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Abstract. Lipase is a biocatalyst that hydrolyses triglycerides (fats) into their
component fatty acid and glycerol molecules to produce biodiesel. Due to the
benignworking conditions, enzymatic techniques enable straightforward biodiesel
purification processes with significantly lower energy requirements and high-rate
conversions. The effect of enzyme-immobilized concentration on biodiesel pro-
duction was investigated in this study. The quality of biodiesel was evaluated
based on SNI 7182:2015 standard. The result indicated that 1.9% (w/w) lipase
concentration was the optimum condition for producing biodiesel. In conclusion,
the immobilized lipase using activated carbon can be used for biodiesel production
from waste cooking oil for sustainable green chemistry.
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1 Introduction

The need for energy will keep rising as technology and population growth accelerate.
If the output is estimated to be 852 thousand barrels per day, Indonesia’s oil reserves
will only last 12 years at their current level at the end of 2021 [1]. One of the potential
energy issues that can be used to replace diesel/diesel fuel is biodiesel. An alternative
fuel derived from renewable natural resources, such as plant and animal oils, is called
biodiesel oil [2]. Alternative fuels that can be used in place of diesel fuel are sourced
from renewable resources. The most common type of oil consumed by Indonesians is
diesel fuel.

Biodiesel is more environmentally friendly because biodiesel produces exhaust gas
emissions that are significantly better than those of diesel or diesel, including the absence
of sulphur, low smoke number, and cetane number ranging from 57 to 62 so that com-
bustion efficiency is better burned entirely [3]. Cooking oil is manufactured on a big
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scale from palm oil and is derived from plant or animal fats that are purified in liquid
form at room temperature and are typically used for frying food [4]. Because cooking
oil contains many unsaturated fatty acids, it is easily destroyed during the deep-frying
process since the oil is heated continually at high temperatures. The unsaturated layer is
typically removed twice during the filtering process of palm oil, increasing the amount
of unsaturated fatty acids.

One of the fundamental necessities met by the Indonesian people is cooking oil, with
annual consumption levels exceeding 2.5 million tons or more than 12 kg per person. In
Indonesia, palm oil is used to make more than 70% of the most common cooking oil [5].
Because palm cooking oil has undergone numerous treatments to remove contaminants,
fatty acids, and solid fats, using it as biodiesel is technically more profitable. One alter-
native to the usage of wasted cooking oil has to be researched, specifically the process
of turning used cooking oil into biodiesel [6]. Because cooking oil is utilized at every
socioeconomic level, from the lowest to the highest, and in both homes and hotels, it is
one of the potential rawmaterials. Cooking oil is readily degraded during frying because
it contains many unsaturated fatty acids and is heated continually at high temperatures
[7]. The nature or composition of the biodiesel produced from leftover cooking oil is the
issue. Because leftover cooking oil has a high iodine number, viscosity, and flash point
than diesel fuel, it must have its two qualities decreased to make biodiesel suitable for
use as fuel [8].

Using triglycerides and alcohol as starting materials, lipase, a hydrolytic enzyme
with esterase abilities can be employed to generate alkyl esters [9]. On the other hand,
the lipase enzyme is frequently utilized as a catalyst in biodiesel production. Because
lipase possesses a heterogeneous catalyst, it may selectively focus the reaction on the
product, making separation simple. Even though they have benefits, enzymes are expen-
sive and cannot be used repeatedly since they are soluble in the liquid medium, which
is a drawback of enzyme catalysts [10]. However, the enzyme immobilization method
can solve this issue. Enzyme immobilization (support) is the process of combining an
enzyme with a solid so that it can be utilized repeatedly and continuously [11].

An amorphous substance known as “activated charcoal” is created from carbon
or charcoal containing materials that have undergone particular processing to increase
their adsorption capacity. Depending on the pore capacity and surface area, activated
charcoal has the ability to adsorb some gases and chemicals selectively [12]. Activated
charcoal absorbs 25 to 100% of its weight in various substances. All carbon-containing
substances, whether from plants, animals, or mining resources, can be converted into
activated charcoal [13]. Various types of wood, sawdust, rice husks, coconut shells,
animal bones and shells, coal, and other materials are among them [14].

