Application of Hierarchical Analysis Method in the Evaluation of Online and Offline Teaching Effect Method

Lanying Lian, Yang Yang, and Ya Wen
Wanjiang Institute of Technology College, Manshan 243000, China
253241759@qq.com

Abstract. In order to explore the influence of various elements of online and offline teaching on the teaching effect, this paper established a three-level evaluation system of online and offline courses by issuing questionnaires and using the analytic hierarchy process, and evaluated the weight of indicators at all levels in the course evaluation system. Based on the analysis of the relationship between the weight results of each indicator and the teaching practice, it is concluded that the value of teaching content, classroom teaching, teachers’ teaching ability, students’ learning efficiency and result monitoring and other factors have a greater impact on the teaching effect. We should pay attention to the selection and determination of education content, carefully design classroom teaching, improve teachers’ ability, guide and develop students’ learning interest, and establish a comprehensive Scientific and reasonable assessment and evaluation system.

Keywords: Analytic hierarchy process · Teaching effect evaluation · Evaluation index system · Evaluation matrix

1 Introduction

For higher education, the emergence of COVID-19 is a dividing line. After that, the world’s higher education will be divided into “higher education in the pre-epidemic era” and “higher education in the post-epidemic era”. Human beings will fully enter the era of “double-line teaching”, and deeply enter the new era of “online teaching and offline teaching integration and symbiosis”, that is, “double-line integrated teaching”. However, how to evaluate the teaching effect of “double-line teaching” is the fundamental problem to be solved in the “double-line teaching” in the new era. Therefore, based on the thinking of online and offline course teaching in the post-epidemic era, this project is of great practical significance to explore the path of “dual-line integration” between online and offline and the analysis of teaching effects [1, 2].

Online teaching effect evaluation is a complex system engineering, teaching effect quality is affected by many factors, some of the factors are difficult to quantify, hierarchical analysis (AHP) [3] is a complex multi-objective decision problem as a system, the elements related to the decision into goals, guidelines, solutions, through qualitative
and quantitative analysis, suitable for a layered staggered evaluation index and target value and difficult to describe the target system of decision.

Using AHP and fuzzy comprehensive evaluation quantitative analysis online education evaluation index system, first through the hierarchical analysis (AHP) and delphi method (Delphi) combined to determine the relative importance of online education each index weight vector, and then through the questionnaire data of hierarchical comprehensive evaluation, finally to the results based analysis and discussion.

2 Identification of the Factors Influencing the Teaching Effect

In the preliminary research process, I read the research [4–8] related to the online teaching evaluation system and other topics, and focused on finding out the factors influencing the evaluation of online and offline teaching effect. According to the literature reading analysis, the literature was further sorted out, and the checklist of influencing factors of teaching effect was obtained, forming the three-level influencing factors of teaching effect: further analysis and classification of the influencing factors, and obtaining the second-level influencing factors, as shown in Table 1:

3 The Level of Influencing Factor Identification System is Established

3.1 Hierarchical Structure Model Building

According to the characteristics of online and offline teaching management, the highest level of the project is the evaluation of the teaching effect, the criterion level should be the influencing factor of the learning effect, and the measure level should be various activities that affect the construction of the intelligent site. The main purpose of using hierarchical analysis is to compare the degree of influence of each influencing factor.

The teaching effect evaluation should be set as U, teacher factor, student factor, teaching content, classroom teaching, teaching monitoring should be U1, U2, U3, U4 and U5, then the structure level content of this model is:

Target layer: \(U = \{ \text{teaching effect evaluation} \} \)
Criterion: \(U = \{ U_1, U_2, U_3, U_4, U_5 \} = \{ \text{teacher factor, student factor, teaching content, classroom teaching, teaching monitoring} \} \).

