
Dynamics-Aware Gated Graph Attention Neural
Network for Student Program Classification

and Knowledge Tracing

Tiancheng Jin1,2,3(B), Liang Dou2, Guang Yang2, Aimin Zhou1,2, Xiaoming Zhu3,
and Chengwei Huang3

1 Shanghai Institute of AI for Education, East China Normal University, Shanghai, China
52205901026@stu.ecnu.edu.cn, amzhou@cs.ecnu.edu.cn

2 School of Computer Science and Technology, East China Normal University, Shanghai, China
ldou@cs.ecnu.edu.cn

3 Zhejiang Lab, Hangzhou, China
{zhuxiaoming,huangchengwei}@zhejianglab.com

Abstract. Facedwith a large number of questions on the programmingOJ (Online
Judge) system, students are usually mindless when choosing questions, which
is not conducive to helping students quickly improve their programming abil-
ity. Programming Knowledge Tracing (PKT) is a technology that dynamically
traces students’ programming knowledge states using their historical learning data
including submitted programs. Relying on PKT, OJ can find students’ unmastered
knowledge points, and recommend questions examining these knowledge points
to students, so as to help students overcome their weakness. However, existing
program analysis modules in PKT models ignore dynamic information of pro-
gram. Therefore, this paper proposes Dynamics-Aware Gated Graph Attention
Neural Network (DGGANN), which inputs test cases of questions into program,
obtains call frequency coefficients of every node in Abstract Syntax Tree (AST)
through code coverage statistical tool, and introduces such call frequency informa-
tion into process of program analysis. This paper applies DGGANN to two tasks in
our experiments: classifying programs by functionalities and PKT. Experimental
results show that our approach can achieve higher performance than the state-of-
the-art models in both tasks on datasets of two well-known OJ systems named
CodeForces and Libre.

Keywords: Programming Knowledge Tracing · Dynamic Program Analysis ·
Online Judge · Artificial Intelligence in Education

1 Introduction

OJ (Online Judge) is a kind of teaching assistant system for programming, which can
provide students with programming questions, judge correctness of the program submit-
ted by students online according to pre-designed test cases, and feed back the judging
results to students for helping them find and consolidate unmastered knowledge points.

© The Author(s) 2023
X. Yuan et al. (Eds.): ICEKIM 2023, AHCS 13, pp. 1640–1652, 2023.
https://doi.org/10.2991/978-94-6463-172-2_182

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-172-2_182&domain=pdf
https://doi.org/10.2991/978-94-6463-172-2_182

Dynamics-Aware Gated Graph Attention Neural Network 1641

At present, answering questions autonomously on OJ has become a common learning
method of programming, but the excessive questions in OJ and lack of teacher guidance
make students waste too much valuable learning time in choosing suitable questions.

Knowledge Tracing (KT) is a technology that dynamically traces students’ knowl-
edge states using their historical learning data. Relying on KT, OJ can find students’
unmastered knowledge points, and recommend questions examining these knowledge
points to students, so as to help students overcome their weakness and im-prove pro-
gramming ability. Existing KT models usually mine the correlation between questions
through knowledge points examined by questions, but quite a few questions are not
labeled with knowledge point in some well-known OJ systems, for example, more than
30% of questions in Libre and Luogu do not have knowledge point labels. If there are a
large number of questions without knowledge point labels, the performance of KTmodel
will be reduced. Since code implementations of programming questions with the same
knowledge points are similar, some researchers utilize program analysis method to mine
knowledge point information contained in code implementations of questions and inte-
grates such information into KT model for solving the problem of “lacking knowledge
point labels” and improving prediction accuracy, such kind of KT models are named
Programming Knowledge Tracing (PKT).

