
Evaluating Generalizability of Deep Learning
Models Using Indian-COVID-19 CT Dataset

S. Suba1(B) , Nita Parekh1 , Ramesh Loganathan1, Vikram Pudi1 ,
and Chinnababu Sunkavalli2

1 International Institute of Information Technology, Gachibowli, Hyderabad 500032, India
suba.s@research.iiit.ac.in, {nita,ramesh.loganathan,

vikram}@iiit.ac.in
2 Grace Cancer Foundation, Hyderabad, India
chinna@gracecancerfoundation.org

Abstract. Computer tomography (CT) have been routinely used for the diagnosis
of lung diseases and recently, during the pandemic, for detecting the infectivity
and severity of COVID-19 disease. One of the major concerns in using machine
learning (ML) approaches for automatic processing of CT scan images in clinical
setting is that these methods are trained on limited and biased subsets of publicly
available COVID-19 data. This has raised concerns regarding the generalizabil-
ity of these models on external datasets, not seen by the model during training.
To address some of these issues, in this work CT scan images from confirmed
COVID-19 data obtained from one of the largest public repositories, COVIDx CT
2A were used for training and internal validation of machine learning models.
For the external validation we generated Indian-COVID-19 CT dataset, an open-
source repository containing 3D CT volumes and 12096 chest CT images from
288 COVID-19 patients from India. Comparative performance evaluation of four
state-of-the-art machine learning models, viz., a lightweight convolutional neural
network (CNN), and three other CNN based deep learning (DL) models such as
VGG-16, ResNet-50 and Inception-v3 in classifying CT images into three classes,
viz., normal, non-covid pneumonia, and COVID-19 is carried out on these two
datasets. Our analysis showed that the performance of all the models is compara-
ble on the hold-out COVIDx CT 2A test set with 90%–99% accuracies (96% for
CNN), while on the external Indian-COVID-19 CT dataset a drop in the perfor-
mance is observed for all the models (8%–19%). The traditional machine learning
model, CNN performed the best on the external dataset (accuracy 88%) in com-
parison to the deep learning models, indicating that a lightweight CNN is better
generalizable on unseen data. The data and code are made available at https://git
hub.com/aleesuss/c19.

Keywords: Convolutional Neural Network · Computed Tomography Scans ·
COVID-19 · Deep Learning

1 Introduction

During the COVID-19 pandemic, we have seen healthcare systems of even the devel-
oped countries to be severely affected. And, an urgent need for quick and reliable tool for
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screening, detection, and monitoring of the disease was strongly felt. Though RT-PCR
is the method of choice in the detection of COVID-19, several studies have shown that
Computed tomography (CT) scans can be sensitive in the early stages of the disease
diagnosis and/or complement RT-PCR with high sensitivity and also have been used as
primary tools in places where RT-PCR tests were not available [1–3]. This led to numer-
ous automated diagnostic solutions based on machine learning approaches proposed by
researchers worldwide to assist the physicians in CT image analysis. Though deep learn-
ing (DL) models have been very reliable in many medical image data applications, these
have not been very successful in the diagnosis of COVID-19 in clinical settings. Some
major flaws in the methodology and/or underlying biases that have limited the applica-
bility of these methods in a real clinical scenario has been assessed by Roberts et al. in a
recent review [4]. One of the major issues highlighted by the authors has been small and
biased datasets used for developing and training the models. Further, an inherent bias in
the publicly available datasets due to collating data from different sources, authenticity
of the contributors, lack of clarity in labels as COVID-19 is not easy to diagnose, use of
subsets of the original datasets without specifying the selection criteria, etc., has been
pointed out as important factors in the non-reproducibility of results. Also, differences
in demographics of COVID-19 cohort and the control groups, e.g., use of pediatric
patients as control groups, using only internal hold-out sets for testing, developing and
testing not carried out hand-in-hand with the radiologists have raised questions about the
applicability of these models to the clinical setting. To address this problem, large CT
image datasets covering different patient demographics are in high demand and efforts
of the group led by COVID-Net CT team is commendable [5]. For deploying a model in
clinical setting two important requirements are whether it is lightweight and is it reliable
and generalizable. In this work, we attempt to address these objectives while taking into
consideration the issues raised by Roberts et al. [4]. First, we have chosen a sufficiently
large and reliable dataset, COVIDx CT 2A for training. This considers only confirmed
COVID-19 patient samples, from across Asian and European countries collected using
a variety of CT equipment types, protocols and levels of validation. Median age of the
patients in this dataset is 51 as reported in [5]. The partition of the data into training,
validation and test sets were done at patient level and hence a patient is considered only
in single partition. Scaling of the images were done to 224x224x3 and this was shown to
give good performance for chest radiograph classification [6]. Hence, image resolution
of 224x224x3 was used in our study. Next, for testing the generalizability of machine
learning models we have generated a curated dataset of Indian patients, Indian COVID-
CT dataset. Finally, to identify the simplest model with reliable sensitivity and accuracy,
we considered four state-of-the-art machine models with different architectures, from a
lightweight CNN with very few parameters (~2M) to very deep learning models with
more and more layers and complex architecture, ranging from VGG-16 [5] to ResNet-
50 [3] and Inception-v3 [4] with millions of parameters (23M–138M). For performance
evaluation, first training and validation of all the models is carried out on COVIDx CT
dataset [5] and testing is carried out on two datasets, viz., the hold-out test set of COVIDx
CT, and the external cohort, Indian-COVID-19 CT. To summarize, the two major contri-
butions of this work are: (i) provide COVID-19 CT scan image dataset of Indian patients
and show the usefulness of such external datasets in developing reliable AI/ML-based
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models for the diagnosis of COVID-19, and (ii) show that a light-weight CNN model
is a better generalizable and reliable model compared to very deep models. This would
provide an advantage of easy deployment on small portable devices in clinical settings.