2 Material and Methods

2.1 Materials

Waste cooking oil was palm oil that was used for cooking. FFA content has been analyzed
through this experiment. Eversa® Transform 2.0 with the lipase activity, 100 LCLU-
SL/g, was purchased from Nanobio Laboratory (Indonesia). All chemical reagents were
purchased from Sumber Kimia (Indonesia).
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2.2 Immobilization of Lipase on Activated Carbon

Crushed activated charcoal is used to make powder. Then, 100 cc of 3 M NaCl and
30 g of activated charcoal were combined and agitated at 90 °C for 2 h. The activated
charcoal is then filtered, cleaned with distilled water, and allowed to cool before being
dried for 2 h at 105 °C. Additionally, 30 g of the enzyme was immobilized in 270 mL of
pH 7 phosphate buffer after being dissolved in activated charcoal. Following thorough
mixing, 30 mL of phosphate buffer and 30 g of activated charcoal powder were added.
The procedure takes 6 h to complete.

2.3 Biodiesel Production from Waste Cooking Oil Using Immobilized Lipase

Transesterification reaction was carried out in a 250 mL Erlenmeyer. Methanol is com-
bined with 50 g of waste cooking oil, with oil to methanol mole ratio of 1:5. The reaction
was then supplemented with immobilized lipase at concentrations of 1%, 2%, 3%, 4%,
and 5%, and shaken at 40 °C for 24 h while being swirled at a speed of 300–450 rpm.

2.4 Analytical Method

Various tests and analyses were conducted to describe the biodiesel’s physic-chemical
characteristics. According to SNI 7182: 2015 standards, the viscosity, density, iodine,
saponification, cetane number, and component composition of biodiesel are tested and
analyzed.

3 Results and Discussions

3.1 Biodiesel Production

This study used activated charcoal and an immobilized lipase enzyme catalyst to create
biodiesel products from wasted cooking oil. Two layers, one containing immobilized
enzymes and the other containing biodiesel products, were created following the 24 h
production of biodiesel employing an immobilized lipase enzyme catalyst and activated
charcoal. Biodiesel was then used to separate the immobilized enzyme created once
more after the procedure. The biodiesel’s weight after being separated from the catalyst
and glycerol is measured. After that, the computation is done to get the yield percentage.

Figure 1 shows that the larger the catalyst percentage, the lower the yield for biodiesel
as an enzyme immobilized catalyst and activated charcoal, with 1% immobilized enzyme
producing the maximum yield. Similar outcomes were also attained by [15]. They found
that excessive substrate concentrations can produce substrate inhibitors and that too
much catalyst can make the reactant mixture too viscous and delay churning. Higher
levelsmay increase glycerol production, reducing the amount of biodiesel produced [16].
The average yield generated when using 1% catalyst is 80.65%. This amount exceeds
the 65.8% yield of used cooking oil biodiesel produced with an H2SO4 catalyst [17].
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Fig. 1. Biodiesel production by various weight of immobilized lipase

3.2 Characterization of Biodiesel

Biodiesel was characterized according to SNI 7182:2015 standard. Table 1 depicts the
fuel properties of optimized produced biodiesel. The result showed that all of the prop-
erties were in the acceptable range of the standard. The density of the biodiesel produced
was 870–890 kg/m3 from the range of standard in 850–890 kg/m3. The high density of
biodiesel had an impact on decreasing the combustion ability in the combustion process
that occurred. In the terms of viscosity, saponification, iodine value, and cetane number,
it showed that using 1% of immobilized enzyme, the parameter characterization was
acceptable according to SNI 7182:2015 standard.