Affected by Natural Language Processing (NLP), researches on program analysis
in early stage regard programming language as natural language and apply NLP based
technology to program analysis, but different from natural language, syntax specifica-
tion of programming language is more stringent. Therefore, some researchers proposes
program analysis models based on Abstract Syntax Tree (AST), which converts pro-
gram into AST for analysis. However, existing AST based program analysis models
only consider the static information of program, including syntax structure, control flow
or data flow, and ignore dynamic information, that is, real behavior of program when it
is executed. This kind of methods can not strengthen influence of most frequently called
core code blocks and weaken blocks that are rarely called in program on analysis results,
which may make results inaccurate. This paper proposes Dynamics-Aware Gated Graph
Attention Neural Network (DGGANN), which inputs test cases of questions into pro-
gram, obtains call frequency coefficients of every node in AST through code coverage
statistical tool, and introduces such call frequency information into process of program
analysis. DGGANN is a generic architecture, and is applied to two tasks in our exper-
iments: classifying programs by functionalities and KT. It outperforms state-of-the-art
methods in both tasks.

In general, our contributions can be summarized as follows: (1) we propose a
Dynamic Abstract Syntax Tree (DAST), which integrates call frequency coefficients of
every node into AST to characterize dynamic information from program. (2) we improve
the GGANN [1] model by introducing dynamic information to the attention mechanism
of learning each neighbor node’s weight in the program graph and aggregated repre-
sentation of the whole program. (3) We evaluate the performance of pro-posed work by
comparative experiments on program classification and KT.

1642 T. Jin et al.

2 Related Work

2.1 Program Analysis

In early stage, most related works [2, 3] of program analysis pay attention to processing
program with NLP models. However, programs contain abundant and explicit structural
information. To capture structural information, Mou et al. [4] propose Tree-Based Con-
volutional Neural Network (TBCNN) to transform ASTs into distributed vectors, which
can preserve structural information. Li et al. [5] think that AST is a weakened graph, and
propose Gated Graph Neural Network (GGNN) to process AST. Gated Graph Attention
Neural Network (GGANN [1]) adds data flow and function call information of program
into AST, introduces attention mechanism of learning each neighbor node’s weight in
the program graph and aggregated representation of the whole program.

2.2 Knowledge Tracing

Knowledge learning is a long-term process and follows principle of gradual improve-
ment, so how to trace changes of students’ knowledge mastery level in real time is of
great significance for providing students with personalized learning guidance services.
Considering above issue, Corbett et al. [6] declare the concept of Knowledge Tracing
(KT), which is a technology aiming to trace changes of students’ knowledge mastery
level through exercising history, and proposeBayesianKnowledgeTracing (BKT) to pre-
dict students’ performance in the future. Deep Knowledge Tracing (DKT [7]) estimates
students’ knowledge states based on Gated Recurrent Unit (GRU). Dynamic Key-Value
Memory Network (DKVMN [8]) introduces two memory matrices to represent knowl-
edge and learners’ mastery level for each knowledge respectively. Exercise-correlated
KnowledgeProficiencyTracing (EKPT [9]) uses time interval between students’ learning
and number of repeated learning to define memory and forgetting factor, so as to model
students’ learning and forgetting behaviors. Separated Self-Attentive Neural Knowledge
Tracing (SAINT [10]) applies the encoder decoder structure to the knowledge tracking
task for the first time, separating the question sequence and response sequence, so that
the model can capture complex relationship between question and response through the
deep self-attention mechanism. Programming Knowledge Tracing has applied KT to
programming education. PKT-sequences [11] evaluates students’ knowledge state by
calculating tree edit distance between the program submitted by student and shortest
correct program, and utilize such knowledge state to predict whether a student can solve
the next exercise with the repeated submitted program to the current question, or can
solve the current question at the next submission. ASTNN-attn [12] adopt an attention-
based KT model to learn the features reflecting the multiple programming knowledge
from the program submitted by student. Code-DKT [13] use code2vec model to learn a
meaningful representation of student code, and combine this with DKT to track student
progress.

Dynamics-Aware Gated Graph Attention Neural Network 1643

3 Methodology

This section mainly presents the architecture of proposed work, as illustrated in Fig. 1,
which consists of three main components: (1) constructing Dynamic Abstract Syn-
tax Tree (DAST) by AST with Call Frequency Coefficient (CFC), Data Flow Graph
(DFG) and Function Call Graph (FCG); (2) structural details of DGGANN model; (3)
DGGANN’s application on program classification and KT.