2 Related Work

It has been observed that distinct patterns are observed in chest CT scans images of
patients infected with COVID-19 compared to other bacterial/viral infections. Further,
correlation in the patterns in CT images with severity of the disease has aided inmonitor-
ing the disease progression in COVID-19 patients. Many recent studies have shown that
deep learning methods are able to capture these distinguishing patterns in CT images
with comparable or better efficiency compared to expert radiologists [7]. Large open-
source repositories of COVID-19CT scan images from heterogeneous groups of patients
are in high demand for the development of AI-based data driven solutions. One of the
largest publicly available datasets, COVIDx CT [5], has 2D CT scan images of normal,
COVID-19 and pneumonia patients collated from 17 countries (194,922 images/ 3745
patients). Numerous population-specific datasets have been proposed, a dataset of 2D
images of CT scans from 282 normal and 95 COVID-19 patients from Iran [8], and other
two repositories of only images from COVID-19 patients - 3D CT scans of 81 Covid
positive patients from Italy [9] and COVID19-CT-dataset [10] with 1013 Covid positive
patients from Iran.

COVIDNet-CT model is one of the earliest methods proposed for classifying CT
scans into Normal, non-Covid Pneumonia and COVID-19 on COVIDx CT test set with
an accuracy of 99.1% [5]. It uses a machine-driven design exploration strategy for
building themodelwithResNet architecture pre-trainedon ImageNet [11].Another study
for distinguishing COVID-19 from viral pneumonia uses a pre-trained InceptionNet
architecture to convert image features into a one-dimensional vector which is fed as
input to a two-layered fully connected network [12]. Performance of the binary classifier
was evaluated on an external validation dataset and an accuracy of 79.3%, specificity of
0.83, and sensitivity of 0.67was reported. Performance of 10 different CNNarchitectures
for binary classification of COVID-19 and non-COVID-19 CTs was carried out on CT
images annotated by radiologists and patches of infected areas were considered for
analysis in [7]. ResNet-101 resulted in a sensitivity of 100% on hold-out validation set
in this study. Numerous studies have developed models for segmenting the CTs into lung
field and lesions with abnormalities and using the annotated ‘regions’ for classification
[13, 14]. These methods claim to provide better generalizability and interoperability
during clinical implementations compared to original scans that are noisy and exhibit
variations across different scanning devices. Studies integrating image data with other
clinical data such as age, sex, exposure history, symptoms, and laboratory tests to detect
COVID-19 have also been developed [14, 15]. The major limitation of some of these
studies is that these are carried out on hold-out test sets and majority of them were on
small datasets as data was not available in the early stages of pandemic. In some recent
studies external datasets, not seen by the model during the training, have been used to
evaluate the generalizability of deep learning models [16–18]. A general observation
in these studies is that very deep layered models generally perform poorly on external
datasets, probably due to overfitting.
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Table 1. Details of the CT scanner machine used to acquire Indian-COVID-19 CT dataset

