
Applications of Some Extremal and Variational
Problems to the Study of Vibrations

in Mechanical Systems

Valeriu Ionica, Mihaela Bogdan(B), Leonard Marius Ciurezu-Gherghe,
Adrian Bogdan, and Ionut Geonea

Faculty of Mechanics, University of Craiova, Craiova, Romania
mihaela.bogdan@edu.ucv.ro

Abstract. The object of the present study is the mathematical side of extremi-
related problems. We have studied certain applications of the variational calculus
in the domain of vibrations existing in mechanical systems. The most frequently
encountered problem in the matter of vibrations is the one of determining the nat-
urally occurring frequencies of a vibrating system. In the practice of engineering,
it is the lowest frequency also known as the fundamental one which does present
the highest interest. In order to determine the natural frequencies, the usually
employed strategy is a combination between Rayleigh’s energetical method and
the Ritz procedure. Briefly described it does consist in applying a form of vibration
or a configuration which should essentially be the intrinsic one of the concerned
systems at the moment when it would be situated in the position reflecting the
largest possible extent of its translation movement which ought to correspond to
its fundamental functioning. We have as well pointed out the advantage which
could be taken from applying the integer transformations in the resolution of
some extremi-related problems since this choice would render them algebraically
shaped and thereby would considerably simplify them.
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1 Introduction

The historical trajectory of the iso-perimeter’s problem is visible since the Antiquity
through the legend which does involve the Carthaginian queen Dido and is easy to
follow till Herman Schwartz from Berlin. This was the first ever variational problem
encountered in the human history. Dido or Elise is a famous queen from the Antiquity
who is known in history as being the founder of Carthage. For two reasons she is also
mentioned in the history of mathematics: firstly because she is the first ever woman
owning some ascertained knowledge in mathematics and secondly because Carthage
had been elevated due to her personal wish. The above mentioned problem is of a
mathematical nature and it is only during the XVII-th century that the Swiss scholar
Jacques Bernoulli has achieved its scientifically demonstrated solution [1].
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After innumerable wanderings, she has stopped upon the Northern shore of Africa
in front of a locality named Byrsa (in Tunis nowadays). Here she has asked from the
local inhabitants to be offered a place where she could dwell her own home. However,
they have scorned her mockingly by offering her that much of a land surface, which
could be contained within an ox, hides (in translation Byrsa does mean, “ox hide”). It is
precisely under these circumstances that Dido has proven her wits. She has cut the ox
hide into very thin strips. Then she has tied them one to another and surrounded by them
a hill from the littoral. Let us suppose the fact that the surface of the ox hide would have
been of 4 m2 from which the cutter strips had a width of 2, 5 mm. The result should be
the one of 800 strips long of 2 m each. Therefore, the surrounded perimeter, which is
simultaneously the length of the circle consequently drawn around the hill, would have
had the value of 1600 m. That is to say approximately 20 ha. For a beginning, it was
quite enough.

