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Abstract. Additive manufacturing (AM) is a layered manufacturing technique.
It can produce parts/printing layer by layer. When the deposition process involves
a number of process parameters such as temperature gradients, build orienta-
tion, raster width, raster angle, layer thickness, and disposition pattern, etc. This
overview considers the various aspects of the process parameter that influence the
part quality and generate residual stresses in the Fused deposit Modelling (FDM)
component. This process, parameters influenced the surface finish quality of parts
and warpage.
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1 Introduction

Additive Manufacturing is created in the mid-1990s by Stratasys, has gotten quite possi-
bly the most utilized advancements to build unpredictable 3D models straightforwardly
from a modernized strong, model. The late pattern of this innovation is utilized in many
fields, for example, clinical, development, clinical, aviation, social, and different fields.
Added substance fabricating procedures is an interaction of development materials to
make parts from 3D model information, generally layer by layer, rather than subtractive
assembling and developmental assembling strategies. [1—17]. This enormous achieve-
ment could be perceived predominantly to its colossal capacity to straight forwardly
produce intricate parts and reduce material and cost [18-22]. The raw material is in the
form of a filament. It is extruded and deposited by NC heated nozzle [23-25]. How-
ever, the material will cool after deposition [26-28] developing bonding in the FDM
by the thermal energy, as a result generation of cyclic temperature mechanical stresses
are produced. A final state of a prototype (residual stress, dimensions, densities, etc.)
aggressively depends on the evolutionary process. [29-31]. In FDM materials, PLA
and ABS have stronger mechanical strength and lower coefficient of thermal expansion.
The thermal properties can be improve printability and reduce de-layering, that effect
on printing work. Because of this, final shape and dimension cannot be achieved. The
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distortions are attributable to the continuous quick warming and cooling patterns of the
saved material [32-34]. In. Order to optimize this problem, a heated bed with some type
of adhesive on the surface. Indeed, the expensive and high-level printing system with
a heated chamber is required. That result in reduction of residual stress during printing
phase and uniform temperature maintain around the component [35-37]. However, the
most difficult problem in the FDM process is to can ’t be avoided part distortion 100%.
A typical procedure to diminish this issue is to utilize a warmed bed with some kind of
cement on a superficial level. Albeit such techniques help to diminish bends, they can
build the remaining burdens of the last part [38—43]. The aim of this survey gives an idea
about development of residual stress within FDM. A layer removal and hole-drilling
techniques are used for the measurement of residual stress in the material.

2 Material and Methods

2.1 Material

The biggest limitation for the 3D printing industry is the availability of Polylactic Acid
(PLA) and ABS material. These materials are widely used in the current scenario. [64]
PLA is a biodegradable one and has great inflexibility though, ABS is exceptionally
impervious to warm and has great pliability.

2.2 Residual Stress Method

This section can give an idea about the working principle of residual stress. A basic
governing equation for elasticity as per Hooke’s law.

oij = Cijklekl (1)

where o is the applied pressure, C is the material’s firmness network, ¢ is strain, and I,
j» and k mean 1, 2, and 3, autonomously. In the 3D Cartesian facilitate framework, 1
compares to the x-pivot, 2 is the y-hub and 3 is the z-hub. Mechanical burdens and warm
loads can be found by strains in a body. [44].

Changes in temperature can cause a material to expand or contract, governed by the
following equation:

eth = « AT ()

where o is the material coefficient of warm extension, AT is the change in tem-
perature and eth is the warm strain. The guideline of strain superposition directs that the
mechanical strains (eo) and warm strains (eth) are added to an absolute strain esteem.

& = €0 + ¢th 3)

A total strain can be given in the above equation to obtained stress in a part
through constitutive equation [45].

oij = E( 4+ v)(1 — 2v)[vsijekk + (1 — 2v)eji — (1 + VAT )
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where E is the modulus of elasticity, v is Poisson ’s ratio, and §;; is the Kronecker delta,
taking values of O fori # j and 1 fori =.