3.1 Construction of DAST

The construction of DAST includes three steps:
Firstly, input test case of the question to program submitted by student and get Call

Numbers (CN) of each line in source code through code coverage statistics tool gcov.
Figure 2 shows code coverage result of inputting test case “N = 5” to the C++ program
for “finding the sum of 1 to N”, where LN is line number.

Then, convert program into AST and obtain line number of each AST’s node in the
program by srcML, as shown in Fig. 3.

int a = 2; int b = 4;

int sum = a + b;

a

2

b

4

sum

unit

+

a b

AST with CFC

DFG FCG

DAST

DGGANN g

Program
Classification

Knowledge
Tracing

1 2 3

Fig. 1. The architecture of proposed work

1

1

1

1

0

11

10

1

1

2

3

4

5

6

7

8

int i, total, N;

total = 0;

scanf("%d",&N);

if (N < 1)

printf("illegal input\n");

for (i=1; i<=maxNum; i++)

total += i;

printf("%d\n", total);

CN LN

Fig. 2. Code coverage result example

1644 T. Jin et al.

unit

decl expr expr if for expr

… … … … … … … … … … … …

LN:1 LN:2 LN:3 LN:4 LN:6 LN:8

LN:1

Fig. 3. AST example

unit

decl expr expr if for expr

… … … … … … … … … … … …

0.098 0.228 0.2210.098 0.098 0.098

0.098

Fig. 4. DAST example

Finally, initialize Call Frequency Coefficient (CFC) of each node through Eq. (1):

CFC(0)
i = log(CNLi + 2)

∑

L∈S
log(CNL + 2)

(1)

where CFC(0)
i is initial CFC of node i, S is source code of program, Li is the line which

node i is in, CNLi is CN of Li. Fuse CFC and AST to generate DAST, as shown in Fig. 4,
where red number is initial CFC of node.

In addition, following GGANN, this paper extends DAST through Data Flow Graph
(DFG) and Function Call Graph (FCG).

3.2 The DGGANN Model

This paper defines DAST as a directed graph g = (V ,E), where V and E are the sets
of nodes and directed edges respectively. Node type set VT = {vt1, vt2, ..., vty} is the
set of different types of nodes, such as “unit”, “decl”, “expr”, “if” and “for” in Fig. 4.

Dynamics-Aware Gated Graph Attention Neural Network 1645

Edge type set ET = {et1, et2, ..., etz} is the set of different types of relations between
nodes, including parent-child relation in AST, function call relation and five types of
data flow relations (“LastUse”, “Compute”, “Formal”, “Return” and “Operand”). Node
i is denoted as vi, a directed edge from i to j is denoted as eij. Relations among nodes
in graph g is expressed by a connection matrix A ∈ R

|V |×|V |, the element at row i and
column j of A is expressed as Aij. Aij is a dv × dv matrix for representing eij, where dv
is the representation dimension.

GGANN initializes each node i’s representation according to its type. We first set it
to be a one-hot encoding v

′
i ∈ {0, 1}y, then introduce the embedding matrixWv ∈ R

dv×y

to transfer it into a low-dimensional vector v(0)
i ∈ R

dv by Eq. (2):

v(0)
i = Wvv

′
i (2)

For eij’s representation, get one-hot encoding eij ∈ {0, 1}z in term of its type firstly.
After that, transfer eij into Aij ∈ R

dv×dv with tensor We ∈ R
dv×dv×z by Eq. (3):

Aij = Weeij (3)

DGGANN updates each node’s representation by aggregating it and its neighbors’
representations for T iterations with Eq. (4) and Eq. (5):

m(t)
i =

∑

j∈Ni

α
(t)
ij · Aij · v(t)

j (4)

v(t)
i = GRU (v(t−1)

i ,m(t)
i) (5)

where Ni is the set of node i’s neighbors, m
(t)
i ∈ R

dv is node i’s context representation,

α
(t)
ij ∈ (0, 1) is node j’s importance coefficient for node i, which is calculated by Eq. (6)

and Eq. (7):