During the glorious period of the city the length of its defending walls has reached to
be 35 Km while in its duly designed and protected harbor could be sheltered a number of
warships rising even to 220. The fact that Didowas able to solve that problem is the proof
of the fact that in her time she had mastered the knowledge of mathematics: among all of
the surfaces, bearing the same perimeter the largest one is the circle. Later known as “the
question of the iso-perimeters” this problem has been studied by Bernoulli. Furthermore,
since this matter did involve a hill (assimilated to a cone), the area of its lateral surface is
larger than the area of its basis (the slanting line is longer than the perpendicular one). The
maxima-related problems do stand among the most interesting matters in mathematics.
In time, the maxima and minima risen questions have become matters, which by now
do involve differential and integer calculations, as well as matters pertaining to linear
programming and optimum states’ identifying. On the other hand, these procedures
are so often made use of in economy, in the theory of probabilities and in many other
domains. However, let us return to our subject: the achievement performed then by Dido
has been to determine within a plane a closed curve bearing a given length so that it
could delimit the largest possible area (that is to say a circle). Now when the variational
calculus has been discovered the top scholars were already involved into the study of the
particular problems risen by the iso-perimeter’s issue and into the one of their analytical
generalizations. The theory of the variational calculation does draw its origins from the
resolution of the brachistochronical question (that is to say the issue of the shortest time).
Jean Bernoulli has formulated it in 1696 (see [2]). The two Bernoulli brothers have both
published independently their own respective solutions to it since the methods through
which each of these solutions have been obtained were different: Jacques (in paper
[1]) and Jean (in paper [2]). Variational calculation may be applied in the mechanics
of systems, in hydro-dynamics, in the theory of springiness, in geometrical optics or
in the domain of the vibrations, which do pertain to mechanical systems. In the works
[3–5] the authors are willingly making use of integer transformations in order to solve
some specific problems which do involve vibrations and therefore they do successfully
demonstrate the effectiveness of these procedures.
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2 A Particular Problem Related to the Iso-perimeter Issue

Some problems pertaining to the variation calculus do exist into which the function
through which the concerned functional should be brought to its extremi may be itself
submitted to a few restrictions. Let us therefore denominate such a problem as an iso-
perimeter one. Among all of the types of restrictions which could be imposed to the
above-mentioned function we will choose to make use of the one which we will describe
through what does follow.

Let us define a new functional J (y(x)) and another Lagrangean M
(
x, y(x), y′(x)

)

and let us take into consideration only the functions y(x) for which the concerned
functional should bear a given value £.

Therefore, let us consider the new functional:

J (y) =
b∫

a

M
(
x, y(x), y′(x)

)
dx (1)

together with the former functional

I(y) =
b∫

a

L
(
x, y(x), y′(x)

)
dx (2)

Thus, we do come to formulate in what does follow an iso-perimeter problem.
Proposition 2.1. Among all of the curves y = y(x) ∈ C1[a, b]
for which the functional J (y) does suppose the existence of a given value £ there is

one for which the functional I(y) does suppose the existence of an extreme value.
Insofar the Lagrangeans L and M could be concerned let us suppose the fact that

they do have continuous partial derivatives of the first and second orders for a ≤ x ≤ b
as well as for whatever arbitrary values held by y(x) and y′(x). A widely known iso-
perimeter issue is the so-called Dido’s problem - later denominated Fisher’s problem.
We are going to utter it below.

Proposition 2.2. Among the closed curves of length £ the request is to find one which
could limit the largest surface. The L and M Lagrangeans are:

L
(
x, y(x), y′(x)

) = y(x) (3)

M
(
x, y(x), y′(x)

) =
√
1 + y′2(x) (4)

Consequently, the concerned problem does come to the fact of finding a curve y =
y(x) for which the functional

J (y) =
b∫

a

√
1 + y′2(x) dx (5)
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should hold a given value £ and for which the functional

y(x) =
b∫

a

y(x) dx (6)

should suppose the existence of an extreme value.
Now due to this context created by Euler we will demonstrate the principle which it

does point out by returning towards the generality of the iso-perimeter issue.
Theorem 2.1. Should the curve y = y(x), be extreme for the functional.

I(y) =
b∫

a

L
(
x, y(x), y′(x)

)
dx (7)

under the conditions

J (y) = b∫
a
M

(
x, y(x), y′(x)

)
dx = £, (8)

y(a) = ya, y(b) = yb

and y = y(x) should not be extreme for the functional J then a constant λ would exist
so that the curve y = y(x) could be extreme for the functional:

••
I (y) =

b∫

a

L
(
x, y(x), y′(x)

) − λM
(
x, y(x), y′(x)

)
dx. (9)

Demonstration:
Together with the function y = y(x) let us consider a vicinity of the functions which

do have the form

{y(x) + αη(x) + βγ (x)}α,β . (10)

Each of the functions from this vicinity does have the same limit as the function
y = y(x), η(a) = η(b) = 0, γ (a) = γ (b) = 0.

