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Abstract. This paper presents the analysis of a cantilevered beam under paramet-
ric uncertainties using FEMCAS a new software developed for structural analysis.
The theoretical approach is described, including linear analysis module with para-
metric uncertainties - Monte Carlo simulation, the Perturbation method and the
Neumann method. The perturbation method involves a Taylor series extension of
the stiffness matrix and is a numerically less expensive alternative to the Monte
Carlo method. The Neumann method applied in finite element analysis is known
in the literature as Spectral Stochastic Finite Element Method and models the
uncertainties using a modified first-order stochastic perturbation method together
with a truncated Karhunen-Loeve expansion instead of the Taylor series. In the
absence of parametric uncertainties, amodal analysis and forced vibration analysis
were performed. Under parametric uncertainties, good correlation betweenMonte
Carlo, Perturbation and Neumann methods was obtained. However, Perturbation
and Neumann method obtained much lower simulation times which made those
solutions much cheaper from computational perspective.
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1 Introduction - Parametric Uncertainties

The parametric uncertainties are frequently considered in the analyses of various situa-
tions, like control of nonlinear processes, dynamics and mass balance, optimization of
trajectories of robots or various physical predictions. For example, paper [1] approaches
a procedure for the design of a robust controller for a nonlinear process, taking into
account the various issues arising in the design. There are used the main theoretical
results from the Literature about this topic. An extended model is set-up, linking perfor-
mance and robustness to the control law, having as result a state feedback control law
which guarantees robust performance.

A generalized uncertainty principle is described in paper [2] that reviews some of the
physical predictions of the GUP, and focuses on the bounds that present experimental
tests canput on the value of the deformationparameterβ. There are described a theoretical
value computed for β, and comment on the vast parameter region.
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This research studies the behavior of a cantilever beam in thepresenceof uncertainties
using a novel software based on stochastic finite element method.

2 Theoretical Considerations

2.1 Monte Carlo Simulation

Degradation of stiffness parameters is an aspect that is not considered by current sim-
ulations, which consider the model to be geometrically and materially perfect. This is
not the case in physical models because they include imperfections in fabrication and
operation. These imperfections can be quantified using statistical computation and mod-
elled as uncertainties. Geometrical and material uncertainty is considered for bending

stiffness parameters. The bending stiffness parameters can be modeled as EI = EI+ ∼
EI.

E is the modulus of elasticity (material property), I is the moment of inertia of the cross-
section of the beam (geometrical property). The mean values EI are assumed to be much

larger than the root mean square of the variability of the random field represented by
∼
EI.

The random field is assumed to be Gaussian distributed with zero mean having standard
deviation, σEI, much smaller than the corresponding mean value. This implies that the
stiffness parameters form random fields with positive value.

Monte Carlo simulation consists in the numerical accumulation of a population
corresponding to the random quantities in the physical problem, solving the problem
associated with each member of the respective population and obtaining a population
corresponding to the random response quantities. This population can then be used to
obtain the statistics of the response variables.

In order to include uncertainties, random fields will be generated for each finite
element and assembled in the general matrix.Monte Carlo simulation consists of solving
the equations of motion, which includes random variables divided by elements, several
times. The higher the number of solvers, the higher the accuracy is. A minimum of 1000
runs is required for acceptable accuracy. This is computational expensive, especially if
the simulation models will be large (high nodes and elements). This method has a high
accuracy compared to other stochastic calculation methods.

2.2 The Perturbation Method

The perturbation method applied in finite element analysis is known in the literature as
PFEM (Probabilistic Finite Element Method). We consider the equation of motion in
matrix form:

[M]
{
Ü

} + [C]
{
U̇

} + [K]{U} = {F} (1)

where, [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, {F}
is the applied external force vector, {U} is the displacement vector,

{
U̇

}
is the velocity

vector and
{
Ü

}
is the acceleration vector.
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Geometrical and material uncertainty is taken into account for bending stiffness
parameters. The bending stiffness parameters are shown below:

EI = EI+ ∼
EI (2)

where E is the modulus of elasticity (material property), I is the moment of inertia of the
cross-section of the beam (geometrical property). Themean values EI, are assumed to be
much larger than the root mean square of the variability of the random field represented

by
∼
EI. The random field is assumed to be Gaussian distributed with zero mean, with

the standard deviation σEI being much smaller than the corresponding mean value. This
implies that the stiffness parameters form random fields with positive value.

Returning to the equation ofmotion (1), the stiffnessmatrix [K], includes the bending
stiffness parameters EI. The degradation of stiffness parameters can be quantified using
Eq. (2). In finite element analysis, the stiffness matrix includes values split into elements
and nodes. To include uncertainties, random fields will be generated for each individual
element which will be introduced into the overall matrix. Mass, damping, and external
forces are considered deterministic.

The perturbation method involves Taylor series extension of the stiffness matrix and
is a numerically less expensive alternative to the Monte Carlo method.