To research part twisting conduct, comprehend the fundamental working rule of the
FDM cycle and how bending happens. FDM measure is quick cooling and warming of
the material in non-uniform temperature inclinations [46]. Subsequently, this prompts
developing in burdens, which further causes bends, bringing about dimensional incor-
rectness and internal layer breaking or even de-overlay. The explanation credited to
non-uniform warming and cooling cycles is the functioning guideline of the FDM inter-
action. That is heat scattered by conduction and convection during the whole statement
measure. The fast decrease in temperature empowers the material to rapidly harden onto
the encompassing fibers [47]. Therefore, uniform pressure won’t be created in either the
recently stored part of the current part. The current part can presently don’t recapture its
unique measurement totally and the warmth cycle aggravates it.

3 Effect of Process Parameters on Residual Stress

In the FDM cycle, there are a few quantities of boundaries impact on the form part
attributes and their creation efficiencies. A most indispensable job can play be the thick-
ness of a layer, the thickness of infill, speed of printing, infill design, fabricate orientation,
the temperature of expulsion, rater width, nozzle diameters, breadth, form width, air gap,
and so on [48].

3.1 Build Orientation

A structure course can depict the way which can change on structure stage w.r.t the
critical hatchets, X, Y, and Z of the machine gadget. Feng et al. [49] printed his 2 kinds
of test tests having a spot with the PA12 fiber characterization using a FDM type printer
differently and their extraordinary orientation of printing i.e., build heading is outlined
in Fig. 1.

Ashtankar et al. [50] showed the impact that forms direction pos-sesses on compre
sive and mechanical elements of ABS (Acrylonitrile Butadiene Sty-rene) parts delivered
utilizing FDM.
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Fig. 1. Build orientation.
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Fig. 2. Layer height.

3.2 Layer Height (LH)

A layer tallness is insinuated as the proportion of material saved along the vertical piv-ot
of the FDM machine. It is reliably lesser than the spout estimation of the extruder. Elena
etal. [51] uncovered that layer stature expects to be an unavoidable part in the contorting
and impact properties of the made part. Barrios et al. [52] address that, even test plan
for various limits of printing, one of the factor layer height was considered as one of the
parts. The Fig. 2 delineated layer tallness.

3.3 Raster Angle

A material raster course along the structure locale in the x-direction is known as raster
point. Generally speaking, the raster point may vary from 0 to 900 [53].

34 Air Gap

An air gap is a span between two connecting dot affidavits. This worth can be can either
be zero, positive, or negative. In sure air holes the material statement in progressive
runs is made separated bringing about an inexactly stuffed construction where the quick
structure of the given part is fundamental. A negative air gap is utilized when we need
a denser construction and when time isn’t an imperative. [54, 55].

3.5 Printing Speed

The printing speed of cross of assemble spout while storing material on the form stage
along the XT plane [56].
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Fig. 4. Types of Infill patterns.

3.6 Infill Density

The infill density indicates the material volume imprinted on the given part. A lesser
infill thickness straightforwardly influences the mechanical properties. Lesser thickness
can give lower mechanical properties though denser thickness has better mechanical
properties.

3.7 Infill Pattern

An infill pattern can influence the interior construction. Consequently, a few quantities
of examples are accessible, for example, direct, hexagonal, and precious stone outlined
by Alafa-ghani et al. [55] is introduced in Fig. 4.

3.8 Temperature of Extrusion

A spout warming is kept up with by expulsion temperature [57]. It influences the con-
sistency of the material utilized for printing in this way infulence the part qualities. The
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Raster Width Air Gap

Fig. 5. Raster width.

ideal temperature must be kept up with as it might increment or decline the smoothness
of the fiber material which thusly could influence the part being created. Wang et al.
[58] have shown that the interior pressure which creates as the material gets expelled
through the spout chills off from its underlying temperature (glass change identified
with) a temperature of the chamber.

