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Abstract. Protein-Protein interactions (PPIs) are vital for explaining the struc-
tural and functional architecture of the cell. To have a wider comprehension of
the mechanisms, finding driver proteins that are vital for the control of the said
network is a pertinent task in systems biology. Lately, it has become a strategy to
find the smallest set of driver nodes to control the whole network. To apply on
networks that are undirected, Nacher and Akutsu viewed this problem from the
point of view of finding the smallest dominating set. Dominating sets are widely
enriched with genes that are biologically central. Nacher and Akutsu found that
the speculated driver proteins using the smallest dominating set model not only
pass pertinent functional features but also control the whole network They clas-
sified the vertices into three types such as critical vertices that belong to every
configuration, unnecessary vertices that do not belong to any configuration and
intermediary vertices that belong to some configurations but not all. In this paper
we explain the above and probe how various centrality measures such as degree
centrality, betweenness centrality, subgraph centrality etc., help us to understand
PPI networks.
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1 Introduction

PPI networks assumes huge participation in comprehending disease propagations
and associated mechanisms [1]. Several techniques are proposed to spell the underlying
structure in various organisms, like yeast [2–5]. Advances in biotechnology has played a
major role in the creation of various databases explaining them [6, 7]. So it is inevitable
to look for an apt representation at system level to pick a subset of genes deeming crucial
part in viability of cells, like the one in cancer genes [8]. The probe of the dominating
set with minimum number of elements is the need of the hour. It has the attribute that
each other vertex in the network must be adjacent to at least one vertex of it [8–10]. It
reveals the correlation among structural pattern and biological significance [8, 9, 11–
20]. It is interesting to find that vital set which includes as many common vertices of all
such dominating sets with minimum size [12, 20]. Finding such a dominating set with
minimum size is computationally hard [10], and further no procedure developed so far
can find it in polynomial time [21]. Nacher andAkutsu [22] proposed an integer based LP
model to find an optimal solution for such a task. Zhang and others in [13] considered the
degree measure and the betweenness centrality measures of proteins and expressed that
topological attributes alone is not sufficient to speculate the protein functions [17]. In [23]
the authors underlined the vitality of enrichment affect probe as no algorithm could find
the best dominating set in real time [13, 24, 25]. In [26] it was observed that determining
two or more dominating sets with least intersection belongs to class NP-hard. In [23] the
authors gave a new framework called maximization of interaction make up, to produce
for a given PPI network multiple dominating sets with least size. They made use of
techniques said in [27–29] to identify the shared vertices among these two dominating
sets of least size whose elements are essential vertices to hold tightly the critical set of
the PPI network under consideration. Then, they generalized to produce k dominating
sets of least size. In [30], the authors studied another extension of the dominating set
of least size model to account for the degree heterogeneity and betweenness among
proteins. Depending on the knowhow that high-degree and high-betweenness among
proteins could act as controllers they developed a degree and betweenness centrality-
corrected dominating set of least size model. They tested both the models standard
on three different human networks that are PPI based. The results obtained by them
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Fig. 1. An instance that stimulates our attention: It describes the concept of dominating sets of
least size. It is a minimized set of proteins (encircled vertices) from which the other proteins can
be approached in one hop. Four distinct dominating sets of least size for the 3-dimensional cube
are shown. A) {1,7}, B) {4,6}, C) {2,8}, D) {3,5}.

showed that centrality-corrected dominating set of least size proteins guessed by three
optimization methods are the same closely; but the overlap among dominating set of
least size proteins guessed by three optimization methods is quite insignificant. So it
is evident that such results means the high-degree/high-betweenness proteins deems a
vital part in controlling the said network.

2 Dominating Sets of Least Size

Denote a PPI network by a graph G = (V, E), where V is the set of n vertices and E is
the set of edges. Defined by an adjacency matrix A = (aij) with aij = 1 if there exists an
interaction between proteins i and j and 0 in the case of the other. We also deem aii = 1
if G has self-loop at protein i.

We call a set P ⊆ V of proteins a dominating set if each protein u ∈ V is either a
member of P or is joined by means of an edge to a member of P [8, 22]. A dominating
set of least size for a given network can be seen in Fig. 1. To determine a dominating set
P of minimum size, we assign to each protein i an integer variable yi, that assumes the
value 1 if protein i ∈ P and the value 0 if protein i /∈ P. Clearly a dominating set should
satisfy: yi + ∑

yj ≥ 1where j ∈ N(i), the set of neighbours of protein i for i = 1,…,n. By
making use of the adjacency matrix A, we can express it as

∑
Aijyj ≥ 1 for i = 1,…,n.