Measures layer: \(U_1 = \{ U_{11}, U_{12} \} = \{ \text{teaching attitude, teaching ability} \} \)
\(U_2 = \{ U_{21}, U_{22}, U_{23}, U_{24} \} = \{ \text{students' general characteristics, students' starting point ability, students' learning efficiency, learning environment} \} \)
\(U_3 = \{ U_{31}, U_{32} \} = \{ \text{the value of teaching content, how much of teaching content, the presentation method of teaching content} \} \)
\(U_4 = \{ U_{41}, U_{42}, U_{43} \} = \{ \text{teaching platform, classroom teaching, communication and interaction} \} \)
\(U_5 = \{ U_{51}, U_{52} \} = \{ \text{process monitoring, result monitoring} \} \).
<table>
<thead>
<tr>
<th>order number</th>
<th>Level 1 influencing factors</th>
<th>Secondary impact factors</th>
<th>Third-level influencing factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Teacher factor</td>
<td>Teaching attitude</td>
<td>Teachers’ educational ideas</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Teachers’ ideological, political and moral level</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>The teacher’s mental state</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>teacher’s ability</td>
<td>The scientific and cultural level of the teachers</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Teacher’s teaching ability</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>Teacher’s intelligence</td>
</tr>
<tr>
<td>7</td>
<td>Student factors</td>
<td>General characteristics of the students</td>
<td>Gender, grade</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>Motivation and interest</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>Cognitive development level</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>Intelligence, character, temperament, etc</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Student’s starting point ability</td>
<td>Knowledge starting point ability</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>Skills starting point ability</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>Attitude starting point ability</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Students’ learning efficiency</td>
<td>Cognitive ability (including retelling, finishing, organizational strategy)</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>Metacognitive strategies (e. g. planning, supervision, regulation strategies)</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>Resource management strategies (such as time management, learning environment management, manpower management, support from others, etc.)</td>
</tr>
</tbody>
</table>

(continued)
Table 1 (continued)

<table>
<thead>
<tr>
<th>order number</th>
<th>Level 1 influencing factors</th>
<th>Secondary impact factors</th>
<th>Third-level influencing factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Individual experience and thinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>academic environment</td>
<td>network environment</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>learning environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Effectiveness of the teaching content</td>
<td>The value of the teaching content</td>
<td>Get the corresponding credits</td>
</tr>
<tr>
<td>21</td>
<td>Get professional knowledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>lifting power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Check the gaps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>How much to teach</td>
<td>knowledge point</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>learning video</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>courseware</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>electronic learning material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Specifications, drawings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>exercises</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>The presentation method of the teaching content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Electronic data</td>
<td>recorded broadcast</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>direct broadcast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Effectiveness of classroom teaching</td>
<td>teaching platform</td>
<td>The stability of the network learning platform</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td>The richness of teaching resources</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>The smoothness of teaching</td>
</tr>
<tr>
<td>36</td>
<td>Classroom teaching</td>
<td></td>
<td>The rationality of the time allocation</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td>Answer the communication timeliness</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td>Objectivity of teaching attitude</td>
</tr>
</tbody>
</table>

(continued)
Table 1 (continued)

<table>
<thead>
<tr>
<th>order number</th>
<th>Level 1 influencing factors</th>
<th>Secondary impact factors</th>
<th>Third-level influencing factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Teacher-led</td>
<td>Communication and interaction</td>
<td>Teacher-led</td>
</tr>
<tr>
<td>40</td>
<td>Student-led</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Teaching monitoring</td>
<td>Process monitoring</td>
<td>the class rate</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td>Interaction rate</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td>task performance</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>Results monitoring</td>
<td>Degree of course completion</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td>score</td>
</tr>
</tbody>
</table>

3.2 Establish a Comparative Judgment Matrix

According to the concept of hierarchical analysis method, the judgment matrix of the target layer corresponding to the criterion layer is constructed through the comparison of various documented methods and the discussion with the relevant field staff and relevant experts.

\[
D = \begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 3/2 & 1 & 3/2 & 3 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix}
\]

The process of determining the relative weight ranking of a certain layer of each element to the top layer of a certain element according to the comparative judgment matrix is called the ranking under the single criterion. There is usually the weight sorting of a certain criterion for each scheme and the weight sorting of the target for each criterion. There are many methods to calculate the weight, among which the legal and root methods are relatively mature and widely used methods. This paper is selected as legal for calculation.