Key Value

Manufacturer SIEMENS

Modality CT

Manufacturer’s Model Name Emotion 16

Device Serial Number 39306

Software Version(s) Syngo CT 2014A

3 Dataset Construction

A total of 288 COVID-19 patient data collected during the period April–September 2020
was obtained fromGandhi Hospital, Hyderabad, India. The manufacturer’s details of the
CT scanner used for image acquisition are given in Table 1. For analysis 42 slices that
contained broad and clear lungwindowwithout any other interfering organs were chosen
(in the range ~ 40 to 300 of dicom series) to reduce the dataset size. Each CT volumewas
then converted to png format. The images are plain CT scans captured with no contrast
and slice thickness of the images are 0.6, 1.5, and 5 mm. Age of patients is in the range
of 17–79 years (mean age ~45 yrs). The 3D volumes of the data in dicom format along
with 2D images in png format and instructions on how to access it is available at https://
github.com/aleesuss/c19. To the best of our knowledge, there is no publicly available
CT image dataset from the Indian population and the proposed Indian-COVID-19-CT
dataset is one of its kind from India.

For training the publicly available benchmark dataset, COVIDx CT, is used. It
includes CT images of normal, pneumonia, and COVID-19 classes, collated from mul-
tiple data sources worldwide. It consists of 194922 CT images from 3745 patients of
which 94,548 images are from 2299 COVID-19 patients. It has been split into 60-20-20
ratio for training, validation and testing the models, and summarized in Table 2. The

Table 2. Number of images (patients) in the three classes in COVIDxCT dataset used for training,
validation and testing are given.Details of external test set, Indian-COVID-CT, is also given. *Both
test sets in hold out and external datasets used same Normal and Pneumonia images.

Type Normal Pneumonia Covid Total

COVIDx CT dataset:

Train 35996 (321) 25496 (558) 82286 (1958) 143778 (2837)

Validation 11842 (126) 7400 (190) 6244 (166) 25486 (482)

Test 12245 (126) 7395 (125) 6018 (175) 25658 (426)

Indian-COVID-CT dataset:

Test 12245 (126)* 7395 (125)* 12,096 (288) 12,096 (288)

https://github.com/aleesuss/c19
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Indian-COVID-19 CT dataset, is used as an external test set of Covid class for evaluating
the generalizability of the various DL architectures.

4 Model Architecture

Convolutional Neural Network models are very popularly used for image classification
tasks and many CNN based DLmodels were proposed to improve on the performance of
earlier models. VGG-16 was proposed in 2014, followed by ResNet50 and Inception-v3
in 2016, the details of each are given. Figure 1 gives an overview of CNN and the CNN
based DL models used in this study.

4.1 CNN

The architecture of the CCN model used in this study to classify chest CTs into three
classes, viz., normal, non-covid pneumonia and COVID-19, is given in Fig. 1 It consists

Fig. 1. Representative architectures of the models used in this paper.
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of 6 convolutional blocks with each block comprising two convolution layers, with the
convolution operation represented by the expression:

G[m, n] = (f ∗ h)[m, n] = �j�kh
[
j, k

]
f
[
m − j, n − k

]
(1)

where f represents the input image, h, the kernel function, and m × n is the size of the
convolution matrix. The first block has 16 filters followed by 32, 64, 128, 256, and 512
filters in successive blocks. All kernels are of size 3×3 and a zero padding is used tomake
the input and output width and height dimensions the same. A ‘maxpool’ layer is added
after first convolution block and a ‘batch normalization’ followed by ‘maxpool’ layer
added for the remaining five convolutional blocks. ‘Maxpool’ layer is used for down
sampling the resultant matrices from the convolution operation by selecting the most
dominant pixel out of a set of neighboring pixels defined by the size m × n. A dropout
layer is added after fourth, fifth and sixth convolutional blocks to avoid overfitting. The
convolutional blocks are followed by dense layers with 512, 128, 64 and 3 nodes in
each layer. Dropout layers are also used after each dense layer. The output layer has a
‘softmax’ activation function, f (z) = 1/(1 + e−z), and previous layers of convolution
and dense layers used ‘Relu’ function, f (z) = max(0, z), where z is the input signal.
The ‘softmax’ function in the output layer computes the probability distribution of the
output classes as ok = exk/