Should we calculate the value held by the functional I(y) in an arbitrary spot of this
vicinity we would find a function which does depend upon α and β:

I(y(x) + αη(x) + βγ (x)) =
∫ b

a
L
(
x, y(x) + αη(x) + βγ (x), y′(x)

+αη′(x) + βγ ′(x)
)
dx = I(α, β).

But α and β are not independent because of the fact that:

J (y(x) + αη(x) + βγ (x)) =
∫ b

a
M

(
x, y(x) + αη(x) + βγ (x), y′(x)
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+αη′(x) + βγ ′(x)
)
dx = J (α, β).

Therefore:

J (α, β) = £.

Should we suppose that J does depend upon β we could make use of the theorem of
the implicit functions so that we would come to the three following situations:

– β could be expressed as a o function of α that is to say β = β(α);
– should α = 0 then β = 0 that is to say β(0) = 0;
– the derivative of β would be:

β ′(α) = dβ

dα
= −

∂J
∂α
∂J
∂β

. (11)

For α = 0, β = 0 the arbitrary spot of the vicinity does come to be reduced to a curve
y = y(x)which is leading towards an extreme point the functional I . This fact does mean
that α = 0 is an extreme value for a function I(α, β) = I(α, β(α)) and that according
to the requirements of an extreme we should have:

b∫

a

∂L

∂y
η(x) dx +

b∫

a

∂L

∂y′ η
′(x) dx + dβ

dα

b∫

a

∂L

∂y
γ (x) dx + dβ

dα

b∫

a

∂L

∂y′ γ
′(x) dx = 0.

(12)

Let us integer through parts and we should obtain:

b∫

a

∂L

∂y′ η
′(x) dx = ∂L

∂y′ η

∣
∣∣ba −

b∫

a

d

dx

(
∂L

∂y′

)
η(x) dx (13)

For as long as η(a) = η(b) = 0, the result would be:

b∫

a

∂L

∂y′ η
′(x) dx = −

b∫

a

d

dx

(
∂L

∂y′

)
η(x) dx. (14)

Similarly

b∫

a

∂L

∂y′ γ
′(x) dx = ∂L

∂y′ γ

∣
∣∣ba −

b∫

a

d

dx

(
∂L

∂y′

)
γ (x) dx (15)

and for as long as γ (a) = γ (b) = 0 the result would be:

b∫

a

∂L

∂y′ γ
′(x) dx = −

b∫

a

d

dx

(
∂L

∂y′

)
γ (x) dx. (16)
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Should we take into consideration the relationships (13) and (14) the extreme
requirement (12) would become:

b∫

a

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
η(x) dx + dβ

dα

⎧
⎨

⎩

b∫

a

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
γ (x) dx

⎫
⎬

⎭
= 0, (17)

and should we take into consideration the fact that

β ′(α) = dβ

dα
= −

∂J
∂α
∂J
∂β

, (18)

we would obtain:

b∫

a

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
η(x) dx −

∂J
∂α
∂J
∂β

⎧
⎨

⎩

b∫

a

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
γ (x) dx

⎫
⎬

⎭
= 0. (19)

On the other hand, should we integer through parts and take into consideration the
fact that η(a) = η(b) = 0 we would obtain:

∂J

∂α
=

b∫

a

[
∂M

∂y
− d

dx

(
∂M

∂y′

)]
η(x) dx. (20)

Similarly, should we take into consideration the fact that γ (a) = γ (b) = 0, we
would obtain:

∂J

∂β
=

b∫

a

[
∂M

∂y
− d

dx

(
∂M

∂y′

)]
γ (x) dx. (21)

When we should take into consideration the relationships (20) and (21) the
relationship (19) would become:

b∫

a

[
∂L

∂y
− d

dx

(
∂L

∂y′
)]