3.9 Nozzle Diameter

The nozzle diameter play vital role because the diameter of the nozzle directly impacts
the drop pressure along the liquefier. [50]. Turner et al. [59] uncovered that, the L/D
(length to width) proportion of the spout additionally adds to the variety in the pressing
factor drop.

3.10 Raster Width

A raster width addresses the size of the affidavit way and width to be utilized to construct
the given part. This boundary is extraordinarily affected by the spout diame-ter. The
raster width as represented by Dey et al. [60] is displayed in Fig. 5, was found to have
an inescapable influence in choosing the form season of a given part higher the raster
width lesser is the form time.

3.11 Number of Contours with Width

A contour width mentioned width of the road path surrounding the profile of the path
[61]. A more number of contours impact the flexural properties of the part. [50].

3.12 Build Time

The build time is the production time of the printed part. Past research has revealed that
lesser build time is carried in 00 build orientation [62]. Hardly any analysts have proposed
that direction has a huge impact in lessening the hour of fabricate and furthermore
recommended that any sure changes made to boundaries like shape width, thickness,
raster width, and raster point show a diminishing pattern in form time [63].
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4 Results and Discussing

Fused deposition modeling is an interaction by which utilitarian parts can be quickly cre-
ated by consecutive testimony of intertwined material layers. Different serious mistakes,
for example, twist and twist mutilations and delaminations are credited to leftover bur-
dens and strains develop during the creation cycle [55]. The residual stress can predict by
thermal processes (welding, thermos-mechanical FEM simulation, etc.) is a valid tool.
This work investigated process parameters and It was obtained residual strains obtained
for the O direction, when the thickness of each layer deposited and it increased to 0.5 mm
the measured strains in the 0 to 90 direction [50] A layer removal method is based on
curvature measurement, thin layers have been removed from the surface. The stress dis-
tribution calculates based on curvature function depth [65, 66]. A hole-drilling technique
is more demanding for residual stress in complex geometries because It can measure the
smaller area and the layer removal method gives the most consistent results throughout
thickness residual stress. [67]. A. Kantaros et al. [68] studied experimental results show
that their magnitude is significant and sensitive to the investigated process parameters.
An experimental result observed residual strain observed in the O direction, whereas
transverse and crisscross in the direction 90 and 45for 0.25 mm layer thickness. O. Fer-
gana, F. Berto et al. investigated residual strains for the O directions and layer thickness
0.25 mm. The thickness of each deposited layer was 0.5 mm in the 0 and 90 directions
were comparable [74]. C. Casavola et al. [70]. Stress development depends on printing
direction. With the proper adjustment of the printing parameters (optimization to mini-
malize the residual stresses), the residual stresses could be decreased. The relationship
between temperature and distortion, the temperature of the filament with different param-
eters in the building process is collected and the temperature change trend coincides with
the part warpage well, which verifies the relationship between distortion and tempera-
ture difference rightly [69]. The lowest residual stress investigated by O. A. Mohamed
et al. [71] A results shows higher built parameters the magnitude of induced residual
stress increase. The hole drilling technique is used for measured residual stress in FDM
printed specimens. This paper presents £ 30°, &= 45°, 0°/90° and 0° orientation only.
The highest value of residual stress was recorded and its found 20% more yielding point
of the material. An outputs results show that residual stress management is an important
issue for FDM parts. A residual stress influenced by faster printing speed, raster angle. A
faster printing speed lead to large porosity, shrinkage, and residual stress in ABS material
[72].The stresses in a few marks of 3D printed parts, both on top and base, to confirm
if the oblige conditions utilized during the printing to deliver generous variety from a
highlight another. This examination has been done among four stacking successions.
As the x-way, for example the significant site of the example, the warpage is substan-
tially more significant than the y-heading, this could clarify the distinction between the
remaining anxieties in x and y bearings [73]. The two stress measurement in the spec-
