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Abstract. In order to objectively evaluate the indicators affecting cultivated land
productivity, under the background of big data, taking Jiaozuo City as an exam-
ple, data mining is used to analyze the cultivated land productivity indicators, and
finally the cultivated land in Jiaozuo City is divided into three types, and four indi-
cators that have an impact on the cultivated land types in JiaozuoCity are screened:
average annual rainfall, effective soil thickness, total nitrogen and latitude.
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1 Introduction

Big data has been widely applied in agriculture, such as agricultural production, man-
agement, and services, especially in the operation system and management system of
modern agriculture [1]. It is an ultra-large-scale data collection, which dramatically
exceeds traditional database software tools’ capacity range in the storage, management,
and analysis. However, the application in the evaluation of cultivated land productivity is
not deep enough. Traditional evaluation of cultivated land productivity rest on the basis
of small data, which cannot carry out comprehensive evaluation, while big data, by inte-
grating various types of structured, and unstructured data, can carry out Spatial-temporal
long- term tracking, identify various characteristics of farmland. With the advent of the
information age, the application of big data technology can provide data support for
evaluation of cultivated land productivity, the author excavated the big data of cultivated
land in Jiaozuo City, aiming to screen out the land fertility indicators that have an impact
on the type of cultivated land in Jiaozuo City.

2 Literature Review

Big data has the following four application advantages in evaluation of land produc-
tivity [2]. First, big data can solve the problem of improper articulation and inconsis-
tent standards in traditional evaluation. The application of big data technology realizes
information sharing among departments, makes more reasonable decisions, establishes
practical agricultural spatial economic land, and establishes a good system operation
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platform. Second, big data can improve the spatial evaluation system of farmland. The
relevant departments have limitations in grasping the functions and roles of farmland
spatial evaluation, and related evaluation functions are not perfect. The lack of a perfect
spatial evaluation system for farmland before affects the coordination and wholeness of
spatial evaluation. Therefore, applying big data technology can better grasp the current
utilization status and development trend of farmland, build up a holistic spatial evaluation
system of farmland, and build up a top-down spatial coordination planning approach.
Through the information processing of big data, the most reasonable evaluation plan can
be selected, and the rational evaluation of cultivated land productivity can be completed
through regulation means.

Third, Big data can ensure scientific planning [3]. The big data technology of geo-
graphic information and the big data system of geographic information integrate all the
information related to farmland, construction, etc., and provide the natural geographic
information in the farmland area, including soil conditions, light conditions, temperature,
and humidity conditions, which is the basis of evaluation of cultivated land productiv-
ity [4]. Moreover, the big data technology presents the past construction information
of farmland, including the crops planted, water conservancy, and irrigation projects.
Furthermore, big data technology can provide market information, especially the sales
information of agricultural products, and feed market information to decision-makers in
time to provide a reference for farmland planning and design. With the help of big data
technology, the relevant units can use the data platform to break the limitation of time
and space in the revision or evaluation of cultivated land productivity that has not been
fully considered, providing a more convenient office environment for staff at all levels,
improving office efficiency, enhancing the scientific nature of evaluation, and improving
themanagement level. Fourth, big data can enhance the supervision of farmland resource
utilization [5].

3 Empirical Study

3.1 Research Objects and Methods

10 county towns in Jiaozuo City were used as research areas, and the arable land eval-
uation database established by the research was analyzed by using the clustering model
in the statistical model, and the main factors affecting cultivated land productivity were
screened. Using SPSSModeler tools for data mining, the Two Step-AS clustering model
was used to classify cultivated land in Jiaozuo City. Data mining standard process
CRISP-DM model [6], consisting of six stages (Fig. 1).

3.2 Data Wrangling

In this study, the potential classification indicators for cultivated land productivity eval-
uation are divided into: landform type, aspect, and texture. The number of categories
of each index is: the landform type is divided into 60 categories, the slope is 70 cate-
gories, and the texture is 60 categories. After adjustment by SPSS modeler data mining:
landform type indicators are divided into three categories: mountains, hills and plains;
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Fig. 1. CRISP-DM model process

The aspect type indicators are divided into 8 categories, which are east, south, west,
north, southeast, southwest, northwest, northeast; The texture category indicators were
divided into six categories: aquifer soil, brown soil, clay soil, medium brown loam, sandy
soil, and amphibious, of which the missing value of landform type was 11.55%, 75%
of texture indicators are other categories, so their classification is meaningless. For the
missing value data, the author uses the method of replacing the missing value to deal
with it, the comparison of indicators before and after classification is shown in Table 1.