η(x) dx −

b∫

a

[
∂M
∂y − d

dx

(
∂M
∂y′

)]
η(x) dx

b∫

a

[
∂M
∂y − d

dx

(
∂M
∂y′

)]
γ (x) dx

·
b∫

a

[
∂L

∂y
− d

dx

(
∂L

∂y′
)]

γ (x) dx = 0. (22)

Should we make use of the denotation:

λ =

b∫

a

[
∂L
∂y − d

dx

(
∂L
∂y′

)]
γ (x) dx

b∫

a

[
∂M
∂y − d

dx

(
∂M
∂y′

)]
γ (x) dx

, (23)
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Fig. 1. Straight bar geometry.

The relationship (22) may be written as:

b∫

a

{[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
− λ

[
∂M

∂y
− d

dx

(
∂M

∂y′

)]}
η(x) dx = 0. (24)

Should we take into consideration the fact that η(x) does satisfy to the requirements
of the fundamental lemma then the Eq. (24) would lead us to the equation:

∂L

∂y
− d

dx

(
∂L

∂y′

)
− λ

[
∂M

∂y
− d

dx

(
∂M

∂y′

)]
= 0, (25)

which may be written under the form:

∂

∂y
(L − λM ) − d

dx

[
∂L

∂y′ (L − λM )

]
= 0. (26)

Finally let us remark the fact that the Eq. (26) is Euler’s equation for the functional
••
I (y) where:

••
I (y) =

b∫

a

L
(
x, y(x), y′(x)

) − λM
(
x, y(x), y′(x)

)
dx, (27)

Therefore, the theorem is demonstrated.

3 Determining of Natural Frequencies

Our goal is now to determine the pulsation which does correspond to the fundamental
vibration modality of a straight bar of which for a length unit the mass is m while the
bending rigidity has the constant value of EIy (see Fig. 1).

Solution: We will apply the Rayleigh method. In the differential equation of the axis
of the bent bar:

EIy
∂4v

∂x4
= p(x), (28)
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we will consider p(x) as being the bar’s inertial force itself – according to the principle
of d’Alembert – so that the differential equation of the bar’s free vibrations should have
the form:

EIy
∂4v

∂x4
+ m

∂2v

∂t2
= 0, (29)

to which we will associate for example the limiting requirements:

x = 0, x = L ⇒ v = 0
x = L

2 ⇒ ∂v
∂x = 0

. (30)

In order to obtain the pulsation which does correspond to the fundamental vibration
modality of a straight bar we will equate the expression of its maximum kinetic energy
with the one of its maximum deforming’s potential energy. For the considered bar the
deforming energy Ep is:

Ep = 1

2

L∫

0

EIy

(
∂2v

∂x2

)2

dx, (31)

while the kinetic energy is:

Ec = 1

2

L∫

0

m

(
∂v

∂t

)2

dx. (32)

Assuming the fact that the concerned vibration is a harmonic one that is to say:

v(x, t) = V (x) cos(ωt) (33)

from the Rayleigh requirement
(
Ep

)
(Ec)maxmax the pulsation should result as expressed

under the form:

ω2 =

L∫

0
EIy

(
∂2V
∂x2

)2
dx

L∫

0
mV 2 dx

. (34)

In order to determine from the relationship (12) the value of ω2 we should take into
consideration a form of V (x) which could satisfy to the limiting requirements (11) but
not necessarily to the movement Eq. (10). Such a form is:

V (x) = 1 − cos

(
2πx

L

)
, (35)
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which, when substituted in the relationship (34) would lead us, with
EIy
m = k2L4, at the

expression of the fundamental pulsation under the form:

ω2 = k2L4

L∫

0

{
∂2

[
1−cos

(
2πx
L

)]

∂x2

}2

dx

L∫

0

[
1 − cos

( 2πx
L

)]2
dx

. (36)

By performing the calculation in the relationship (36) the approximate value of the
fundamental pulsation (of the slightest pulsation) should result as being:ω1 = 22, 792 k.

