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Abstract. For securities investors, the return and risk of investment are the two
main aspects of their concern. However, in real life, the vast majority of investors
are not professionally trained, which makes them confused about portfolio selec-
tion in the face of tens of thousands of investment targets in the financial market.
The multi-objective optimization problem of investment return and risk is solved
by using an improved large-scale multi-objective optimization algorithm. From
experimental results, it can be seen that the improved algorithm can get better
results than previous algorithms on the large-scale multi-objective problems. The
portfolio with the highest Sharpe ratio produced by the improved algorithm out-
performs the CSI 300 index over the same period in terms of return and maximum
retracement. It shows that the improved algorithm can achieve the selection of the
investors’ ideal portfolio from a larger number of stocks.

Keywords: large-scale multi-objective optimization · portfolio management ·
immune cloning

1 Introduction

With the improvement of per capita disposable income, people’s awareness of financial
investment is significantly enhanced. According to data, 19.6336 million new investors
were added in 2021, ofwhich 19.5814millionwere natural person investors. The number
of investors at the end of 2021 is 197.4085 million. However, by the end of 2021, the
number of registered employees in the securities industry was 359, 800 1, accounting for
only 1.8 per thousand of all market investors. In addition, according to Wind Financial
Terminal data, as ofOctober 27, 2022, therewere 4960 stocks inChineseA-sharemarket.
Facing to such a huge stock market, many investors often feel confused while choosing
assets and do not know how to make portfolio to get the maximum returns and take
the minimum risk at the same time. Obviously, these two objectives are conflicting,
which is a typical multi-objective optimization problem. To solve this multi-objective
optimization problem, Markowitz proposed a mean-variance model 2, which assumes
that investors who try to maximize their profits and abhor risk are rational.

In order to solve this multi-objective optimization problem, many scholars have
proposed that intelligent algorithms such as genetic algorithm can solve the problem.
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Kyong Joo Oh et al. used genetic algorithm to optimize an index fund management
scheme for portfolio, and shows outstanding advantages in comparison with S & P 500
index and Korea KOSPI200 index 3. Zhang et al. also used genetic algorithm to prove
the effectiveness of genetic algorithm in solving portfolio optimization problems under
different risk measures 4. Bian used ant algorithm and simulated annealing algorithm to
solve this problem 5. Xiong et al. used multi-objective evolutionary algorithm to solve
the problem of long-term portfolio management of bank wealth management products 6.
However, although these multi-objective optimization algorithms can get a large number
of investment portfolios under different investment risks, these algorithms only select
no more than 100 stocks for portfolio. It may make investors miss the stocks with higher
returns in the market. In addition, investors still need to choose the most cost-effective
portfolio from a large number of portfolios obtained by the algorithm.

In order to improve the return of investors in the A-share market and facilitate their
work in portfolio selection, a large-scale multi-objective optimization algorithm based
on adaptive immune cloning is proposed in this paper. Sharpe ratio is introduced into
the optimization process of the algorithm to express the return-risk ratio of a certain
investment portfolio. In this paper, 744 stocks are selected from the A-share market.
The reason for choosing these stocks is that there are relatively long-term and com-
plete historical data, so that the serendipity of risk, return and Sharp ratio will be less.
The experimental results show that the improved algorithm can produce higher returns
and withdraw smaller portfolios than the CSI 300 index, thus saving investors’ time in
portfolio selection.

2 Related Background

2.1 Markowitz Model

The Markowitz model, or mean-variance model, assumes that the future return and risk
of a particular portfolio can be extrapolated from past experience and data. The mean-
variance model considers two main factors: the rate of return and the risk taken by the
investor. The overall return of a portfolio is defined as the weighted average combination
of the expected rates of return of the assets contained within it, which can be formulated
as (1).
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where �W = {w1,w2, . . . ,wi, . . . ,wN }, 1 ≤ i ≤ N , wi is the weight of asset i in the
portfolio. N is the total number of optional assets in the portfolio, and E(Ri) is the
expected return of asset i.