α
(t)
ij = β · sigmoid [(v(t)

i)TWattv
(t)
j + batt] + (1 − β) · CFC(t)

j (6)

CFC(t)
j = sigmoid(w(t)

c · CFC(t−1)
j + b(t)

c) (7)

whereWatt ∈ R
dv×dv is weight matrix, batt ∈ R is bias term, sigmoid [(v(t)

i)TWattv
(t)
j +

batt] means comparing the similarity between node i and node j. w(t)
c ∈ R is weight

parameter, b(t)
c ∈ R is bias term, sigmoid(w(t)

c · CFC(t−1)
j + b(t)

c) is used to calculate
dynamic factor of node j for node i in t-th iteration, which neighbor is called more
frequently, the value of dynamic factor and importance coefficient are larger. β ∈ (0, 1)
is a weight parameter for balancing similarity and dynamic factors.

The representation of DAST graph can be calculated after obtaining each node’s
embedding vector, as shown in Eq. (8).

g =
∑

i∈V
[γ · f1(v(T)

i , v(1)
i) + (1 − γ)CFC(T)

i] · f2(v(T)
i) (8)

1646 T. Jin et al.

where f1 represents a neural network to implement attention mechanism, the output of
f1 is probability (a scalar) of node i being fused. γ ∈ (0, 1) is a weight parameter for
balancing fusion probability and dynamic factors. f2 means a neural network to learn
embedding vector of node. f1 and f2 use sigmoid and tanh to activate outputs respectively.
g ∈ R

dv is vector representation of DAST.

3.3 Program Classification

After vector representation of DAST graph is obtained, probabilities p ∈ R|PT | (PT is
the set of program types) that the program associated with DAST graph be-longs to each
category can be predicted with Eq. (9):

p = softmax(Wgg + bg) (9)

where Wg ∈ R
|PT |×dv is weight matrix, bg ∈ R

|PT | is bias vector.
To optimize program classification model, we update the parameters using gradient

descent by minimizing cross entropy loss between predicted probability and true label
of the programs’ category.

LPC = −
∑

g∈G

∑

pt∈PT
ypt log(ppt) (10)

3.4 Knowledge Tracing

Suppose there are |U | students, |Q| questions and |K | knowledge points in an OJ system.
Student u’s historical interaction sequence is Iu = {(q1, l1), (q2, l2), ..., (qT , lT)}, where
qt (qt ∈ Q) is a question that the student u solved at time t. lt is system judgment result,
which lt = 1 and lt = 0 mean judgement result is correct and wrong respectively. KT
aims at predicting whether student is able to answer the next question qt+1 correctly.

In this paper, we also apply DGGANN to Knowledge Tracing (KT). The KT model
using DGGANN to encode the program of questions is called DGGANN-KT. In addi-
tion to question description, knowledge point and difficulty, DGGANN-KT also takes
optimal solution of question (the correct and shortest running program in submission
records corresponding to the question) and program submitted by students as features
of questions.

For questionqt’s optimal solution andprogramsubmittedby students,DGGANN-KT
converts them into DAST gt and gst respectively, input them to DGGANN for obtaining
vector representation of program gt and gst , this process is shown in Eq. (2) to Eq. (8).

For the word sequence ct = {w1,w2, ...,wM } of question qt’s description,
DGGANN-KT uses Word2Vec to generate vector presentation wi ∈ R

dw of each word
wi. Input wi into LSTM to get embedding vector of question description ct ∈ R

dc , as
shown in Eq. (11).

ct = LSTM (w1,w2, ...,wM;�LSTM) (11)

where �LSTM is LSTM’s related parameters.

Dynamics-Aware Gated Graph Attention Neural Network 1647

For knowledge points kt examined in question qt , DGGANN-KT obtains its multi-
hot representationk

′
t ∈ {0, 1}|K |, and uses the parametermatrixWk ∈ R

dk×|K | to convert
it into a low dimensional embedding vector kt ∈ R

dk of knowledge points kt , as shown
in Eq. (12):

kt = Wkk
′
t

|kt | (12)

DGGANN-KT selects the student’s answer error rate rat and submission error rate
rst as features to evaluate the difficulty of question qt . The student’s answer error rate
rat is the proportion of students who answer qt incorrectly among students who try to
solve qt . Submission error rate rst is the proportion of the submission records with wrong
judgment results in the submission records of qt .