In view of this the task of finding a dominating set of least size is equivalent to finding
an integer valued solution of: Minimize

∑
yj j = 1,…,n subject to

∑
Aijyj ≥ 1 for i,j =

1,…,n and yj ∈ {0,1} ---(1).
As said in [20], more than one optimal solution to (1) may exist for a given PPI

network. So dominating set least size determined by various optimization techniques
may be distinct. See Fig. 1A–D). There are instances where there is only one dominating
set of least size. See Fig. 2. Figure 3 shows an instance where the degree of the vertices
differ with different dominating sets of least size.

In view of this it is hard to declare the real set to control the whole network. To offset
this one can consider degree and betweenness measures. Latest probes have demon-
strated that network attributes of central genes reveal certain topological centrality when
matched to the remaining set of proteins and moreover these measures are discriminate
in bringing out central genes [8]. It would be appropriate to select those members of
the collection of dominating sets of least size that have the highest degree and between-
ness. However, if the network has the fantastic attribute of equal degree for all vertices
then no technique could reveal which one would be better. So there are advantages and
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Fig. 2. It shows a network instance where there is only one dominating set of least size A= {1,6}
encircled.

disadvantages for a network to be regular or otherwise. To add the heterogeneity factor
in centrality one can use in the objective function of Eq. (1), the term

∑
yj j = 1 to

n to find the cardinality of the dominating set of least size, where each vertex of the
network gets equal importance. To introduce heterogeneity factor of the centrality, a
centrality-corrected form

∑
αjyj is employed as a substitute for the original term, where

α1, α2, ···, αn are positive weights associated to vertex centralities. This gives raise to a
centrality-corrected dominating set of least size as follows. Minimize

∑
αjyj j = 1,…,n

subject to
∑

Aijyj ≥ 1 for i, j= 1,…,n and yj ∈ {0,1}---(2). This approach finds proteins
with small weights as driver proteins. To determine the apt weights to recognize high-
degree and high-betweenness proteins we pick the weights that varies as the reciprocal
to the degrees and betweenness of proteins, i.e., αj = (ejcj)−β--- (3) where ej and cj
are the degree centrality and betweenness centrality of protein j, respectively; β (≥ 0)
is a parameter that controls the weights. When β = 0, the dominating set of least size
got from (2) points to the version given in (1); when β > 0, it selects high-degree and
high-betweenness proteins.

2.1 Formulae for Centrality Measures

Wedeemdegree centrality as the number among the proteins interacting partners. Degree
centrality DC means DC = deg(v) v ∈ V(G). Closeness centrality CC means CC(v) =

1∑
u∈V(G) dst(u,v)

where dst(u,v)= length of the shortest path between u and v. Betweenness

centrality BC means BC(v) = ∑ σst(v)
σst

where σst = Total no. of paths from s to t and σst
(v) = No. of those paths that pass through v. One can also find betweenness centrality
with “MatlabBGL” [31].

2.2 Subgraph Centrality Measures

The subgraph centrality measure characterizes the role of every vertex in all subgraphs
in a network. Subgraphs with lesser size are given more weight than the ones with larger
size. This attribute is apt for describing network motifs. It can be obtained mathemati-
cally from the spectrum of the adjacency matrix of the network. This measure is more
sharper to characterize the vertices in comparison to measures like degree, betweenness
centralities etc. Strong correlations are there between various measures of centrality
[32]. The vertices with huge degree provide small average distance to the other vertices
that gives rise to high correlations among vertex degree and other centrality measures.
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They also take part in huge number of subgraphs. Sc in general gives for the vertices
of huge degree the highest ranking although they differ for most of the vertices. In [32]
the authors to probe the effect of variations in the ranking of vertices in real-situations,
studied the drastic effect of proteins in S. cereviciae and demonstrated that the deletion
of a protein from the to its vertex degree. They ranked all proteins as per degree central-
ity and subgraph centrality and counted the number of vulnerable proteins in the first p
proteins of the ranking, with 10 step increase. It was noted that the ranking introduced by
subgraph centrality has more essential proteins. Sc measure considers the number of tri-
angles, squares and other subgraphs that play vital part in comprehending the evolution
of the protein–protein interaction network [33, 34].

