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Abstract. The Convolution Neural Network (CNN) architecture is well-suited to
performing both detection and classification tasks on image data. The inclusion of
layers in the CNN improves its performance whilst training. Adding a lot, on the
other hand, will cause the architecture to lose or explode gradients while learn-
ing training data. To address this issue, a mechanism for inserting the residual
network between two layer blocks, ReLu activation function, and Batch Normal-
ization must be added. In this paper, we examine various past studies that used
residual networks in CNN design to validate model performance improvements.
The examination of this study’s findings reveals highly substantial outcomes for
the prediction of classification and detection tasks for picture data. We infer from
previous research findings that the as have adds a deeper layer to the CNN with-
out losing the gradient. In this paper, we examine various past studies that used
residual networks in CNN design to validate model performance improvements.
The examination of this study’s findings reveals highly substantial outcomes for
the prediction of classification and detection tasks for picture data. We infer from
previous research findings that the as have adds a deeper layer to the CNN without
losing the gradient.
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1 Introduction

CNN is a deep learning model that is quite popular for analyzing image data. In CNN,
adding an inner layer will become increasingly advantageous, but in the specific situation,
doing so will also result in a gradient explosion/vanishing when training. Loss of this
gradient will lead to poor or lower prediction results during training. To overcome this
problem, by adding a method to the CNN architecture consisting of residual network,
ReLu activation function, and Batch Normalization, the CNN will increase the inner
layer without losing or exploding its gradient during training, as in the Residual Neural
Network (resnet) architecture.

Kaiming He et al. [1] developed a type of architecture termed as Resnet that is highly
popular. Due to the state of the art in classification, detection, and segmentation tasks
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Fig. 1. Skip connection between two layer blocks forms residual network as the foundation of
the Resnet architecture [1]

at the time, it was fairly groundbreaking. A CNN architecture that has a high depth
is one of the important things in building a CNN model that has good performance.
But it that has a high depth also has problems, namely the vanishing gradient problem,
which is a situation where the gradient results studied by the model do not can reach
the first layer because it is multiplied so many times that the first layer does not receive
any gradient, or in short, this causes a CNN to be unable to learn from the calculated
error [2]. The architecture of Resnet also varies, with layers ranging from 18 to 152
and commencing at 18, 34, 50, 101, and so on [1]. The Resnet34 architecture, which
is a resnet architecture with 34 layers, is used in the study by Kamal HM et al. It was
selected because it performed well in the ILSVRC competition [1]. Training data will
be taken from the entire dataset to develop the CNN model, and validation data will
be utilized to evaluate the model’s performance. The accuracy, training and validation
losses, as well as the error matrix, will be applied to evaluate how well the system is
performing. Additionally, this statistic is employed in numerous research with CNN
[3-5]. The suggestion made at the time by Kaiming He et al. was to employ a residual
block, which is a block that appears in each layer of the CNN Resnet architecture and
serves as its foundation; an overview of this block is shown in Fig. 1.

2 Related Works

Dinis LR [7] in the stenosis object of a coronary artery is one of a few analogous works
with resnet architecture that has a detection task. This step’s goal is to identify every
stenosis that is visible in a frame and estimate its location. It is possible to approximate
this to an object detection/recognition issue where the stenosis is the object of interest
by using the annotated bounding boxes for the stenosis in the ideal interval, as shown in
Fig. 2.

This work detects stenosis of the left or right coronary artery as a result of a different
model, based on the single shot detector RetinaNet architecture was assembled as the
second stage of the framework to automatically detect stenosis location. Table 1 displays
the outcome of work [7].

Comparing Dinis LR’s method to other authors confirms its superior performance,
which achieves 0.72/0.70 recall and 0.82/0.84 precision for one detection, 0.73/0.68
recall and 0.72/0.74 precision for five detections on the RCA/LCA, respectively. It
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Table 1. Metrics for detecting stenosis in comparison to previous work.

Author IoU for one detection IoU for one detection
recall precision recall precision

LCA B 0.72 0.80 0.73 0.64
BG 0.64 0.714 0.61 0.64
NL 0.68 0.82 0.51 0.72
BGNL 0.65 0.79 0.63 0.71
Cong et al. 0.71 - - -

RCA B 0.68 0.79 0.65 0.65
BG 0.70 0.84 0.68 0.74
NL 0.65 0.81 0.56 0.68
BGNL 0.58 0.73 0.51 0.64
Cong et al. 0.60 - - -

indicates that the depth layers of RetinaNet have increased and were not the result of
gradient loss or explosion.

Next, Kaiming He et al. [1] use a residual network in CNN in their work. They
compare the performance of 18-layer and 34-layer residual nets (ResNets). The baseline
architectures are the same as the plain nets described above, with the exception that a
shortcut connection is added to each pair of 3 x 3 filters, as shown in Fig. 3. (right).
They use identity mapping for all shortcuts and zero-padding for increasing dimensions
in the first comparison on Table 2 and Fig. 4 (right). As a result, they have no additional
parameters when compared to their plain counterparts.