In summary, DGGANN-KT chooses above vectors and values to encode question
as xt with Eq. (13):

xt = gt ⊕ gst ⊕ ct ⊕ kt ⊕ [rat , rst] (13)

After obtaining embedding vector xt of question qt , according to judgement result
lt given by OJ, the vector representation of question considering judgement result is
acquired by using Eq. (14):

lxt=
{
xt ⊕ 0 iflt = 1
0 ⊕ xt if lt = 0

(14)

where 0= [0, 0,..., 0] is a zero vector with the same dimensions of xt, ⊕ is vector
concatenation operator.

Then DGGANN-KT uses lxt as input to GRU for estimating student knowledge
hidden states:

ht = GRU (ht−1, lxt;�GRU) (15)

where �GRU is GRU’s related parameters.
DGGANN-KT inputs embedding vectors of student knowledge hidden states ht and

questions xt+1 into a fully connected layer for predicting whether student is able to
answer the question qt+1 correctly:

pt+1 = sigmoid(WT
q (ht ⊕ xt+1) + bq) (16)

where Wq ∈ R
dh+dx is a weight matrix, bq ∈ R is a bias term, pt+1 is the predicted

probability that the student can answer question qt+1 correctly.
To optimize DGGANN-KT, we update the parameters using gradient descent by

minizing the cross entropy loss between predicted probability of answering correctly
and true label of student’s answer:

LKT =
∑

u∈U

T∑

t=1

[lt log pt + (1 − lt) log(1 − pt)] (17)

1648 T. Jin et al.

Table 1. Basic information of datasets

Dataset Number of Questions Number of Students Number of Submissions

CodeForces 7008 26787 1048575

Libre 2538 24657 1382200

4 Result

This section evaluates the effectiveness of DGGANN from the perspective of pro-gram
classification and KT.

4.1 Dataset

This paper collects experimental data from two well-known OJ systems named Code-
Forces and Libre. Both datasets contain question information and user submission
records. Each data in question information represents information of a question, includ-
ing following fields: question ID, title, question description and knowledge point label
(possibly missing). Each data in user submission records contains fields such as sub-
mission ID, user ID, question ID, system judgement result (correct/wrong), program,
programming language type, running time and submission stamp. The basic information
of CodeForces and Libre is shown in Table 1.

For program classification task, this paper randomly selects 40 questions with more
than 500 solutions from CodeForces and Libre (In order to exclude the influence of
programming languages, this paper only considers the programs written in C++), then
randomly chooses 500 solutions from these questions to form two standard datasets
containing 20000 data samples respectively. Each dataset is divided into training set,
verification set and test set according to the ratio of 3:1:1.

For knowledge tracing task, 80% of the students are randomly selected from each
dataset to train KT model, 10% of the students are used for verification, and 10% of the
students are used for testing.

4.2 Experiment Setup

The proposed method in this paper is implemented by PyTorch, the optimizer adopts
Adam, batch size bs is 128, learning rate lr is 0.001, dimension of program’s embedding
vector dv, dimension of word’s embedding vector dw, dimension of question descrip-
tion’s embedding vector dc, dimension of knowledge point’s embedding vector dk and
dimension of knowledge hidden state’s embedding vector dh are set to 256, 64, 128, 16
and 128.

4.3 Experiment Results

This subsection mainly analyzes the student program classification and knowledge
tracing performance associated with the proposed DGGANN model.

Dynamics-Aware Gated Graph Attention Neural Network 1649

Table 2. The accuracy of program classification models

Model Test Accuracy

CodeForces Libre

TBCNN (2016) 0.9413 0.8679

GGNN (2016) 0.9608 0.8824

GGANN (2021) 0.9725 0.9016

DGGANN 0.9861 0.9253

4.3.1 Program Classification

The experiments for student program classification are used to verify whether the pro-
posed work can successfully learn the grammatical structure and semantic information
from source codes, i.e., whether the submitted codes implemented by different students
for the same programming task can be classified into the same category.