2.3 A Mathematical Truth of Subgraph Centrality

Let G be a simple graph with p vertices. It is known that graph spectrum is the collection
of all those eigen values corresponding to the graph G’s adjacency matrix A. Suppose
that μr(i) is the number of closed walks of length r with i as start and end vertex. It is
also called as local spectral moments, can be computed as the ith diagonal entry of the
rth power of A. That is μr(i) = (Ak)ii. These closed walks are linked to the subgraphs
of the network under consideration as subgraph centrality measure. That is, the sum of
closed walks of distinct lengths with start and end vertex as i is the subgraph centrality of
i. Note that in this sum we consider all cyclic and acyclic subgraphs. Also closed walks
of lesser length has more effect on the vertex centrality than the measure with bigger
lengths. This is in accordance with the fact that real life networks are small subgraphs.
Mathematically, subgraph centrality of i is Sc = ∑∞

r=0 μr(i)
/
r!. Suppose that λ is the

main eigen value of A. Then
∑∞

r=0 μr(i)
/
r! ≤ ∑∞

r=0 λr
/
r! = eλ as for any r ∈ Z+ and

1 ≤ i ≤ n, μr(i) is at most λr, the terms of the series are non-negative and
∑

μr(i)
/
r!

converges. Suppose that xj for 1 ≤ j ≤ p is the orthonormal basis of Rp provided by
eigen vectors of A corresponding to the eigen values λj, 1 ≤ j ≤ p. If xij is the ith

component of xj then for all i ∈ V(G) the vertex set of G, the Sc can be given as Sc =
∑p

j=1

(
xij

)2
eλj --(*). This is because, the orthogonal projection of the ith unit vector of

the natural base of Rp on xj is given by prj(ei)=
(〈
ei, xj

〉/∥
∥xj

∥
∥2

)
xj = < ei, xj > xj = xij

xj. So μr(i) = (Ar)ii = 〈Arei, ei〉 =〈Ar ∑p
j=1 prj(ei),

∑p
j=1 prj(ei)〉 = ∑r

j=1 λr
j

(
xij

)2
.

Hence Sc =∑∞
r=0

(
∑p

j=1

λr
j

(
xij

)2

r!

)

. As the righthand side of Sc converges absolutely due

to proper reordering and the fact that
∑p

j=1

(
xj(i)2

∑∞
r=0 λi

j

/
r!
)

= ∑p
j=1

((
xj(i)

)2eλj

)

converges to Sc we get (*).

3 Protein-Protein Networks

In [27, 28] the authors suggested maximization of interaction convenience, to produce
multiple dominating sets of least size for a given PPI network. The notion is conceived
from the minimization of adjustment and linear step by procedures adopted in networks



10 Y. Venkataraman et al.

that are metabolic. They created two dominating sets of least size with the maximum
differences among their vertices. The shared vertices are viewed as the essential ones
that closely contain the critical set of the network. So by calling once the optimisation
procedure, the critical set is defined as the intersection among the created dominating
sets of least size. Then, it was further generalized to create k- dominating sets of least
size with large differences among all of them, where k is the number of dominating sets
of least size. Using these k- dominating sets of least size, all vertices in the PPI network
can be described and the critical set exactly defined, as the k-critical set. Further, a new
set of proteins appearing in (k – 1) dominating sets of least size was collected and this
set was identified as the (k − 1) critical set. They found that the (k – 1)-critical set is
equally as pertinent as the k-critical set and can be employed to generalize the search for
drug target proteins. The authors used this approach to find the minimum dominating
set. It can also be employed to rank the vertices in the PPI data network. Nacher and
Akutsu [20] grouped into three the vertices of the underlying graph of a PPI network,
depending on the created dominating sets of least size as critical vertices belonging
to every dominating sets of least size, intermittent vertices that belong to at least one
dominating sets of least size, and redundant vertices that do not belong to any dominating
sets of least size. In Fig. 3 we have explained this concept. It is an uphill task to find
and isolate pertinent critical proteins in the network. Figure 4 shows a network instance
with critical vertex.

Consider the graph shown in Fig. 3. Note that there are only two vertices ofmaximum
degree 6 namely 1and 10. A set P = {1} or P = {10} cannot be a dominating set. So a
dominating set P of G should contain at least two elements. Suppose we form Prevised by
adding both 1and10 and set Prevised = {1,10} then also P is not a dominating set as both
1and 10 cannot dominate 3 and 8. So we form a Prevised with one 6 degree vertex and one
five degree vertex. There are two choices for the second element of P namely 3 and 8.
So let Prevised = {1,8}. But even now 1 and 8 cannot together dominate 3. Also Prevised
cannot be {1,3} or {10,8} or {10,3} for obvious reasons. So a dominating set P of G
must contains at least three elements For the third element position in Prevised there are
five choices namely 2,4,5,6,7. So we get P1 = {1,8,2}, P2 = {1,8,4}, P3 = {1,8,5}, P4
= {1,8,6}, P5 = {1,8,7}. Similarly, if we choose P∗

revised = {3,10} there five choices for
the third element position namely 9, 11,12,13,14 and these vertices are either two degree
or three degree vertices. So we get P6 = {3,10,9}, P7 = {3,10,11}, P8 = {3,10,12}, P9
= {3,10,13}, P10 = {3,10,14}. Also two five degree vertices and one 6 degree vertex
form a dominating set. So we get two more dominating set of least size, namely P11 =
{3,8,10}, P12 = {3,8,1}. Thus these are only 12 dominating set of least size. Interesting
we find that no vertex in G is a critical vertex.

