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Abstract. Twomethodswere used to study the aperiodicity of a double pendulum
based on its chaotic behavior: approximate entropy andmaximumLyapunov expo-
nents. These methods were applied to analyze the aperiodicity of a signal obtained
from the angular velocity of the first pendulum. The nonlinear system of differen-
tial equationsweremodeled using Langrage’s equation ofmotion and solved using
the computational software MATLAB. Both maximal Lyapunov exponents and
approximate entropy values exhibited an increase in magnitude with increasing
initial conditions.
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1 Introduction

The double pendulum is known for its chaotic behavior; that is, the dynamic behavior
of the double pendulum is highly sensitive to its initial conditions which, in turn, makes
the double pendulum unpredictable. If the initial condition angles are small, the double
pendulum will exhibit regular motion. However, if large angle initial conditions are
imposed, the double pendulum will exhibit aperiodic motion.

Two methods will be used to study the aperiodicity of a double pendulum based on
its nonlinear behavior: approximate entropy and maximal Lyapunov exponents. These
methods will be applied to the signal obtained from the angular velocity of the first pen-
dulum. Both methods are known to measure the predictability of signals obtained from
dynamic systems. In previous literature, maximal Lyapunov exponents and Poincare
maps were used to study the chaotic motion of a double pendulum with the increasing
initial conditions [3]. It was found that the maximum Lyapunov exponent increases with
increasing initial conditions [3]. Approximate may offer another way for analyzing the
aperiodic behavior of the double pendulum.

Informational entropy, introduced byClaude Shannon, is a quantitativemeasurement
of information in a discrete information source. This measurement is based on the uncer-
tainty correlated to a variable’s probability [15]. Signal entropy uses the same reasoning
but measures the information in a discrete time signal [2, 4, 14]. A periodic signal would
have less information because there is less uncertainty in the signal [2, 4]. Therefore,
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signal entropy is an objective measurement of a discrete time signal periodicity [2, 4, 7,
14, 18].

Signal entropy is a widely researched topic in informational theory; so, there are sev-
eral forms of signal entropy as well as numerous applications. For example, researchers
measured damage condition of a four-story steel truss based on the ambient vibration of
the structure using multi-scale entropy [19]. Multi-scale fuzzy entropy, an improvement
of multi-scale entropy, was applied on vibrations of roller bearings to detect roller bear-
ing fault [8]. Permutation entropy was used to determine the working status of rotary
machines based off vibration signals from rotary machines [17]. The use of approx-
imate entropy, introduced by Pincus, is popular in the realm of biomedical sciences
by detecting alterations in a signal from subjects effected with a wide class of diseases
[10–12]. For example, approximate entropy was used to study the electroencephalogram
of Alzheimer patients [1]. Furthermore, approximate entropy has been used to monitor
the vibration of meshed gears [5]. Approximate entropy has been applied to numerous
nonlinear, aperiodic signals including physiological signals and mechanical vibrations,
and is widely used for studying aperiodic, nonlinear systems.

It is important to note that approximate entropy has several shortcomings. For one,
approximate entropy calculations are highly sensitive to the length of the data [18]. The
approximate entropy has inherent bias as a due to self-matching in its algorithm [4, 13,
14]. This would yield higher measurements of aperiodicity. Sample entropy, developed
my Richman and Moore, is an improvement to approximate entropy by eliminating this
bias [4, 13, 14].

There are physiological systems like a pendulum. For example, researchers propose
that human gait is analogous to an inverted pendulum, and approximate entropy has been
applied to human gait to measure the randomness of a subject gait [5, 9].

Due to the aperiodicity, nonlinear nature of a double pendulum, approximate entropy,
in conjunction with maximal Lyapunov exponents, may offer another way in studying
the chaotic nature of the double pendulum. To our best knowledge, the approximate
entropy has not been applied in studying the nonlinear dynamics of a double pendulum.