Table 2 and Fig. 4 provide three major observations for Kaiming et al. First, with
residual learning, the situation is reversed: the 34-layer ResNet outperforms the 18-layer
ResNet (by 2.8%). Furthermore, the 34-layer ResNet has a significantly lower training
error and is generalizable to validation data. This indicates that the degradation problem
has been adequately addressed in this setting, and they are able to obtain accuracy gains
from increased depth. Second, when compared to its plain counterpart, the 34-layer
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Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation. In this case, the ResNets have

no additional parameters when compared to their plain counterparts.

# layers Plain Resnet
18 27.94 27.88
34 28.54 25.03

34-layer plain 34-layer residual

imoge image

1

oo P
A 3 conw, $12
2
Sowm ]
¥
S conest3
¥
S onsE [
[
[[(Saww. 1
w8
ot r
oot 12 S com, 5613
nery [ 56
¥ . 2
[emsa Soom e ]
¥ ¥
o sa o 56
¥ ¥
S omsE
2
[oemsz
[ 3acom.356
(|
r——
. 2
— oo e siza]
? %
Sawm s ]
SRR
S cone ST o w53
w5 o
SonsE ]
¥
Somi ]
ol BT | ot e
! v
[ — T 2000 1000
[ ——

Fig. 3. Example of the overall architecture of Resnet [6]

ResNet reduces top-1 error by 3.5% in Table 2, owing to successfully reduced training
error (Fig. 4 right vs. left). This comparison validates residual learning’s effectiveness on
extremely deep systems. Finally, they note that while the 18-layer plain/residual nets are
comparable in accuracy (Table 2), the 18-layer ResNet converges faster (Fig. 4. Right vs.
left). When the net is “not too deep” (18 layers in this case), the current SGD solver can
still find good solutions to the plain net. In this case, the ResNet facilitates optimization
by allowing for faster convergence at an early stage.

Architectures with a deeper bottleneck. Following that, we will go over our ImageNet
deeper nets. We modify the building block as a bottleneck design due to concerns about



Enhancing Deeper Layers with Residual Network 453

L - B e = i

34-layer

LALAL
P - e e e vy I e o
plain-18 ResNet-18 T A,
—plain-34 —ResNet-34 34-layer
UO 10 ‘ 3’0 4b Sb U0 10 ‘ 3’0 4b 50
iter. (led) iter. (1e4)

Fig. 4. Palembang ImageNet training. The thin curves represent training error, while the bold
curves represent validation error of the center crops. Plain networks with 18 and 34 layers are
shown on the left. ResNets with 18 and 34 layers, respectively. The residual networks in this plot
have no extra parameters when compared to their plain counterparts.
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Fig. 5. A deeper residual function F for ImageNet

the amount of training time we can afford. We use a three-layer stack instead of two for
each residual function (Fig. 5). The three layers are 11 convolutions, 33 convolutions,
and 11 convolutions, with the 11 layers responsible for reducing and then increasing
(restoring) dimensions, leaving the 33 layer as a bottleneck with smaller input/output
dimensions. Figure 5 depicts an example in which both designs have a comparable time
complexity. For bottleneck architectures, parameter-free identity shortcuts are especially
important. When the identity shortcut in Fig. 5 (right) is replaced by projection, the time
complexity and model size are doubled.

Comparisons with State-of-the-Art Methods.

Kaiming et al. compare their results to the best single-model results previously obtained.
Their baseline 34-layer ResNets achieved extremely competitive accuracy. Their 152-
layer ResNet has a 4.49% single-model top-5 validation error. This single-model out-
come outperforms all previous ensemble outcomes (Table 3). They create an ensemble
by combining six models of varying depths (only with two 152-layer ones at the time
of submitting). This results in a top-5 error rate of 3.57% on the test set (Table 3). This
entry took first place in the 2015 ILSVRC.
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Table 3. Ensemble error rates (%). The top-5 errors are on ImageNet’s test set and are reported
by the test server.

Method Top-5 err. (test)
VGG [4] ILSVRC’14) 7.32
GoodLeNet [5] (ILSVRC’14) 6.66

VGG [4] (v5) 6.8

PReLU-net [8] 4.94
BN-inception [9] 4.82

ResNet (ILSVRC’15) 3.57

Kamal HM [6] also runs Resnet for classification. A convolutional neural network
model capable of classifying images from the 2012 ILSVRC Imagenet dataset was
developed in this study. At the training stage, the CNN model will be trained using the
Resnet34 architecture. A learning rate search algorithm will be run prior to beginning
training. This algorithm is run after the training is complete to evaluate the new learning
rate that must be changed based on the model’s loss. The images in the training data will
be processed by the CNN model, which will pass each image through every part of the
Resnet34 architecture; the result of this process is the prediction result of the images that
enter the model. The model will evaluate the existing dataset in the validation data for
each epoch to determine how well the model can classify images that have not been seen
before during training. The best training model’s results will be evaluated and analyzed
for performance. Three main scenarios will be created to determine the performance of
the CNN architectural model built in image classification and to evaluate the experimental
results. The first scenario uses a 64x64 pixel image, which is a smaller resolution than the
standard image resolution used in the CNN model. The second scenario uses an image
with a resolution of 224 x 224 pixels, which is the image resolution used by various
architectures in classifying ImageNet [1, 4]. The third option is to use a smaller image,
64x64, and then retrain with 224x224 pixels. Each of the three main scenarios will be
trained with and without augmentation.