The fatty acid methyl ester content of biodiesel was characterized by using GC-
MS. This analysis used to determine the content of the chemical compounds. Table 2
shows the synthesis composition of biodiesel in this study. Octadecadienoic acid and
9-octadecanoic acid are the highest composition of methyl ester for this biodiesel with
the percentage of content, 29.94% and 20.67%. Busyairi et al. [18], also found that
octadecadienoic acid methyl ester with levels of 29.65 and octadecanoic acid methyl
ester 28.11%.

The fatty acidmethyl ester is one of the important factors that determine the suitability
of raw materials for use in fuel production [19]. The results in Table 4.4 show that most
ester compounds are monounsaturated fatty compounds, namely methyl octadecanoic.
Methyl octadecanoic is a very good compound and tends to be more stable for biodiesel
because methyl octadecanoic does not have much affinity for oxygen which can cause
polymerization and peroxidation [20].

3.3 Reutilization of the Immobilized Lipase for Biodiesel Synthesis

This study conducted a strategy for reusing the immobilized lipase after transesterifica-
tion. After the reactionwas done, biodiesel and the immobilized lipasewas separated and
was reused to the next synthesis. The reaction was conducted as the same experimental
methods as the new catalyst. The result showed that the optimum yield for the reused
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Table 1. Characterization of biodiesel production

Catalyst (%
w/w)

Density
(kg/m3)

Viscosity
(mm2/s)

Yield
(%)

Saponification
value (mg
KOH/g oil)

Iodine
value (g
I2/100 g
lipid)

Cetane
number

1 912.53 61.04 88.00 116.89 54.99 813.04

2 913.87 48.18 89.00 108.75 65.14 819.94

3 920.09 38.24 83.73 400.22 64.80 827.86

4 891.67 38.60 85.47 950.05 60.32 885.11

5 922.00 39.12 72.53 701.32 53.21 112.41

Table 2. GC-MS analysis result

No Peak Area (%) Component Molecule

1 0.63 1,1- Dimetil-2-P propenyl Methyl Ester C9:16

2 0.08 Octanoic acid – Methyl Ester C9H18O2

3 0.06 Decanoic acid – Methyl Ester C11H22

4 0.80 Undecanoic acid 10 – Methyl Ester C11H22

5 0.63 1,2 Propenyl Methyl Ester C4H10O

6 0.07 Pentadecanoic Acid, 14 Methyl Ester C16:3

7 0.56 9- Hexadeconic Acid. Methyl Ester C18H36O

8 12.27 Pentadecanoic Acid, 14 Methyl Ester C16:3

9 20.67 9- 0ctadecanoic Acid, Methyl Ester C19H36O

10 0.47 Eicosanoic Acid, Methyl Ester C20H40O2

11 29.94 Octadecadienoic Acid, Methyl Ester C18:3

12 12.25 Hexadecanoic acid Methyl Ester C17:3

13 0.14 Heptadecanoic Acid, Metil Ester C17H34O

14 0.14 Heksadesimal acid Methyl Ester C18H36O

15 0.14 Hexadecanoic 14 – Methyl Ester C18H36O

16 19.31 Heksadesimal acid, Methyl Ester C17:3

Total 98.02

immobilized lipase was 82.51% with 3% catalysts as presented in Fig. 2. It is different
from the immobilized lipase that used for the first time which 1% of catalyst was enough
for the reaction. This result indicated that the activity after first batch reaction reduced
so that the biodiesel yield decreased after recycling.
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Fig. 2. Reutilization of the immobilized lipase for biodiesel synthesis

4 Conclusion

Immobilized lipase enzyme catalyst variations have an impact on the properties of the
resulting biodiesel. Except for the density characteristic of biodiesel with a catalyst
variation of 1%, 2%, and 3% because the density is too high, all manufactured biodiesel
complies with SNI 7182:2015. This study found that a 5% catalyst variation provided
the best biodiesel because all of its attributes complied with SNI 7182:2015, and the
highest cetane number was created. Octadecanoic acid methyl ester and octadecanoic
acid methyl ester, with concentrations of 29.65 and 28.11%, respectively, make up most
of the biodiesel’s chemical makeup.
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