Due to the large number of continuous ground force indicators, it ismore complicated
to process the data, and this study mainly preprocesses the data of outliers, extremes
and missing values. In this study, 4 continuous indexes of soil nutrient were extracted,

Table 1. Number of various indexes of data before and after adjustment

Items Landform types Slope orientation Texture

Number of indexes
before adjustment

60 70 60

Number of indexes
after adjustment

3 9 6

Table 2. Soil nutrient index grouping

Group Organic matter
(g·kg-1)

Available
phosphorus
(g·kg-1)

Total nitrogen
(g·kg-1)

Available
potassium
(g·kg-1)

pH

1 >25 >30 >1.05 >180 <3.50

2 20–25 10–30 0.85–1.05 130–180 3.50–4.5

3 15–20 8–10 0.65–0.85 80–130 4.50–5.50

4 10–15 4–6 0.35–0.65 30–80 5.50–6.50

5 5–10 2–4 0.1–0.35 10–30 6.50–7.50

6 <5 <2 <0.1 <110 >7.50
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Table 3. Grouping of site indexes

Group Average annual
rainfall

Longitude Latitude Effective soil layer
thickness

Altitude

1 <1400 104.52–105.08 16.39–16.84 35–50 0–50

2 1400–1500 105.08–105.65 16.84–17.29 50–65 50–95

3 1500–1600 105.65–106.22 17.29–17.75 65–80 95–135

4 1600–1700 106.22–106.78 17.75–18.20 80–95 135–1

5 1700–1800 >95 185–230

6 >1800 >230

including organic matter, available phosphorus, total nitrogen, and pH, see Table 2; 6
of site indexes were extracted, including average annual rainfall, longitude, latitude,
effective soil layer thickness, and altitude, see Table 3. Among them, the soil nutrient
indicators were grouped with reference to the “Methods for Survey, Monitoring and
Evaluation of Cultivated Land Quality”. The altitude and effective soil thickness are
divided according to the fixed width, and the average annual rainfall and longitude and
latitude reference values are divided by a fixed width [7].

4 Results and Analysis

Preliminary calculation, from the perspective of the importance of indicators, the top 9
indicators are shown in Fig. 2. After data mining, taking 0.2 as the critical value, the
ground force index greater than the feature importance of>0.2 is used as the eigenvalue
of the model cluster, the important indicators affecting the soil fertility index are the
annual average rainfall, total nitrogen, effective soil thickness, and latitude, the annual
average rainfall importance is 0.95, the importance of latitude is 0.88, the importance
of total nitrogen is 0.79, and the importance of effective soil thickness is 0.74, Since the
organic matter content is related to total nitrogen, the organic matter content and total
nitrogen are hidden when the critical value is 0.2.

According to the soil fertility indicators (annual average rainfall, latitude, total nitro-
gen, effective soil thickness), the Two Step-AS clustering model was established [8].
The conventional number of clusters in the final model is three, that is, the cultivated
land types in Jiao zuo City can be divided into three types: mountainous, hilly and plain,
and the characteristics of each cultivated land type are shown in Table 4.

As important indicators to measure the effect of cluster analysis, the overall model
goodness obtained by using the TwoStep-AS clustering algorithm in this study is 0.28
[9], and the goodness and importance of each cluster are shown in Table 5. According to
the analysis in Table 5, the goodness of each type is medium, but the importance is good,
and the cluster model used in the study is generally cohesive and has good separation.



Evaluation of Cultivated Land Productivity Based on the Perspective 537

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. The initial characteristic importance of land productivity