∑n
1 e

xn, where x is input vector and o is output vector and
sum of all outputs is equal to 1. The loss function used was categorical cross entropy.
The input image dimensions are 224× 224× 3 and batch size of 8 was chosen based on
available computational resources. To find optimal number of convolution blocks, two
experimentswere performed using 5&6-layeredCNNarchitectures, repeated 3 times for
each case and averaged results are given in Table 3. Though training accuracy increased
from 97.8 to 99, validation accuracy dipped from 97.25 to 95.67, and test accuracy, 96.3,
was comparable. This indicates the model may have started overfitting and we did not
further increase the number of blocks. Since adding a dense layer increased the number
of parameters from 2.9M to 3.7M for the 6-layered architecture and the training accuracy
was quite good (~99), no further changes were made in the number of dense layers. For
choosing optimal number of epochs, 4 experiments were performed with 10, 18, 20, and
30 epochs for the 6-layered CNN model and results are given in Table 4. To select best
validated model, after each epoch during the training phase, performance of the model
was evaluated on validation set and weights of the model were saved if accuracy of the
model improved. After the training phase, weights of the model that gave best accuracy
across all the epochs were considered in the testing phase. Number of nodes in first
dense layer were chosen based on number of filters in previous Conv block and halved
in subsequent dense layers. Number of dropout layers was chosen empirically [19–21].

All the DL models used in this study were pre-made and taken from ‘Keras
Applications’ library [22].

4.2 VGG-16

TheVGG-16 architecture had five blocks of convolutional layers with kernels of 3x3 size
followed by three fully-connected layers. A max pool layer with 2 × 2 kernels is used
after each block. The fully connected layers of VGG-16 were removed and a customized
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Table 3. Average accuracies from three experimental runs with 5 and 6 layered CNN models on
COVIDx CT dataset for 10 epochs.

No. of Layers Training Validation Testing

5 97.8 97.25 96.1

6 99.0 95.67 96.3

Table 4. Accuracies of the experiments repeated with COVIDx–CT dataset for 10, 18, 20 and 30
epochs for 6 layered CNN model.

No. of Epochs Training Validation Testing

10 99.0 95.0 95.0

18 99.44 96.11 95.97

20 99.82 96.11 96.68

30 99.73 96.20 96.78

fully connected block with four layers each having 512, 128, 64 and 3 nodes in each
layer was added. Relu activation function was used for all fully connected layers except
for the last layer where ‘softmax’ function was used to classify images into 3 classes.

4.3 ResNet50

TheResNet50 architecture had 16 convolution blocks with 3 convolution layers each fol-
lowed by one layer of fully connected nodes. The shortcut connectionswith the ‘Residual
blocks’ are used for improving efficiency by overcoming the ‘vanishing gradient’ prob-
lem in deep neural networks. The fully connected layer in ResNet50 was also replaced
with a fully connected layer with 3 nodes with ‘softmax’ activation function.

4.4 Inception-V3

The Inception-v3 architecture was a 42 layered deep network with 3 inception modules
separated by grid size reduction modules for feature map downsizing. Each inception
module consists of multiple convolution layers. In this model also the same fully con-
nected module as in VGG-16 was used. VGG-16, ResNet50 and Inception-v3 were
pre-trained using ImageNet before training using COVIDx CT dataset.

5 Implementation

All the models were trained on 4 GeForce GTX 1080 Ti GPUs. The time taken for
training the CNN model was ~ 62 h for 30 epochs, the DL models took from 17 h to
4 days for completing 3 epochs. The optimizer used was Adam with an initial learning
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Fig. 2. Accuracy and Loss Curves for the CNN model is shown.

rate set to 5e-5 for CNN and 0.0001 for other models. It was set to reduce by 0.3 if
no improvement in validation loss was observed for 2 epochs and decay rate of first
and second moments were set to the default values of 0.9 and 0.999, respectively. The
cyclic learning rate policy proposed in [23] was followed to decide the learning rate
for CNN. First the learning rate was set randomly to the default value of 0.001, then
reduced manually in each trial to identify optimal learning rate. For default value of
0.001, accuracy oscillated between 0.46 and 0.28. Heuristically reducing learning rate
to 5e-3 also did not result in any significant improvement. Further reducing to 5e-5,
model performance improved to 0.97, but dropped on further reducing learning rate to
5e-6 in next trial. So, learning rate was fixed at 5e-5. Our analysis revealed that the lower
and upper bounds of the optimal learning rate for this system lies between 5e-3 and 5e-6.
The versions of Python, Tensorflow and other libraries used in the implementation are
given in github link, https://github.com/aleesuss/c19.