imen ox and oy. Whereas txy is not observed. [74]. Stress advancement relies upon
printing course. With the appropriate change of the printing boundaries (advancement
to minimalize the remaining burdens), the lingering stresses could be diminished [75].
A displacement for the 45° specimen is higher than 30°, whereas 0° and 90° specimens
are shows higher residual stress and lower displacement in the components. However,
due to the orthotropic behavior and the consequent difficulties to calculate the residual
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stress, this work is a preliminary study on the measurement of residual stress in FDM
parts. [76] A result is reported based on two scenarios, the first is the 3D printer chamber
only and the second is a 3D printer with a heated bed. In this kind of printing process, the
printed part is subjected to rapid temperature changes yielding higher stresses during and
after (residual thermal stress) the printing process. Those two phenomena are related to
the intensity of the stress fields, which are caused by temperature changes in the printing
process. Then, in order to prevent delamination or lessen the warping, careful analysis
of the temperature changes during the printing process should be made. Moreover, the
residual thermal stresses can be used to analyze the failure behavior of printed parts and
also to determine how the printing parameters affect their strength. [77]. H. Li et al. [72]
revealed that, the effect of the two parameters on part warpage. The distortion shows
a sharp decrease within creasing layer thickness, but this phenomenon does not appear
in deposition velocity and the warpage caused by deposition velocity represents little
change. The underlying reason causing part distortion is the accumulation of residual
stresses resulting from non-uniform temperature gradients in continuous heating and
cooling cycles during the deposition process. The temperature change trend coincides
with the part warpage well, which verifies the relationship between distortion and tem-
perature difference rightly. M. Brod et al. [ 78] investigated numerical study was split into
two parts. At first, the influence of the residual stresses was demonstrated using a simple
quasi-static tension test of an embedded 90° ply of a cross-ply laminate. Due to the
additional initial tension stress component, the matrix crack growth started earlier and
affected the load-bearing behavior negatively. Thereby, it turned out to be that in the 90°
ply, alocal fatigue loading with a negative stress ratio was occurring. 5. Conclusion Most
of the case residual stress and strain is influenced by temperature and process parameters
(layer thickness, layer height, orientation etc.) An optimum stress can produce through
controlling induced process parameters (printing speed, raster angle, temperature etc.)
Caterina Casavola et al. [79] reported temperature difference by numerical simulation
and experiments is 5%. High Von Mises stresses were anticipated inside the first and
the second layers brought about by the distinction of the temperature between the stage
plate and the part layers. The residual stresses measure by a hole-drilling method. Here
two companies printers are compared, e.g. Stratasys Dimension Elite and a MakerBot
Replicator 2X. The two stress measurement in the specimen ox and oy. Whereas txy
is not observed. This paper shows, the residual strength of FDM examples monotoni-
cally diminishes as harm collects with expanded measures of steady adequacy pliable
weariness cycling. The corruption of standardized remaining strength happens at a more
noteworthy rate for the 0° unidirectional parts than for the +45/—45° and +30/—60°
bidirectional meso structures. The distinction in the decline in the strength of the 0° ver-
sus the bidirectional covers is measurably critical (a = 0.05). Notwithstanding, the real
residual elasticity of the 0° parts is more noteworthy than both +45/—45° and 4+30/—60°
microstructures, for all factor mixes of cycling pressure and weakness life crack, because
of the arrangement of the filaments with the heap bearing [80].
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5 Conclusion

There is lot of scope of work in the area of optimization of process parameters. The
quality of FDM parts is in demand in the current scenario of the industrial revolution.
FDM can manufacture an intricate shape of objects but residual stress and strain affect the
quality of parts. A residual stress is most influence parameters are temperature gradients,
direction (build orientation), printing speed, and raster angle. A specimen’s orientation
0° and 45° specimens are optimum for residual stress.
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