4 Extreme Spots of Functionals

Our goal is now to determine the extreme spot of the concerned functional as well as its
nature under the requirements that:

F : D → R,

F
[
y, z

] =
π
2∫

0

[(
y′)2 + (

z′
)2 + 2yz

]
dx,

D = {
(y, z) ∈ C1

([
0, π

2

]) ∣
∣y(0) = z(0) = 0, y

(
π
2

) = 1, z
(

π
2

) = −1
}
.

(37)

Solution:
The Euler-Lagrange system is:

{
y′′ − z = 0
z′′ − y = 0

, (38)

It will be solved by two different methods.

4.1 Method 1. Applying the Laplace Transformation

Should we apply to the equations of this system the unilateral Laplace transformation in
respect to the variable x we would obtain for the unknown y(x) and z(x) the system of
algebraic equations expressed through the formers’ Laplace images ỹ(s) and z̃(s) under
the form:

{
s2ỹ(s) − sy(0) − y′(0) − z̃(s) = 0
s2z̃(s) − sz(0) − z′(0) − ỹ(s) = 0

. (39)

When solving this system elementarily we should obtain the solution of the
differential equation’ system (38) expressed through Laplace images:

{
ỹ(s) = y(0)s3+y′(0)s2+z(0)s+z′(0)

s4−1

z̃(s) = z(0)s3+z′(0)s2+y(0)s+y′(0)
s4−1

. (40)
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Should we apply to the equations of system (40) the reversed Laplace transformation
in respect to the variable x we would obtain the solution of the differential equation’
system (38) under the form:

{
y(x) = C1ex + C2e−x + C3 cos x + C4 sin x,
z(x) = C1ex + C2e−x − C3 cos x − C4 sin x,

(41)

where:

C1 = 1

4

[
y(0) − y′(0) + z(0) − z′(0)

]
, C2 = 1

4

[
y(0) + y′(0) + z(0) + z′(0)

]
,

C3 = 1

2

[
y(0) − z(0)

]
, C4 = 1

4

[
y′(0) − z′(0)

]
. (42)

4.2 Method 2. The Classical Method

Let us remark the fact that the solutions of the Euler-Lagrange system (38) do bear the
form (41) which we have previously obtained through the first method. From (y, z) ∈ D
we do obtain: C1 = C2 = C3 = 0, C4 = 1, which - when substituted into the system
(38) - is leading us towards the conclusion that the line through which the extreme is
accomplished is provided by:

{
y = sin x
z = − sin x

. (43)

The Legendre requirements are:

D1 = Fy′y′ = 2, D2 =
∣∣∣∣
Fy′y′ Fy′z′
Fz′y′ Fz′z′

∣∣∣∣ =
∣∣∣∣
2 0
0 2

∣∣∣∣ = 4, (44)

The consequent result is that theminimumvalue for the functional is reached through
the extreme spot of (sinx, −sinx). The minimum value is easy to obtain:

F(sin x,− sin x)min (45)

5 Conclusions

The main inconvenience of the analytical studies which do concern the extremum issues
is constituted by the lacunae that exist in the study of the existence of such extremi.
It is Weierstrass who for the first time ever has invoked this problem. A. Hurwitz has
provided a new demonstration by making use of the trigonometric lines. G. Cramer, S.
Lhuilier and especially the all-comprehensive Steiner have also explored this path: one
among the first demonstrations provided by this latter has proved itself to be useful even
in our own days: it is known as the quadrilateral’s method. As a conclusion: through
the present study we have attempted to slightly contribute insofar are concerned the
extremi-related issues and their respective applications within the technical field. We
have as well demonstrated the opportunity of making use of the integer transformations
for the purposes of the operational calculation.
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