Similarly, the overall risk of each portfolio is defined as the weighted combination
of the covariances of the returns of the assets included in it, i.e.
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where σij
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is the covariance between the asset i and asset j. For example, E
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and Ei are respectively the past return and average past return of asset i. E
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)
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are respectively the past return and average past return of asset j. The value of σij
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minus the product of Ei and Ej. The risk σ 2
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is the sum of elements of vector �W

multiplied by the covariance multiplied by the transposed vector �W .
It can be seen from above formulas that finding the best investment portfolio is to find

a reasonable asset weight combination �W , so that the return of E
(�R| �W

)
is as much as

possible while the risk σ 2
(�R| �W

)
is as less as possible, and at the same time �W needs to

meet the restrictive condition
∑N

i=1 wi = 1, wi ≥ 0 that is, short selling is not allowed.

2.2 Sharpe Ratio

In order to evaluate the return-risk ratio of the portfolio obtained by the algorithm, we
need a measure that can consider not only the profitability of the relevant portfolio, but
also its risk, and this measure can also compare different portfolios. For this reason, we
choose Sharp ratio 7, which represents the return-risk ratio of a portfolio. The Sharp
ratio represents how much excess profit can be reaped for every unit of risk borne by the
investor who chooses the portfolio. The calculation formula is as follows:

Sharpe
(�R| �W

)
= E

(�R| �W
)
−R0

σ
(�R| �W

) (3)

where Sharpe
(�R| �W

)
represents the Sharpe ratio of the portfolio, R0 is the risk-free rate

of return, andσ
(�R| �W

)
is the standard deviation of the portfolio.Here, the risk-free return

R0 is expressed by the average closing price of the yield of Chinese 10-year treasury
bonds during the period from June 30, 2004 to June 30, 2022.

2.3 Large-Scale Multi-objective Optimization Framework

In order to accelerate the convergence speed of existing multi-objective algorithms,
Cheng He et al. proposed a large-scale multi-objective optimization framework
(LSMOF) based on problem reconstruction 8, which transforms a large-scale multi-
objective problem into a low-dimensional single-objective optimization problem. First
of all, some reference solutions are selected in the decision space to construct multiple
bidirectional reference vectors. Then the distance from the ideal or the lowest point
in the decision space to the frontier surface is defined as the decision variable of the
restated problem. Finally, the target space is restated by performance metrics (for exam-
ple, hypervolume (HV) metrics 9), where the values obtained through the performance
metrics are used as the fitness of the restated problem.
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3 Proposed Framework

In order to solve problems that genetic algorithm random and undirected iterative search,
immune algorithm (IA) was proposed by imitating the immune system of human body.
The immune cloningmode in the immune algorithm is the key to determine the effective-
ness of the algorithm, so this paper improves LSMOFby the immune cloningmechanism
of the immune algorithm, including antigen recognition, antibody cloning and mutation,
and antibody adsorption.

3.1 Antigen Identification

In human immune system, antibodies must accurately identify the correct antigen, which
is the basic premise for antibodies to destroy antigens. In order to enable the antibody
to quickly find the antigen that needs to be eliminated, we directly select several evenly
distributed points on the real front in the target space as our antigens, which are the
targets that other antibodies should pursue. In the application of investment portfolio,
this can ensure that the portfolio generated by the algorithm can obtain a wider range
of returns and risks as far as possible, so that later investors can choose their preferred
investment methods according to their own preferences.

3.2 Antibody Cloning and Mutation

After accurately identifying the antigen, we need to clone and mutate the antibody
in order to solve the problem better. The cloning operation provides enough excellent
individuals for subsequent mutation operation and optimization. Under the stimulation
of antigen, the algorithm quickly clones multiple identical individuals, and then mutates
each decision variable of each cloned individual.