Our experiment applies DGGANN to classify program in the OJ system. The tar-
get label of a program is one of 40 questions (represented as an ID). To evaluate the
performance of DGGANN, this paper selects TBCNN, GGNN, GGANN as the base-
line model. Table 2 shows the accuracy of four models applied on two test sets. From
Table 2, we can infer that due to considering dynamic information of running program,
DGGANN’s performance in program classification task is better than baseline model.

4.3.2 Knowledge Tracing

In order to evaluate the effectiveness ofDGGANN-KT, this paper selectsDKT,DKVMN,
SAINT, ASTNN-attn, Code-DKT, TBCNN-KT (replacing DGGANN inDGGANN-KT
with TBCNN), GGNN-KT (replacing DGGANN in DGGANN-KT with GGNN) and
GGANN-KT (replacingDGGANN inDGGANN-KTwithGGANN) as baselinemodels
for knowledge tracing task, and conducts comparative experiments with DGGANN-KT.
The experimental results are shown in Table 3.

It can be seen fromTable 3 that sinceASTNN-attn,Code-DKT,TBCNN-KT,GGNN-
KT, GGANN-KT and DGGANN-KT are able to mine the correlation between ques-
tions through programs, their AUC values are higher than DKT, DKVMN and SAINT.
DGGANN-KT considers the dynamic information of the program, so its performance
is better than ASTNN-attn, Code-DKT, TBCNN-KT, GGNN-KT and GGANN-KT.
Futhermore, it should be noted that the AUC values of DKT, DKVMN and SAINT on
Libre have decreased by about 6% compared with CodeForces, while the AUC values of
ASTNN-attn, Code-DKT, TBCNN-KT, GGNN-KT, GGANN-KT and DGGANN-KT
have decreased by about 3%, which are relatively smaller. According to analysis result,
the reason for this phenomenon is that 34.08% of questions in Libre dataset do not have
knowledge point labels. If the knowledge tracing model does not take the program as
feature, it will be difficult to mine the correlation among these questions without knowl-
edge point labels and the performance of knowledge tracing model will be reduced. In

1650 T. Jin et al.

Table 3. The AUC of knowledge tracing models

Model AUC

CodeForces Libre

DKT (2015) 0.7198 0.6581

DKVMN (2017) 0.7235 0.6627

SAINT (2020) 0.7446 0.6703

ASTNN-attn (2022) 0.7534 0.7294

Code-DKT (2022) 0.7485 0.7151

TBCNN-KT 0.7680 0.7356

GGNN-KT 0.7752 0.7433

GGANN-KT 0.7803 0.7490

DGGANN-KT 0.7897 0.7618

the CodeForces dataset, only 4.62% of the questions do not have knowledge point labels,
making the impact of not using the programs of questions smaller.

4.3.3 Impact Analysis of Important Hyperparameter

This section studies the impact of different program embedding dimensions on perfor-
mance of program classification and KT. The value set of this hyperparameter is {16, 32,
64, 128, 256, 512}. Figure 5 and Fig. 6 show variation curve of test accuracy on program
classification and AUC on KT under different program embedding dimensions.

From Fig. 5 and Fig. 6, it can be seen that with the increase of dimensions, test
accuracy and AUC of model also increases, reaching the best at 256. When dimension

Fig. 5. Test Accuracy of Setting Different Program Embedding Dimensions

Dynamics-Aware Gated Graph Attention Neural Network 1651

Fig. 6. AUC of Setting Different Program Embedding Dimensions

is increased to 512, the performance of model decreases, because oversized dimension
will lead to overfitting and reduce generation ability of the model.

5 Conclusion

In order to solve the problems that quite a few OJ questions lack knowledge point
labels and the current AST based program analysis model does not consider dynamic
information of program, this paper proposes the DGGANN model, which inputs test
cases of questions into program, obtains call frequency coefficients of every node in AST
through code coverage statistical tool, and introduces such call frequency information
into process of program analysis. We apply DGGANN to two tasks in our experiments:
classifying programs by functionalities and KT. It outperforms state-of-the-art methods
in both tasks.