6 Results

First, we present performance evaluation of the 5models on the hold-out test of COVIDx
CT dataset. The accuracy and loss curves for the CNN model is given in Fig. 2 and the
evaluation metrics, viz., Precision, Recall, F1-score and accuracy of all the models are
summarized in Table 5. The CNN model was trained for 30 epochs on COVIDx CT
dataset and training and validation accuracies converged to 0.99 and 0.96 respectively.
It is observed that both the accuracy and loss curves plateau after 7 epochs for the CNN
model, indicating the model has stabilized without over-fitting. It is observed that the
three DL models achieved high accuracy by 3 epochs. From Table 5 it is observed that
ResNet-50 outperformed with precision and recall of (0.98, 0.98) for the Covid class,
followed by the CNNmodel with comparable values (0.96, 0.94), VGG-16 (0.89, 0.89),
Inception-v3 (0.82, 0.84). It is worth noting that the CNN model used much fewer
training parameters, ~2M, compared to the DL models: ResNet-50 - 23M, Inception-v3
- 24M, VGG-16 - 138M.

To assess the generalizability of the models considered, we next evaluated their
performance on the external cohort, Indian-COVID-19 CT dataset and the results are
summarized in Fig. 3. For this experiment, the normal and pneumonia CT images were
taken from COVIDx CT test set (see Table 1). A consistent drop in the performance of

https://github.com/aleesuss/c19
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Table 5. Comparative performance of the four machine learning models on COVIDx CT test
data.

Model Class Precision Recall F1-score Accuracy

CNN Covid 0.96 0.94 0.95 96%

Normal 0.96 0.98 0.97

Pneumonia 0.99 0.97 0.98

VGG-16 Covid 0.89 0.89 0.89 94%

Normal 0.96 0.96 0.96

Pneumonia 0.94 0.94 0.94

ResNet50 Covid 0.98 0.98 0.98 99%

Normal 0.99 0.99 0.99

Pneumonia 0.99 1.00 0.99

Inception-v3 Covid 0.82 0.84 0.83 90%

Normal 0.96 0.95 0.95

Pneumonia 0.89 0.88 0.88

Table 6. Confusion Matrix on testing CNN model’s performance on Indian-COVID-19 CT data.

Covid-19 Normal Pneumonia

Covid-19 9092 2334 670

Normal 264 11954 27

Pneumonia 88 302 7005

all the four models is observed for the COVID class. This is not surprising as this is an
external cohort, not seen by the model during training. The CNN model outperformed
with an accuracy of 0.88, while that of ResNet-50 dropped to 0.81. From the confusion
matrix for CNN model given in Table 6, we observe that though majority of COVID-19
cases were correctly identified by the model resulting in high precision (0.96), while a
significant number of caseswere predicted asNormal, resulting in low recall value (0.75).
The recall values for the COVID class for the three DLmodels are much lower as seen in
Fig. 3. The 95% confidence intervals of the precision and recall values were calculated
and were found to be within [1.5, 1.3] for all the classes. These results show that the
lightweight CNN model with fewer parameters generalized much better compared to
the very deep models.
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Fig. 3. Precision and Recall values of the four ML models on the holdout set of COVIDx CT
dataset (Precision 1 and Recall 1) and external Indian-COVID-19 CT (Precision 2 and Recall 2)
for the COVID class is shown. Normal and pneumonia images were taken from COVIDx CT.
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7 Discussion

One of the major contributions of this work is the construction of curated dataset of CT
scan images of COVID-19 from India. Population-specific datasets are highly desired
for assessing the generalizability of deep learning (DL) models. These can also be used
in automated generation of datasets using Generative Adversarial Networks (GANs) to
address the problem of limited data for training DL models [24]. Other applications of
the Indian-COVID-19 CT dataset include training ML algorithms for the detection of
lung abnormalities in general, and in developing applications for segmentation of lungs
and infected regions at the slice level. Slice level classification models based on the
presence or absence of “markers for infection” have been applied for detecting various
lung diseases [25]. Given the importance of this dataset, care has been taken in its
construction following the recommendations proposed in [4]. For example, all images
in this dataset are from the same scanner and confirmed through reliable sources to
include only COVID-19 positive patients. The current limitation of the dataset is that it
contains CT images from only COVID-19 patients and the data size is small.