In general, the mutation operator takes the real constant in the search process of
the algorithm, but it is difficult to determine the size of the mutation operator in the
implementation process. If the mutation rate is too large, the search efficiency of the
algorithm and the accuracy of the global optimal solution are not good enough; if the
mutation rate is too small, the population diversity will be reduced, which is prone to
precocious phenomenon. Therefore, we design and use an adaptive mutation operator,
which can adjust itself according to the search progress of the algorithm. The adaptive
mutation operator is as follows:

λ = e1−
Gmax

Gmax−G+1 (4)

F = F0 × 2λ (5)

where F0 represents the initial mutation operator, F represents the mutation probability,
Gmax represents the maximum generation of iterations, and G represents the current
generation of iterations. When the algorithm starts, the adaptive mutation probability
is 2F0. With the operation of the algorithm, the current number of iterations G gradu-
ally increases, λ gradually approaches zero, and the late mutation rate approaches F0.
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The adaptive method can not only maintain individual diversity and avoid precocity
in the initial stage of the algorithm, but also retain the excellent individuals and avoid
the destruction of the optimal solution, increasing the probability of finding the global
optimal solution.

3.3 Antibody Adsorption

After cloning and mutation operations, we need to select and retain the best clones
and give up other clones. Our method is to screen the best clones by calculating the
Minkowski distance from the clone to the antigen in the target space, and these excellent
antibodies have the shortest distance to the antigen. The Minkowski distance formula is
as follows:

D(x, y) =
(

D∑
d=1

|xd − yd |p
) 1

p
(6)

whereD is the upper limit of the number of decision variables, d is the lower limit of the
number of decision variables, and d starts from 1. x represents the clonal solution set,
and y represents the imaginary antigen. The method repeats N (population size) times
in each iteration and selects each clonal antibody.

In addition, this part is modified according to the application of the portfolio that
needs to be realized after the algorithm, that is, the Sharpe ratio method is used to select
and retain the best clones. The method of calculating the Sharp ratio has been described
above.

4 Experimental Results

4.1 Performance Indicator

In order to verify the performance of the improved algorithm, this paper compares
improved algorithm with other representative large-scale multi-objective optimization
algorithmsMOEA/DVA 10, WOF 11 and previous algorithm LSMOF on nine problems
of test problem set LSMOP 12. Each algorithm runs 30 times independently on each
test problem, and uses Wilcoxon rank sum test 13 to compare the improved algorithm
with the classical algorithms at a significant level of 0.05. The symbols ‘ +’, ‘-’ and ‘ =
’ indicate that the comparison algorithm is significantly better than, significantly worse
than, and statistically equal to improved algorithm, which named by LSMOF-IC.

In this experiment, the performance evaluation index IGD 14 is used to evaluate and
compare the performance of the four algorithms. IGD is a comprehensive performance
evaluation index, which mainly evaluates the convergence performance and distribution
performanceof the algorithmbycalculating theminimumdistancebetween each solution
set on the real frontier and the individual set obtained by the algorithm. The smaller the
IGD value is, the better the comprehensive performance of the algorithm is, including
convergence performance and distribution performance. IGD is defined as follows:

IGD(P,Q) =
∑

v∈P d(v,Q)

|P| (7)
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where P is the point set evenly distributed on the real front surface, and |P| is the
number of point sets distributed on the real front. Q is the solution set obtained by the
algorithm. d(v,Q) is the minimum Euclidean distance from individual v in population
P to population Q. IGD evaluates the comprehensive performance of the algorithm by
calculating the average of theminimumdistance from the point on the real Pareto frontier
to the obtained population. Through the above formula, we can see that the better the
convergence performance of the algorithm is, the smaller the d(v,Q) is. Not only that,
but also if most of the individuals in the population are concentrated in a narrow region,
the worse the distribution performance of the algorithm is, the greater the individual
d(v,Q) is. In this way, we can evaluate the convergence and distribution performance
of the algorithm.

4.2 Experimental Settings

In order to be fair, this paper uses the parameter settings recommended by each algorithm
in the theory to ensure that each algorithm can achieve the best performance reported
in the literature. All the comparison algorithms are implemented on PlatEMO 15. The
parameters of the algorithm in the experiment are set as follows:

(1) population size N. For test cases with two goals, the overall size is set to 100, and
for test cases with three goals, the overall size is set to 105.