\[
D = \begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix} \rightarrow \begin{bmatrix}
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.1 & 0.1 & 0.1 & 0.1 & 0.1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix} \rightarrow \begin{bmatrix}
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.1 & 0.1 & 0.1 & 0.1 & 0.1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix} \rightarrow \begin{bmatrix}
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.1 & 0.1 & 0.1 & 0.1 & 0.1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix} \rightarrow \begin{bmatrix}
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.1 & 0.1 & 0.1 & 0.1 & 0.1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
3/2 & 1 & 2/3 & 1 & 2 \\
1 & 1 & 2/3 & 1 & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1
\end{bmatrix} \rightarrow \begin{bmatrix}
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.1 & 0.1 & 0.1 & 0.1 & 0.1
\end{bmatrix}
\]
3.3 Matrix Consistency Test

(1) Calculate Eigenvalues.

\[
\begin{bmatrix}
1 - \lambda & 1 & 2/3 & 1 & 2 \\
1 & 1 - \lambda & 2/3 & 1 & 2 \\
3/2 & 3/2 & 1 - \lambda & 3/2 & 3 \\
1 & 1 & 2/3 & 1 - \lambda & 2 \\
1/2 & 1/2 & 1/3 & 1/2 & 1 - \lambda
\end{bmatrix} = 0
\]

To solve \(\lambda_{\text{max}} = 5 \)

(2) Calculate the consistency indicators.

\[
C_I = \frac{(\lambda_{\text{max}} - n)}{(n - 1)} = \frac{5 - 5}{5 - 1} = 0
\]

(3) Calculate the consistency ratio.

\[
C_R = C_I / R_I = \frac{(\lambda_{\text{max}} - n)}{(n - 1) \cdot R_I} = \frac{0}{0.9} = 0 < 0.1
\]

Therefore, the consistency check results were passed.

4 Weight Analysis of the Evaluation Indicators

According to the questionnaire, the weight of each influencing factor was obtained. The survey object was the teachers and students of a university in Anhui province. After the questionnaire was designed according to the online education evaluation index system. The questionnaire is distributed through the questionnaire star network. A total of 256 questionnaires were collected. After sorting out and verification, there were 254 valid questionnaires, with an effective rate of 99.22%. In the valid questionnaire, there were 5 teachers and 251 undergraduates, and the male–female ratio was 22.4% and 77.6%, respectively. According to the survey, the weight of each secondary influencing factor was multiplied by the weight of the first-level indicators to obtain the comprehensive weight, as detailed in Table 2.

The weight of the evaluation index indicates the influence degree of the evaluation index on the teaching effect. According to the evaluation index, the value of teaching content, classroom teaching, teachers’ teaching ability, students’ learning efficiency and result monitoring have a great influence on the teaching effect.
<table>
<thead>
<tr>
<th>Level 1 evaluation indicators</th>
<th>weight</th>
<th>Secondary evaluation index</th>
<th>Weight (Average weight of 256 survey reports)</th>
<th>Comprehensive weight (Third level weight multiplied by second level weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>0.2</td>
<td>U11</td>
<td>0.486</td>
<td>0.097</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U12</td>
<td>0.514</td>
<td>0.103</td>
</tr>
<tr>
<td>U2</td>
<td>0.2</td>
<td>U21</td>
<td>0.110</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U22</td>
<td>0.224</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U23</td>
<td>0.417</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U24</td>
<td>0.249</td>
<td>0.050</td>
</tr>
<tr>
<td>U3</td>
<td>0.3</td>
<td>U31</td>
<td>0.446</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U32</td>
<td>0.191</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U33</td>
<td>0.363</td>
<td>0.109</td>
</tr>
<tr>
<td>U4</td>
<td>0.2</td>
<td>U41</td>
<td>0.388</td>
<td>0.078</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U42</td>
<td>0.406</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U43</td>
<td>0.206</td>
<td>0.041</td>
</tr>
<tr>
<td>U5</td>
<td>0.1</td>
<td>U51</td>
<td>0.475</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U52</td>
<td>0.525</td>
<td>0.052</td>
</tr>
</tbody>
</table>

5 Conclusion

From the above analysis and calculation of the data and judgment criteria can be obtained:

1. There are many influencing factors of teaching effect, so the influencing factors of teaching effect are identified, and a three-level index system of influencing factors is constructed according to the influencing factors. Among them, the first-level indicators mainly include teacher factors, student factors, teaching content, classroom teaching and teaching monitoring.