Table 4. The clustering center for three types of farmlands

Land productivity indexes Cluster-1 Cluster-2 Cluster-3

Average annual rainfall/mm 1500–1600 1600–1700 >1800

Total nitrogen/(g·kg)−1 0.35–0.65 0.65–0.85 0.1–0.35

Latitude/(°) 17.75–18.20 17.29–17.75 16.39–16.84

Effective soil thickness/cm 65–95 65–95 50–65

Table 5. Model quality

Clustering types Number of sample plots Goodness of fit Importance

Cluster-1 1534 0.174 0.82

Cluster-2 1445 0.479 0.573

Cluster-3 2432 0.498 0.92

5 Conclusion

In this study, the factors affecting the productivity of cultivated land in Jiaozuo City
were evaluated by big data mining, which greatly improved the work efficiency, and the
cultivated land in ten county-level cities of Jiaozuo City was divided into three types
of cultivated land: Cluster-1, Cluster-2 and Cluster-3, and the most significant feature
of Cluster-1 is that the average annual rainfall is between 1500–1600 mm. The total
nitrogen is between 0.35–0.65 and the effective soil thickness is between 65–95; the
most significant feature of Cluster-2 is that the average annual rainfall is between 1
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600–1 700 mm, the total nitrogen is between 0.65–0.85, and the effective soil thickness
is 65–95; the most significant feature of Cluster-3 is that the annual average rainfall is
greater than 1800, the total nitrogen is between 0.1–0.35, and the effective soil thickness
is between 50–65. The most important soil fertility indicators affecting the quality of
cultivated land in Jiaozuo City are: annual average rainfall, total nitrogen, latitude, and
effective soil thickness. Today, Chinese research on big farmland data is mainly based
on theoretical descriptions, propaganda of laws and regulations or application prospects,
and a lack of practical applications [10]. To solve these difficulties, we have some policy
suggestions:

First, strengthen policy guidance support. The application of big data technology is
the focus of the development of modern information technology. Therefore, the govern-
ment’s support for big data technology is the main factor in using big data technology
to evaluation of cultivated land productivity. Second, establish a big data system for
evaluation of cultivated land productivity. The government needs to establish an eval-
uation of cultivated land productivity with reference to big data technology so as to
deepen the integration of big data technology in various departments, it is necessary to
deeply explore the intrinsic relationship between land productivity evaluation and big
data technology, optimize the traditional land productivity evaluation with the help of
big data technology, and construct relevant prediction models. In short, borrowing big
data technology to evaluation of cultivated land productivity is an inevitable requirement
for the development of modern agricultural technology.

References

1. A. Cravero and S. Sepúlveda, “Use and adaptations of machine learning in big data—Appli-
cations in real cases in agriculture,” Electronics, vol. 10, no. 5, p. 552, 2021.

2. A.Weersink, E. Fraser, D. Pannell, E. Duncan, and S. Rotz, “Opportunities and challenges for
big data in agricultural and environmental analysis,” Annual Review of Resource Economics,
vol. 10, no. 1, pp. 19–37, 2018.

3. D. Kamrowska-Załuska, “Impact of ai-based tools and urban big data analytics on the design
and planning of cities,” Land, vol. 10, no. 11, p. 1209, 2021.

4. Zhang and N. Cao, “Application and research progress of Geographic Information System
(GIS) in agriculture,” in 2019 8th International Conference on Agro-Geoinformatics (Agro-
Geoinformatics), 2019, pp. 1–5.

5. J. Astill, R. A. Dara, E. D. G. Fraser, B. Roberts, and S. Sharif, “Smart poultry management:
Smart sensors, big data, and the internet of things,” Computers and Electronics in Agriculture,
vol. 170, p. 105291, 2020.

6. C. Schröer, F.Kruse, and J.M.Gómez, “Asystematic literature reviewonapplyingCRISP-DM
process model,” Procedia Computer Science, vol. 181, pp. 526–534, 2021.

7. J. Peng, C. Tang, and C. Jiang, “Evaluation of Land Productivity in Rubber Plantations Based
on Data Mining,” Journal of Tropical Biology, pp. 380–386, 2019.

8. A. A. Said, L. A. Abd-Elmegid, S. Kholeif, and A. A. Gaber, “Classification based on cluster-
ing model for predicting main outcomes of breast cancer using hyper-parameters optimiza-
tion,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 12,
2018.



Evaluation of Cultivated Land Productivity Based on the Perspective 539

9. T. Wendler and S. Gröttrup, Data mining with SPSS modeler: theory, exercises and solutions.
Springer, 2016.

10. C. Liu, Z. Zhang, and S. Zhang, “Smart Initiatives for Land Resource Management:
Perspectives and Practices from China,” Journal of Urban Technology, pp. 1–19, 2020.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/

	Evaluation of Cultivated Land Productivity Based on the Perspective of Big Data
	1 Introduction
	2 Literature Review
	3 Empirical Study
	3.1 Research Objects and Methods
	3.2 Data Wrangling

	4 Results and Analysis
	5 Conclusion
	References