(2) the specific parameter setting of each algorithm. In WOF, the number of evaluations
used to optimize each original question T1 is 500, and for refactoring questions, T2
is 250, parameter Q is 3, the number of packets is 4, and the grouping method uses
ordered grouping. At the same time, NSGA-II is embedded into WOF and LSMOF,
and LSMOP is compared. In MOEA/DVA, the number of sampling solutions used
to identify the control attributes of decision variables is set to 20, and the maximum
number of trajectories used to judge the interaction between two variables is set to 6;
in LSMOF, the reference solution r is set to 10, the population size of single-objective
optimization is set to 30, and the mutation factor Fm in evolutionary algorithm is set
to 0.8. In LSMOF-IC, the number of clones NCL is set to 50, and the initial value of
adaptive operator F0 is 0.45. The disturbance range of decision variables depends
on the value range of decision variables of specific test problems. The tr for both
LSMOF and LSMOF-IC is set to 0.5.

(3) termination conditions. The termination condition of all test instances is 50000 times
of evaluation.

4.3 General Performance

The statistics of the final IGD experimental results of these algorithms are shown in
Table 1. The most effective examples have been represented with a gray background.

By analyzing Table 1, we can see that among the 18 test cases shown, compared
with the other three algorithms, the best number of IGD indicators of LSMOF-IC has
reached 16. Among them, for the three-objective LSMOP1 problem, LSMOF is the best
of the four algorithms. For the LSMOP9 problem, the WOF is the best except when the
number of decision variables is 1000. In most other examples of problems, LSMOF-IC
works best among the four algorithms. It can be seen that the immune cloning strategy
can make the LSMOF get a better performance and produce a better optimization effect.
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Table 1. Comparison between LSMOF-IC and other three classical large-scale multi-objective
optimization algorithms on LSMOP

Problem M D MOEA/DVA WOF-NSGAII LSMOF LSMOF-IC

LSMOP1 2 1000 1.05e + 1
(2.68e-1) -

6.79e-1 (1.20e-1) - 6.37e-1
(1.97e-2) -

4.18e-1
(8.03e-2)

3 1000 1.07e + 1
(2.36e-1) -

8.01e-1 (1.30e-1) - 7.25e-1
(1.24e-2) +

7.51e-1
(1.93e-2)

LSMOP2 2 1000 4.05e-2
(2.84e-4) -

1.92e-2 (1.54e-3) - 1.81e-2
(5.41e-4)-

1.12e-2
(3.36e-4)

3 1000 6.37e-2
(3.82e-3) -

7.00e-2 (4.76e-4) - 7.05e-2
(3.08e-3) -

6.00e-2
(1.66e-3)

LSMOP3 2 1000 1.07e + 3
(9.29e + 2) -

1.58e + 0
(1.25e-1)-

1.57e + 0
(1.08e-3) =

1.57e + 0
(1.03e-3)

3 1000 4.47e + 2
(4.02e + 2) -

8.61e-1 (3.66e-4) - 8.60e-1
(3.00e-5) -

8.54e-1
(2.12e-2)

LSMOP4 2 1000 7.66e-2
(3.00e-4) -

5.99e-2 (2.38e-3) - 3.20e-2
(9.51e-4) -

2.51e-2
(4.32e-4)

3 1000 1.30e-1
(3.19e-3) -

1.39e-1 (4.90e-3) - 1.14e-1
(2.83e-3) =

1.13e-1
(2.99e-3)

LSMOP5 2 1000 2.26e + 1
(5.20e-1) -

7.42e-1 (1.13e-16)
=

7.42e-1
(1.13e-16) =

7.42e-1
(1.13e-16)

3 1000 1.92e + 1
(5.90e-1) -

5.41e-1 (7.27e-5)
=

7.20e-1
(1.98e-1) -

5.39e-1
(3.44e-3)

LSMOP6 2 1000 3.32e + 3
(2.78e + 3) -

6.82e-1 (1.39e-1) - 3.17e-1
(4.88e-3) =

3.13e-1
(2.53e-2)