The accuracy for augmentation data is 49.32%, while the accuracy for data without
augmentation is 50.52%. The accuracy percentage is lower than when using augmenta-
tion data in similar image sizes of 64 x 64. In Tables 4, 5, the model using augmentation
data has a low accuracy performance, but the overall model performance is quite good.
Although the accuracy of using augmentation data is lower, the number of error classes
is lower and more evenly distributed. It indicates that depth layers exist in the Resnet
architecture and that the losses are not gradient.

The classification of multi-class images on the ImageNet dataset was performed
using the Resnet34 architecture in this study. Using the cyclical learning rate method
to determine the learning rate where the initial learning rate is 1x10-2 and this value
is reduced after the model’s accuracy reaches saturation. Based on the results of the
simulation, the best accuracy is obtained without the use of augmentation, with an
accuracy of 75.82%, as shown in Fig. 6.
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Table 4. Errors in the top 5 classes of prediction results on models with an image size of 64x64

# Classes Sum of error
1 European Green Lizard Carolina Anole 18
2 Partridge Ruffed Grouse 17
3 Smooth Green Snake Green Mamba 16
4 Saharan Horned Viper Sidewinder 15
5 European Garden Spider Barn Spider 14

Table S. The error of the top 5 classes of prediction results on a model with an image size of
64x64 with augmentation.

# Classes Sum of error
1 Tiger Shark Hammerhead Shark 20
2 Carolina Anole European Green Lizard 12
3 Saharan Horned Viper Sidewinder 12
4 Bald Eagle Kite 12
5 Great White Shark Hammerhead Shark 12
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Fig. 6. Accuracy obtained from the 6 scenarios which carried out.
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However, the error matrix evaluation results show that the model that does not use
augmentation and changes the image size has the best error matrix with the 11 highest
errors, despite having a slightly lower accuracy of 75.24%. It can be concluded that
(1) augmentation and data augmentation will provide the model with more data, but if
not balanced with good tuning, the model will perform poorly. (2) Reducing and then
increasing the size of the trained image can make the model predict more evenly while
maintaining the same accuracy. To ensure that this scenario can be carried out in the
future, it is expected that a larger architecture and a greater number of classes will be
used.

3 Discussion

In this post, we will go through three past research that used CNN architecture with
residual blocks or Resnet. The results of the first investigation by Kamal Hasan et al.
[6] reveal that image classification with the Resnet34 architecture generates superior
performance predictions than CNN without residual or plain CNN with augmentation
data or not. This suggests that the CNN layers are growing rather than shrinking. In
this Resnet34 architecture, 34 convolutions have been formed with 16 blocks of skip
connections, and each block has 2 layers plus 1 start and 1 final layer, for a total of 34
layers.

The second study, by Dinis LR. et al. [7], recognizes left and right coronary arteries
using Retinanet architecture composed of Resnet50, Feature Pyramid Network, Clas-
sifier, and Regressor. On the RCA/LCA, the results show 0.72/0.70 recall, 0.82/0.84
precision with one detection, 0.73/0.68 recall, and 0.72/0.74 precision for five detec-
tions. Retinanet, when combined with Resnet50, outperforms other architectures. This
condition demonstrates that the Retinanet architecture adds its inner layer while retaining
the gradient by including Resnet50 at the start of the Retinanet architecture.

Finally, Kaiming et al. [1] used a comparison of plain CNN and CNN with the
residual network (Resnet) to achieve classification performance on ILSVRC 2015 image
data with a top 5 error of 3.57%. Kaiming et al. demonstrate greater performance during
classification training by adding a residual network called Resnet to the plain CNN. This
suggests that the plain CNN with Resnet has grown its inner layer while maintaining its
gradient. So, Resnet outperforms plain CNN.

As described in [13, 14], the CNN architecture can be evolved into numerous addi-
tional architectures, and the basic architecture of CNN can be improved by adding
residual networks or residual blocks to increase performance or reduce error.

4 Conclusion and Future Work

We conclude that using a residual network on CNN improves architectural performance
in terms of detection and classification tasks. With block residuals, several other archi-
tectures derived from the basic CNN architecture can be modified. We did not investigate
other research for segmentation in this article, nor did we attempt to segment images
by incorporating a residual network into an architecture. In terms of future work, it is
critical to forecast using an image dataset segmentation task.
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