2 Approximate Entropy

Approximate entropy is an algorithmic technique that estimates the aperiodicity of a
discrete time series [4, 14]. The algorithm separates a signal with N number of data
points into vectors of length m. The number of separated vectors is:

Number of separated vectors = N − m + 1 (1)

The algorithm then checks if the separated vectors match with each other. If differ-
ence between the components of the vectors is within a set tolerance r the vectors are
considered matching and thus a match is counted. Usually, the value of r is determined
as 0.15 times the standard deviation of the signal [14].

Take a signal with data points x(1), x(2), …, x(N). The data points are formed into
vectors sequences V (1) through V (N - m). Individual vectors are then compared with
all the separated vectors pertaining to the set tolerance. For example, the first vector, V
(1), is compared with all the separated vectors including itself. Then, V (2) is compared
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with all the separated vectors the V (3) and so forth until the final vector V (N - m + 1) is
compared with the rest of the vectors. This relationship must be satisfied for the vectors
to be considered matching:

|V (j) − V (i)| ≤ r, (2)

where j is an integer ranging from 1 ≤ j ≤ N − m + 1 and i is an integer ranging from
1 ≤ i ≤ N − m + 1. For the first vector, j = 1 because V (1) is being compared with
the rest of the vectors. nj is how many times the vector matches with the other separated
vectors. Aj is calculated as:

Aj = nj
N − m + 1

, (3)

which is known as the probability of the vector reoccurring in the signal within the
tolerance. The process of calculating Aj is repeated for the rest of the vectors. All the
values of Aj are then summed to calculate Cm

Cm =
∑N−m+1

k=1
nj

N−m+1

N − m + 1
. (4)

The entire process is repeated; instead, the vector is separated in length of m + 1.
Cm+1 is calculated as:

Cm+1 =
∑N−(m+1)+1

i=1
nm+1

N−(m+1)+1

N − (m + 1) + 1
=

∑N−m
i=1

nm
N−m

N − m
. (5)

Taking the values of Cm+1 and Cm, approximate entropy be calculated as:

approximate entropy = −ln

(
Cm+1

Cm

)

. (6)

If the signal is periodic, the Cm and Cm+1 values would be close together which,
in turn, decreases the logarithmic value. So, the less periodic the signal, the greater the
sample entropy value because the values of Cm and Cm+1 are farther from each other.
For example, a sine wave, with an initial vector length of 2 and a tolerance 0.15 times
the standard deviation, has an approximate entropy value of 0.140. On the other hand, a
HÃl’non Map has an approximate entropy value of 0.560 under the same conditions. It
is important to note that the approximate entropy bias is negligible when the data has a
large number of sample [14].

For this study, an initial vector length of 4 and a tolerance of 0.15 times the standard
deviation of the data was set before applying the approximate entropy algorithm.

3 Maximal Lyapunov Exponent

The Lyapunov exponent is a quantity that characterizes the divergence of two trajectories
with infinitely close initial conditions. The magnitude of divergence between the two
trajectories at any point of time is denoted as δ(t). δ(t) can be quantified as:

δ(t) ≈ δ0e
λt, ψ (7)
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where λ is the Lyapunov exponent. A negative Lyapunov exponent would mean that
the points will eventually converge to a single value with increasing time. A positive
Lyapunov would mean that the points would diverge from each other. As a result, a
positive Lyapunov exponent means that the system is sensitive to its initial conditions
and is hard to predict while a negative Lyapunov exponent is a non-chaotic system.

4 Mathematical Model

A double pendulum is depicted in Fig. 1. The particle 1 at A has the mass m1 and the
particle 2 at B has the mass m2. The length of OA is L1 and the length of AB is L2. The
gravitational acceleration is g. For this study, the mass and the length of both pendulums
is 1 kg and 1 m, respectively.

Thefirst generalized coordinateq1(t)denotes the radianmeasure of the angle between
the vertical axis and OA and the second generalized coordinate q2(t) denotes the radian
measure of the angle between the vertical axis and AB.