3 1000 3.92e + 4
(6.78e + 3) -

1.18e + 1 (3.25e +
1)-

9.39e-1
(2.02e-1) -

8.14e-1
(1.12e-1)

LSMOP7 2 1000 7.97e + 4
(3.37e + 3) -

1.51e + 0 (4.03e-2)
=

1.51e + 0
(4.08e-4) =

1.51e + 0
(3.56e-3)

3 1000 2.05e + 3
(1.83e + 3) -

9.23e-1 (3.49e-2) - 9.10e-1
(5.90e-2) =

8.58e-1
(8.26e-2)

LSMOP8 2 1000 1.90e + 1
(4.00e-1) -

7.42e-1(1.13e-16)
=

7.42e-1
(1.13e-16) =

7.42e-1
(1.13e-16)

3 1000 7.43e-1
(1.16e-1) -

3.56e-1 (6.34e-2) - 3.60e-1
(2.90e-2) -

1.31e-1
(5.38e-2)

LSMOP9 2 1000 5.51e + 1
(1.47e + 0) -

8.09e-1 (2.13e-3) - 8.07e-1
(2.13e-3) -

7.85–1
(2.17e-2)

3 1000 1.36e + 2
(4.84e + 0) -

1.08e + 0 (1.14e-1)
+

1.34e + 0
(1.99e-1)-

1.17e + 0
(9.94e-2)
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4.4 Application of Portfolio Management

In order to verify the effectiveness of the algorithm proposed in this paper in solving the
portfolio optimization problem of Markowitz mean-variance model, this paper selects
744 stocks from A-share market, calculates the historical data of these stocks from June
1, 2004 to May 30, 2022, and simulates the trend of the resulting portfolio from June 1,
2022 to September 30, 2022. The experimental results are shown in Fig. 1.

According to the analysis of Fig. 1, the Abscissa represents the time and the ordinate
represents the cumulative rate of return of the portfolio. Here we choose the CSI 300
index as the control group for comparison. It can be seen that the combination with the
highest Sharp ratio obtained by the algorithm has a cumulative return of 4.71% after 86
trading days, while the cumulative return of the CSI 300 index in the same period is −
6.82%.

In addition, the portfolio obtained by the algorithm reached the highest return of
14.36% on the 21st trading day, while the highest return of the CSI 300 index reached
only 10.11% in the same period. The excess return of the investment portfolio obtained
by the algorithm is 4.25% higher than that of the CSI 300 index.

Finally, the portfolio obtained by the algorithm is also better than the CSI 300 index
in controlling the maximum pullback. The maximum withdrawal of the portfolio from
the highest point of the 21st trading day to the lowest point of the 80th trading day is only
−12.86%, which is far better than the 16.93% of the CSI 300 index. In other words, the
portfolio obtained by the algorithm allows investors to avoid at least 4.07% of capital
losses.

Fig. 1. Comparison between the Investment portfolio obtained by LSMOF-IC and the CSI 300
Index.



Improved Large-Scale Multi-objective Optimization Algorithm 835

5 Conclusion

In this paper, the immune cloning mechanism is added to the first stage of LSMOF.
The improved algorithm’s performance in the LSMOP test problem set is compared
with three classical large-scale multi-objective optimization algorithms. Experimental
results prove that the immune cloning mechanism can make a certain optimization effect
on LSMOF and enhance the comprehensive ability of the original algorithm. After that,
this paper uses the improved LSMOF-IC to calculate the best portfolio of A-share’s
744 stocks, and selects the portfolio with the highest Sharpe ratio to compare with the
trend of CSI 300 index in the same period. The experimental results prove the feasibility
and practicability of the improved immune algorithm in obtaining excellent investment
portfolio. However, in fact, there are still some problems in this application, such as
the mathematical model and algorithm do not take into account the impact of corporate
fundamentals, market trading sentiment and other aspects on the stock trend. Therefore,
how to take the basic financial situation of assets into account in the choice of investment
portfolio and provide investors with a portfolio with a higher safety factor is one of the
research directions in the future.
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