In mathematics, a Taylor series is a representation of a function as an infinite sum
of terms computed from the derivative values of that function at a point. The stiffness
matrix can be represented in Taylor series according to the relation [3]:

K = K0 +
N∑

i=1

KI
i ai + . . . (3)

where K0 is the mean of matrix K, KI
i is the first partial derivative of K with respect to

the random variable ai:

KI
i = ∂K

∂ai

∣∣∣∣{a}=0
(4)

To solve Eq. (1), it is also necessary to represent the displacement, velocity and
acceleration vector in Taylor series:

U = U0 +
N∑

i=1

UI
i ai + . . . ; U̇ = U̇0 +

N∑

i=1

U̇I
i ai + . . . ;

Ü = Ü0 +
N∑

i=1

ÜI
i ai + . . . (5)

where U0, U̇0, Ü0 are the mean values and UI
i , U̇

I
i , Ü

I
i , U

II
ij , U̇

II
ij , Ü

II
ij are the first and

second derivatives of the random variables ai and aj, evaluated at {a} = 0.
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Considering the Taylor series representation up to order 1, the displacement, velocity
and acceleration vectors are obtained by successive solvers as follows:

0-order equations:

MÜ0 + CU̇0 + K0U0 = F (6.1)

First order equations:

MÜI
i + CU̇I

i + K0U
I
i = −KI

iU0 (6.2)

2.3 Neumann Method

The Neumann method applied in finite element analysis is known in the literature as
SSFEM (Spectral Stochastic Finite Element Method) [4]. Uncertainties are modeled
using a modified first-order stochastic perturbation method together with a truncated
Karhunen-Loeve expansion instead of the Taylor series [5]. The Taylor series is used
only for the displacement vector expansion.

The Neumann method involves the Karhunen-Loeve (K-L) series extension of the
stiffness matrix and is a numerically less expensive alternative to the Monte Carlo
method, with higher accuracy than the perturbation method.

The continuous random field model will be discretized using the Karhunen-Loeve
(K-L) series. Geometric and material uncertainty is taken into account for the bending
stiffness parameters. The bending stiffness parameters are shown below [5]:

EIx(y, θ) = EIx +
NKL∑

r=1

√
λrfr(y)ar(θ) (7)

where ar(θ) are orthonormal random variables of mean 0with θ belonging to the space of
random events; NKL is the number of K-L series; fr and λr are functions and eigenvalues
of the covariance C(y1, y2) [4, 5]:

∫ L/2

−L/2
C(y1, y)f (y1)dy1 = λf (y) (8)

whereC(y1, y) = σ 2
EIx

e−|y−y1|/lcor , L is the length of the bar, lcor is the correlation length,

lcor/L = 1, σ2EIx is the variance of the random field.
Equation (8) can be solved analytically for the one-dimensional case [4, 5].
The elementary matrix becomes:

Ke(θ) = Ke0 +
NKL∑

r=1

Ke,rar(θ) (9)

Putting the element matrices together we get the global equation:

MÜ(t, θ) + CU̇(t, θ) + K0U(t, θ) +
(
NKL∑

r=1

Ke,rar(θ)

)

U(t, θ) = F(t) (10)
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Fig. 1. Standard deviation of displacement response in vertical direction

where F is the vector of external forces.
Applying the first-order perturbation method the displacement vector is represented

in Taylor of order one:

U = U0 + ∑NKL
i=1 UI

i ai; U̇ = U̇0 + ∑NKL
i=1 U̇I

i ai; Ü = Ü0 + ∑NKL
i=1 ÜI

i ai (11).

whereU0, U̇0,Ü0 are mean values, andUI
i ,U̇

I
i ,Ü

I
i , the first derivative relating to the

random variable ai evaluated at{a} = 0.
Considering the Taylor series representation up to order 1, the displacement, velocity

and acceleration vectors are obtained by successive solvers as follows:
0-order equations:

MÜ0 + CU̇0 + K0U0 = F (12.1)

First-order equations:

MÜI
i + CU̇I

i + K0U
I
i = −KI

iU0 (12.2)

3 Simulation

Uncertainties Are Introduced into the Stiffness Matrix in the Vertical Direction. A Field
ofRandomVariableswithGaussianDistributionwithMeanZero andStandardDeviation
0.01 is Generated.

The results shown in Fig. 1 represent the standard deviation of the displacement at
the point of force application in the vertical direction. A good correlation betweenMonte
Carlo, Neumann and Perturbation is observed.
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Table 1. Simulation time results, depending on the methods used

Monte Carlo Perturbation Neumann

Simulation time (s) 276 99 22

The analysis time is greatly improved in the case of perturbation and Neumann
methods as shown in Table 1.

4 Conclusions

A new structural analysis software is proposed. The software is based on finite ele-
ment method and can analyze structures in 3-dimensional space, structures that can be
approximated by beams of different cross-sections.

The element of novelty for the software is the presence of a module that includes
parametric uncertainties. Degradation of stiffness parameters is an aspect that is not
considered by current simulations, which assume the model to be geometrically and
materially perfect. This is not the case in physical models because they include imperfec-
tions in fabrication and operation. These imperfections can be quantified using statistical
computation and modelled as uncertainties. There are three types of uncertainties that
can be analyzed using FEMCAS software: Monte Carlo, Perturbation, and Neumann
method.

A force vibration analyses under parametric uncertainties in FEMCAS is proposed.
Good correlation betweenMonte Carlo, Perturbation andNeumannmethods is obtained.
However, Perturbation and Neumann methods lead to much lower simulation times
which made those solutions much cheaper from computational perspective.
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