The second objective of this work is to propose a lightweight model that can be
easily deployed on portable machines in a clinical setting. For this, performance of
a lightweight CNN model with a simple architecture is compared with three CNN-
based deep learning models. The performance of the four models is evaluated on both,
the hold-out data from COVIDx CT (used for training and validation) and on external
Indian COVID-CT dataset (not seen by the models during training phase) to show the
generalizability of these models.

The reason for proposing a lightweight CNN model for the detection of COVID-19
is that the imaging patterns found in CT images of COVID-19 patients can basically be
associatedwith three patterns of pneumonia findings, viz., peripheral, multifocal and dif-
fuse patterns [26]. Salehi et al. reports the frequencies of the different CT abnormalities
seen in COVID-19 patients as follows: ground glass opacification (GGO) (88.0%), bilat-
eral involvement (87.5%), peripheral distribution (76.0%), and multilobar (more than
one lobe) involvement (78.8%) and consolidation (31.8%) [27]. From these findings it
could be deduced that there are only a few characteristic features of COVID-19 such as
GGOs, consolidations and in severe cases, crazy paving patterns, typically distributed
peripherally in multiple lobes of the lungs. Also, COVID-19 pneumonia presentation is
very different from pneumonia of bacterial and other origins, with an absence of cen-
trilobular nodules and no mucoid impactions in the absence of superinfection [28]. Not
much variation in the CT images of COVID-19 pneumonia patients which are easily
captured by a simple CNN architecture, and a very deep learning model may not be
necessary as there may be a possibility of overfitting with DL models. As seen in Table
5 and Fig. 3, poorer performance of all the three DL models on the external dataset
confirms that a CNN model with fewer parameters may suffice for this task. Further, its
performance on unseen data suggests it to be a good generalizable model and reliable
in a clinical setting. We observe that though ResNet-50 exhibited best performance on
COVIDx CT test set, followed by our CNN model, its performance reduced with a very
low recall value of 0.22, though precision was good at 0.92. This shows that learning
using very deep models on limited datasets can lead to overfitting and make it less gen-
eralizable. This is in agreement with similar observations made in other studies [16, 18].
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In [16], Nguyen et.al examined the generalizability of nine different DL models using
data from external dataset other than the one used for training and reported fall of per-
formances of models close to an AUC of 0.5 when tested on external datasets. Wynants
et al. [18] reports high bias associated with COVID-19 prediction models using predic-
tionmodel risk of bias assessment tool (PROBAST). This does not imply that the models
were not trained properly, but rather due to other factors such as the external dataset may
have different patient demographics, data collection protocols across different labs, etc.
leading to variation in the training and external test sets. Thus, building a large collection
of CT image datasets from different population groups would be of great help in model
development along with continuous learning.

Further, from the confusionmatrix we observe that for all the models, many COVID-
19 images were classified as normal and resulted in lower recall values for the COVID
class in Fig. 3. One possible reason for this could be variation in severity of the dis-
ease across patients, and so some of the chest CT images may not exhibit any of the
characteristic features of COVID-19 such as ground-glass opacities, consolidation and
crazy lines. Many patients do not elicit the pulmonary inflammatory response needed
to produce the chest CT findings of lung injury [29]. Since negative CT result does not
rule out COVID-19 infection, this has led to the concern of usage of CT scans for the
detection of COVID-19 by most radiological societies to avoid unnecessary exposure to
radiation. However, since CT scans are very sensitive in distinguishing between differ-
ent types of pneumonia (bacterial, viral, COVID) and given that CT scans have fewer
false negatives (~9%) [30] and give immediate results compared to RT-PCR, these have
proven very useful during the pandemic to assess the severity of the disease in patients.
Thus, under such scenario, generalizable automated diagnosis tools for detecting the
cause of pneumonia using machine learning models would be an asset for doctors in
screening the patients.
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