Although this paper has tackled the problem of lacking knowledge point labels to
some extent, there are still many elements in OJ that can have negative impacts on
the adaptive leaning model. For example, when students encounter exercises that they
can not solve, they often refer and clone codes submitted by other students or codes in
blogs about the exercises. Cloning behavior may cause KTmodel to incorrectly evaluate
students’ knowledge state. In future, we plan to propose a KT model, which can detect
and reduce the impact of students’ code cloning behavior on knowledge state assessment.

Acknowledgments. This work was supported by the Young Scientists Fund of the National
Natural Science Foundation of China (No. 61907015) and the Shanghai Committee of Science
and Technology, China (No. 20511102502).

1652 T. Jin et al.

References

1. Lu M, Wang Y, Tan D, et al. Student Program Classification Using Gated Graph Attention
Neural Network[J]. IEEE Access, 2021, 9: 87857–87868.

2. AllamanisM,PengH,SuttonC.Aconvolutional attention network for extreme summarization
of source code[C]//International conference on machine learning. PMLR, 2016: 2091–2100.

3. Lu Y, Li G, Zhao Z, et al. Learning to infer API mappings from API docu-
ments[C]//International Conference on Knowledge Science, Engineering and Management.
Springer, Cham, 2017: 237–248.

4. Mou L, Li G, Zhang L, et al. Convolutional neural networks over tree structures for pro-
gramming language processing[C]//Thirtieth AAAI conference on artificial intelligence.
2016.

5. Li Y, Tarlow D, Brockschmidt M, et al. Gated graph sequence neural net-
works[C]//Proceedings of the 4th International Conference on Learning Representations.
Puerto Rico, OpenReview, 2016.

6. Corbett A T, Anderson J R. Knowledge tracing: Modeling the acquisition of procedural
knowledge[J]. User modeling and user-adapted interaction, 1994, 4(4): 253–278.

7. Piech C, Bassen J, Huang J, et al. Deep knowledge tracing[C]//Proceedings of the Advances
in Neural Information Processing Systems. Quebec, MIT Press, 2015: 505–513.

8. Zhang J, Shi X, King I, et al. Dynamic key-value memory networks for knowledge
tracing[C]//Proceedings of the 26th international conference on World Wide Web. 2017:
765–774.

9. Huang Z, Liu Q, Chen Y, et al. Learning or forgetting? a dynamic approach for tracking the
knowledge proficiency of students[J]. ACM Transactions on Information Systems (TOIS),
2020, 38(2): 1–33.

10. Choi Y, Lee Y, Cho J, et al. Towards an appropriate query, key, and value computation for
knowledge tracing[C]//Proceedings of the Seventh ACM Conference on Learning@ Scale.
2020: 341–344.

11. Jiang B, Wu S, Yin C, et al. Knowledge tracing within single programming practice using
problem-solving process data[J]. IEEE Transactions on Learning Technologies, 2020, 13(4):
822–832.

12. Zhu M, Han S, Yuan P, et al. Enhancing Programming Knowledge Tracing by Interacting
Programming Skills and Student Code[C]//LAK22: 12th International Learning Analytics
and Knowledge Conference. 2022: 438–443.

13. Shi Y, Chi M, Barnes T, et al. Code-DKT: A Code-based Knowledge Tracing Model for
Programming Tasks[J]. arXiv preprint arXiv:2206.03545, 2022.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://arxiv.org/abs/2206.03545
http://creativecommons.org/licenses/by-nc/4.0/

	Dynamics-Aware Gated Graph Attention Neural Network for Student Program Classification and Knowledge Tracing
	1 Introduction
	2 Related Work
	2.1 Program Analysis
	2.2 Knowledge Tracing

	3 Methodology
	3.1 Construction of DAST
	3.2 The DGGANN Model
	3.3 Program Classification
	3.4 Knowledge Tracing

	4 Result
	4.1 Dataset
	4.2 Experiment Setup
	4.3 Experiment Results

	5 Conclusion
	References