Now, dst(1,1) = 0, dst(2,1) = 1, dst(3,1) = 2, dst(4,1) = 1, dst(5,1) = 1, dst(6,1) =
1, dst(7,1) = 1, dst(8,1) = 3, dst(9,1) = 2, dst(10,1) = 1, dst(11,1) = 2, dst(12,1) = 2,
dst(13,1) = 2, dst(14,1) = 2. So CC(1) = 1/21 = 0.047. σ3,1 = {3 4 1; 3 5 1; 3 6 1; 3 7
1; 3 2 1} and σst (4) = 1. So BC(4) = ∑ σst(4)

σst
= 1

5 = 0.2 (Table 1).
Consider the network graph G in Fig. 4. Note that there are only two vertices of

maximum degree 5 in G namely 3 and 10. A minimum dominating set P of G should
therefore contain either 3 or10. Suppose P = {3} then it cannot dominate 1, 8 to14.
By Symmetry P = {10} also cannot dominates 8, 1 to 7. This implies a dominating
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Fig. 3. It shows a network instance G where the vertices have different degree and with different
dominating sets at least size. The dominating sets are {3,9,10}, {3,10,11}, {3,10,12}, {3,10,13},
{3,10,14}, {1,2,8}, {1,4,8}, {1,5,8}, {1,6,8}, {1,7,8}, {1,3,8}, {3,8,10}. Interestingly, the network
has no critical vertices, 1,3, and 8 are the Intermittent vertices and 2,4,5,6,7,9,10,11,12,13,14 are
the redundant vertices.

Table 1. It shows the degree centrality, closeness centrality and betweenness centrality compu-
tations of a network- graph shown in Fig. 3.

vertex DC CC BC

1 6 0.047 1

2 3 0.03 0.2

3 5 0.028 0.5

4 3 0.03 0.2

5 3 0.03 0.2

6 2 0.03 0.2

7 3 0.03 0.2

8 5 0.028 0.5

9 3 0.03 0.2

10 6 0.047 1

11 3 0.03 0.2

12 3 0.03 0.2

13 2 0.03 0.2

14 3 0.03 0.2

set P of G must contain at least two elements. As we are looking for a dominating set
with minimum cardinality, let us build a set P with both 3 and 10. That is, Prevised =
{3,10}. But then even now P falls of being a dominating set as they both do not dominate
8. Hence a dominating set P of G must have at least three elements. Now the obvious
choices for the third element of Prevised are 8, 9, 11,12,14. Hence there are five different
dominating sets P1 = {3,10,8} P2 = {3,10,9}, P3 = {3,10,11}, P4 = {3,10,12}, P1 =
{3,10,14}. These are the only dominating sets of least size for G. Clearly we find u4 and
u

′
4 in all dominating sets of least size. Therefore 3 and 10 are critical vertices. However
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Fig. 4. It shows an instance of a network-graph G with critical vertex. This graph is a subgraph
of the graph shown in Fig. 3 by omitting the edges (1,6) and (8,13).

we do not find an intermittent vertex for this network. The remaining left over vertices
of G are dubbed as redundant vertices.

Researchers try hard to decrease the cost factor associated with the computation in
recognizing and isolating the above said three types of proteins as the already available
strategies determine such proteins after p repetitions of a specific procedure where p is
the PPI network. Also the new sets we intend to find should have distinct criticalness
degrees and the dominating set of least should be filled with the highest number of
targeted proteins and provision for validation of notion of the dominating set of least size
powered with the necessary genes and biological functions. In [35] the authors discussed
three stages solution for the same. At the initial stage the data set is refined through
apt data pre-processing methods that includes data collection, selection of protein, and
implementation through graph representation. The next stage concerns with apt model
selection from the two very distinct dominating sets of least size, the iterative way of
building dominating sets of least size, and the user-friendly dominating sets of least size
model. Finally stage deals with analysis and interpretation of the derived results. Such
results spell out various dominating sets of least size produced under distinct criteria to
be employed for finding the three different types of proteins such as critical, intermittent
and redundant.

4 Conclusion

While giving a brief about the importance of PPI network and its functions, we have high-
lighted the pertinence of computing the dominating sets of least size with illustrations
and explained various types of proteins classification like critical, intermittent and redun-
dant in such dominating sets to facilitate certain biological process involving interaction
of proteins. We also briefed about certain centrality measures such as degree central-
ity, betweenness centrality and subgraph centrality and computed the same for certain
network graphs. We also pointed a mathematical truth related to subgraph centrality.
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