding velocities.

system. This model was designed so that its geometry was controlled by the parameters
through relations. In this way, we were able to efficiently modify individ-ual dimensions
and create size-based series of spherical rolling bearings. The Fig. 9 shows a view with
the control parameters [10]

Fig. 9. Virtual model of spherical rolling bearings [10].
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2.3 FEM Analysis

In order to perform FEM analysis, we used Ansys/Workbench CAE software, in which
we defined static structural analysis for the spherical rolling bearing model. The result-
ing virtual 3D model of a spherical rolling bearing was imported from the PTC/Creo
Parametric system via an interface to the Ansys/Workbench environment. This interface
enables us to modify the parameters and thus change the rolling bearing model directly
from the Ansys/Workbench environment.

For all spherical rolling bearing components we used a linear isotropic elasticity
material model with Young’s modulus E = 210 000 MPa and Poisson’s ratio μ = 0.3
for bearing steels. We chose a linear material model because we applied such maximum
radial load Fr acting on the spherical rolling bearing that we would avoid exceeding
the yield strength of the material and the maximum contact pressure exceeding po = 3
500 MPa, which is defined as the threshold value for line contact.

Symmetry was applied to themodel in one plane X-Y for reducing the computational
time. The model mesh (see Fig. 10) was created by standard elements from the Ansys
library. The volume mesh was created with the SOLID185 element. Individual bearing
elements are in contact because the forces acting upon the bearing are transferred between
rings (their raceways) and roller. Elements type CONTA174 and TARGE170 were used
for mesh contact pairs (rolling elements – raceways). Choosing an appropriate mesh
element size is necessary in order to correctly analyze the contact pressure between the
roller and raceway of the outer and inner rings.

The contacts between the rolling elements and orbital paths of the two rings (races)
were defined as frictionless type.

The loading in radial direction is applied on shaft. The boundary condition – Dis-
placement in X-axis is defined against axial movement of bearing rings. Displacement
in Y-axis is defined opposite of radial load force (see Fig. 11).

The result of FEManalysis is the distributionof contact pressure and the deformations
of raceway of bearing rings and roller in contact area.

Fig. 10. FEM model of spherical rolling bearings.
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Fig. 11. Boundary conditions and load applied on FEA model SRB.

3 Results and Discussing

3.1 Processing Results from FEM Analysis

The deformations, which are evaluated by Ansys are not the true deformation. In this
case we are talking about complex movement of nodes/elements. This complex move-
ment includes body movement (e.g. due to close gap) and contact stiffness and true
deformation. This is the reason why the subsequently evaluation of these results is still
needed for determination of the true deformation. The origin script in Matlab was cre-
ated for results evaluation. Output of this script is calculation of the true deformation
of raceways for inner ring and roller (see Fig. 12) and true deformation of raceway for
outer ring and roller (see Fig. 13).

Fig. 12. True deformation on roller and raceway of the inner ring.
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Fig. 13. True deformation on roller and raceway of the outer ring.

3.2 Calculating Zero Sliding Velocity Distance

For rolling bearings with curved surfaces, pure rolling can occur at most at two points
in the contact area. If spinning is absent at a raceway contact, then all points on lines
parallel to the direction of rolling and passing through the aforementioned points of
pure rolling roll without sliding. Distribution of sliding velocity on the contact surface
is illustrated in Fig. 14. The lines of pure rolling lie at x = ± ca.

Using Eq. 4 to describe the differential frictional force dF, it can be seen that the net
sliding frictional force in the direction of rolling at a raceway contact is

Fy = ±3μQ

πab

{∫ ca

0

∫ +
√

1−q2

−
√

1−q2

(
1 − q2 − t2

)1/2
dt dq −

∫ a

ca

∫ +
√

1−q2

−
√

1−q2

(
1 − q2 − t2

)1/2
dt dq}

(5)

Fig. 14. Distribution of sliding velocity on the elliptical contact surface for negligible gyroscopic
motion and zero spin.
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Using the integral, in Eq. (5) is possible calculate the distance ca where is the pure
rolling without slip. For this purpose was created a script in Matlab for this calculation
using a nonlinear solver.

3.3 Calculation of Sliding Velocity at Spherical Roller Bearing

Spherical roller bearings with curved raceways and crowned rollers will be permit slip-
pages during rolling over the width of the contact surfaces due to unequal rolling radii
(see Fig. 15). These sliding velocities adversely affect the abrasion on surfaces of the
roller and the raceways of the bearing rings.

Sliding velocities between the rolling element and the raceways are calculated from
the true rolling radii and angular velocities at the points with pure rolling without slip.
To calculate the angular velocities, the relationships for calculating the planetary gear
can be used, where the inner ring corresponds to a sun gear, the outer ring corresponds to
the ring gear, the carrier is the cage and the satellites are rolling elements. For a rotating
inner ring, Eq. 6 applies to the calculation of the sliding velocities between the inner
ring and the roller and Eq. 7 applies to calculate the sliding velocity between the roller
and the outer ring.

vi = ωr · rr − (ωc − ωi) · ri (6)

vo = ωr · rr + ωc · ro (7)

where vι is sliding velocity between roller and raceway of the inner ring; νo is sliding
velocity between roller and raceway of the outer ring; ωr is angular velocity of roller; ωc

is angular velocity of cage/carrier; ωi is angular velocity of inner ring; rr is true rolling
radius of roller, ri is true rolling radius of the inner ring raceway; and ro is true rolling
radius of the outer ring raceway.

The proposed algorithmwas used to calculate sliding velocities between the raceways
and the rolling element shown in Fig. 16. Dimensions of bearing are pitch diameter: dpw
= 678 mm, roller diameter: dwe = 80 mm, roller length: lwe = 100 mm, nominal contact
angle: a0 = 10.5°, revolution of inner ring: ni = 100 rpm, radial load:Qmax = 1 430 kN.

Fig. 15. Real rolling radius of the spherical roller bearing.
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Fig. 16. Calculated sliding velocities for a SRB bearing at the given load.

4 Conclusions

By the present algorithm, it is possible to calculate the sliding velocities between the
rolling elements and the raceways of the bearing rings in practically any type of rolling
bearing. Its use is most important for bearings that have a larger nominal contact angle
and large differences in orbit radii. Spherical roller bearings are the biggest sufferers.

By the proposed algorithm, it is possible to solve the influence of the internal rolling
bearing geometry on the resulting sliding velocities, which adversely affect the abrasion
of the rolling elements and the raceways of the bearing rings. These abrasions can cause
premature failure of the rolling bearing. The proposed algorithm is an effective tool in
the design process of rolling bearing geometry at early stages of their development. It
requires the use ofmodern software tools, with which sliding velocities can be calculated
using the proposed algorithm.
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