2. The weight of the evaluation index indicates the influence degree of the evaluation index on the influencing factors of wisdom. The secondary index mainly includes teaching attitude, teaching ability, students’ general characteristics of students, students’ starting ability, students’ learning efficiency, learning environment, the value of teaching content, teaching content, the presentation method of teaching content, teaching platform, classroom teaching, communication and interaction, process monitoring and result monitoring. Among them, teachers’ teaching ability, students’ learning efficiency, the value of teaching content, classroom teaching and result monitoring and other factors have a great influence on the teaching effect.

3. The value of the teaching content is an important factor affecting the teaching effect. The purpose of education is the general requirements for the results of educational activities, and the quality specifications and standards determined for the cultivation
of talents. An important aspect is the selection and determination of educational content. Good education requires both creativity and standardization. In teaching, teachers should not only realize students' intellectual development, but also realize students' rich knowledge. Educational content is an important basis for checking the quality of teachers' education and students' learning, and also an important source for students' interest in learning.

4. Classroom is the main battlefield of teaching, the main window for teachers and students to communicate with each other, and also the main place to obtain teaching effect. The process for teachers and students to participate in and interact together and realize the teaching objectives creatively, classroom teaching needs new theories, new ideas and enthusiasm for reform, as well as new methods and technical means. Classroom teaching needs both “traction” and “guide”; it requires careful design and systematic reflection and wisdom.

5. The influence of teachers’ teaching ability on the teaching effect is obvious. From the perspective of external environment, the government should establish industry standards from the national and industrial development level. Government departments should organize relevant technology enterprises to research and build data platforms to realize interoperability and provide efficient services. Formulate measures to train and update talent teams, and establish a regulatory platform.

6. The teaching effect largely depends on the learning efficiency of students, which shows that the learning effect is greatly related to students’ own learning attitude and learning ability, which proves that learning is a subjective initiative activity, learning subjectivity, learning ability, learning drive directly determines the learning effect.

7. A comprehensive, comprehensive and reasonable assessment and evaluation system should be established, and its advantages should be used to enhance the classroom teaching effect and improve the teaching quality, so as to constantly stimulate students’ innovation consciousness, desire and passion, cultivate practical operation ability and innovation ability, so as to achieve the goal of “promoting learning by examination and promoting teaching by evaluation”. Teachers should not only take teaching as a dynamic process, but also take the assessment as one of the means of teaching quality evaluation to strengthen the usual process assessment.

8. This research is the basis of “civil engineering construction” online five years of teaching process, the future will continue to carry out the teaching mode based on this method, accumulate more practice data and practice teaching cycle, provide reliable basis for consideration and modify this method, makes the online teaching quality evaluation factor analysis method is increasingly perfect in practice.

Fund Project. Anhui Province Quality Engineering-Online and offline hybrid course-Civil Engineering Construction (2021xsxxkc310), Project of excellent young talents support program in colleges and universities of Anhui Province (gxyqZD2022095), Application of natural science project-analytic hierarchy process in quality control of civil engineering construction in Anhui Province, Anhui Province Quality Engineering-teaching demonstration class-civil Engineering construction, Anhui Province Quality Engineering-online and offline hybrid course-surveying.
References

7. Su Bowen 1, Zhao Shuping 2, Hu Qiliang 3, research on the evaluation of online teaching effect in universities based on Ke’s model [J].2021.6: 98–105
8. Shen Hongxing, Hao Dakui, Jiang Jingjing. Thoughts on online teaching practice and online teaching reform during the period of “no suspension”: Take Shanghai Jiao Tong University as an example [J]. Modern educational technology, 2020, 30 (5): 11-18.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.