A cartesian reference frame xyz with the unit vectors
[
i, j, k

]
is selected. The unit

vector j is vertical and upward and the unit vector i is horizontal and to the right. The
position vector of the particle at A is

r1 = rA = L1sinq1(t)i − L1cosq1(t)j. (8)

The position vector of the particle at B is

r2 = rB = [
L1sinq1(t) + L2sinq2(t)

]
i − [

L1cosq1(t) + L2cosq2(t)
]
j. (9)

The velocities of the particles at A and B are:

vA = drA
dt

= L1q̇1cosq1(t)i + L1q̇1sinq1(t)j, (10)

vB = drB
dt

= ṙB = [
L1q̇1cosq1(t) + L2q̇2cosq2(t)

]
i

+[
L1q̇1sinq1(t) + L2q̇2sinq2(t)

]
j. (11)

Fig. 1. Double pendulum.
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Kinetic energy
The kinetic energy of particle 1 is

T1 = 1

2
m1vA · vA = 1

2
m1L

2
1q̇

2
1, (12)

and the kinetic energy of the particle 2 is

T1 = 1

2
m2vB · vB = 1

2
m2

[
L1q̇1cosq1(t) + L2q̇2cosq2(t)

]2

+1

2
m2

[
L1q̇1sinq1(t) + L2q̇2sinq2(t)

]2
. (13)

The total kinetic energy is

T = T1 + T2. (14)

Generalized forces
The forces that act on 1 at A is the gravity force

FA = −m1gj. (15)

The gravity force acts on mass 2 at B

FA = −m2gj. (16)

There are two generalized forces. The generalized force associated to q1 is

Q1 = FA · ∂rA
∂q1

+ FB · ∂rB
∂q1

. (17)

The generalized force associated to q2 is

Q2 = FA · ∂rA
∂q2

+ FB · ∂rB
∂q2

. (18)

The Lagrange’s equations of motion are

d

dt

(
∂T

∂ q̇1

)

− ∂T

∂q1
= Q1,

d

dt

(
∂T

∂ q̇2

)

− ∂T

∂q2
= Q2. (19)
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5 Results

The largest Lyapunov exponent and approximate entropy theories were applied to the
signals obtained from the angular velocity of the first pendulum.The differential equation
obtained from the inverted pendulum was solved using the MALAB function ode113
[20]. Ode113 was used to solve all the instances of angular velocity from 0 to 50 s in
increments of 0.01 s. The angular velocity initial conditions for both pendulums are
0 rad/s and the positional initial condition of the first pendulum is 0 radians for all
instances.

The goal in analyzing the angular velocity of a double pendulum is to find a trend
in approximate entropy values with initial conditions ranging from 45 degrees to 135
degrees. These findingswill be compared to findings frommaximalLyapunov exponents.
Our analysis confirms that there is an increase in maximal Lyapunov exponent when the
position initial conditions of q1 were increased. The other initial conditions were zero.
Figure 2 shows the maximal Lyapunov exponent values with varying initial conditions
from 45 to 135 degrees in 0.5- degree increments.

A linear regression fit was applied to the maximal Lyapunov exponent data points
to help determine a trend. Based on the positive slope calculated by the linear fit, there
is an increase in maximal Lyapunov exponent. As a result, the pendulum maximal
Lyapunov exponent is increasingly with increasing initial angle of the inner pendulum.
Figure 3 shows the approximate entropy values with the same varying initial conditions.
The linear fit for the approximate entropy values also shows that there is an increase
in approximate entropy values with increasing initial conditions. However, there is a
smaller rate of change in approximate entropy values than maximal Lyapunov values.

Fig. 2. Maximum Lyapunov exponents with initial angle q1(0)
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Fig. 3. Approximate Entropy with initial angle q1(0)

6 Conclusions

The purpose of this paper was to study the chaotic behavior of a double pendulum using
approximate entropy values and Lyapunov exponents. Approximate entropy values and
maximal Lyapunov exponents increased with increasing initial conditions for the inner
angle of the first pendulum. In the future studies, sample entropy may offer a more
accurate representation of the dynamics of a double pendulum.
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