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Abstract. With the development of computer application in recent years, the
computational allocation of resources becomes more important. Many Scholars
have done a lot of research on task scheduling problem. In this paper, we classify
scheduling problems by classifying the nature of tasks, andmake a survey with the
existing schedulingalgorithms and the decision conditions of scheduling problems.
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1 Introduction

Task scheduling problem is a study of how to allocate scarce resources to different tasks
within a certain period of time. It is a decision-making process that aims to optimize one
or more goals. In this section, we first describe the model of the task, and then classify
the scheduling problems.

1.1 Task Scheduling

The relevant terms used in task scheduling are defined as follows. In this paper, a six-
tuple (si, ci, ti, di, pi, hi) is used to describe a single periodic task τi, which is shown in
Fig. 1.

Fig. 1. Periodic task model diagram
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Where si is the time interval between the request time and the execution start time of
the task, it’s generally thought that for tasks τi, si = Si. ci indicates the time required for
a single execution of a task, ci = Ci, and Ci indicates the minimum duration required
for a single execution of a task. ti indicates the time interval of two requests for the
same task, this paper considers that the periodic task is satisfied ti = Ti. di indicates the
relative deadline of the task, the task must be completed within the deadline. pi indicates
the time interval between two adjacent execution moments of a task. hi represents the
power of the fourth task.

1.2 Scheduling Problem Classification

According to the description of periodic tasks above, scheduling problems are classified
from different perspectives:

1. Preemptive scheduling and non-preemptive scheduling

When a task starts to be executed, if another task with a higher priority appears,
you can divide scheduling problems into preemptive scheduling problems and non-
preemptive scheduling problems based on whether the current task can be replaced. If
a lower-priority task can be interrupted by a higher-priority task, it is called preemptive
scheduling.

2. Periodic task scheduling and non-periodic tasks scheduling

Tasks are divided into periodic tasks and non-periodic tasks according to whether
the time interval of two adjacent request moments of the same task is constant or not.
The time interval between two requests for the same task ti = Ti, Ti is a constant value,
the task is called a periodic task. Otherwise, it is called non-periodic task.

3. Strict periodic tasks scheduling and non-strict periodic tasks scheduling

Periodic tasks are divided into strictly periodic tasks and non-strictly periodic tasks
based on whether the time interval of two adjacent execution moments of the same task
is constant. If pi = Pi, where Pi is constant less than or equal to Ti, the task is called
strictly periodic task. On the contrary, it is called non-strictly periodic task.

At present, great progress has been made in the research of scheduling problems in
the academic circle. Next section summarizes the existing researches in the academic
circle respectively in terms of the classification of scheduling problems (preemptive strict
periodic task scheduling, non-preemptive strict periodic task scheduling, preemptive
non-strict periodic task scheduling, non-preemptive non-strict periodic task scheduling,
and non-periodic task scheduling).

2 First Level Heading

2.1 Preemptive Strict Periodic Task Scheduling

At present, some mature results have been obtained for preemptive strict periodic task
scheduling. In 1973, Liu and Layland made a detailed study on this problem [1], and
proposed the static priority scheduling algorithmRMalgorithm and the dynamic priority
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scheduling algorithm EDF algorithm. Among them, RM algorithm assigns its priority
according to the task cycle. The shorter the cycle, the higher the priority of the task, and
the priority of the task is fixed. The EDF algorithm determines the priority of a task by
the distance between the task deadline and the current moment. The closer the distance
is, the higher the priority will be. It is also proved that the two algorithms are respectively
the optimal algorithms in the single-processor static priority scheduling algorithm and
the dynamic priority scheduling algorithm (if the algorithm can not schedule the task
set, there is no other algorithm can schedule). At the same time, the conditions of
single-processor scheduling for the two algorithms are given.

A task set (τ1, · · · , τm) is giving, and if the utilization rate of this task satisfies the
condition of Eq. (1), then the task set can be scheduled using RM algorithm. When
the number of tasks tends to infinity, it can be scheduled by RM algorithm when the
utilization ratio of task set is less than 0.693.

U ≤ m ·
(
21/m − 1

)
(1)

For a task set composed of m tasks, the task set can be scheduled by EDF algorithm if
and only if the utilization rate of the m tasks satisfies Eq. (2).

U ≤ 1 (2)

However, the schedulable judgment condition of RM algorithm in Eq. (2) is only
a sufficient condition, some task sets that the utilization exceeds this limit can still be
scheduled by RM algorithm [2]. Therefore, Lehoczky et al. conducted a more accurate
study on the characteristics of static priority scheduling algorithmandproposed sufficient
and necessary conditions for the schedulability determination of RM algorithm [3]. For
a task set (τ1, · · · , τm), Eq. (3) which is used in [3] to represent the accumulated demand
of the previous i task in the task set for the processor within a time period [0, t]. Then,
relevant parameters are defined as shown in Eq. (3):

Wi(t) = ∑i
j=1 Cj · � t

Tj
�

Li(t) = Wi(t)
t

Li = min{0≤t≤Ti}Li(t)
L = max{0≤t≤Ti}Li

(3)

Based on the above definition, Lehoczky et al. gave the sufficient and necessary
conditions for the schedulability of this task set as L ≤ 1. RM algorithm requires the
task’s deadline to be equal to its period, and for those tasks whose deadline is not equal
to the period, [4] proposes a static priority scheduling algorithm, deadtime-monotonic
(DM) algorithm. Similar to RM algorithm, DM algorithm defines the priority of a task
according to the size of the task’s deadline. The task with the shortest deadline has the
highest priority, and it is proved that DM algorithm is the best static priority scheduling
algorithm for single processor when the deadline is less than the cycle.

A task set transformation method is proposed in [5]. By transforming the cycle and
execution time of the original task, it is proved that if the transformed task set can be
scheduled by a single processor, then the original task set can be scheduled by a single
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processor. The specific transformation method is shown in Eq. (4).

T ′
i = Ti · 2log�Tm/Ti�

C ′
i = Ci · 2log�Tm/Ti� (4)

where Ti′ and Ci′ are the period and execution time of the task i in the changed task
set, Ti and Ci are the period and execution time of the task i in the original task set, and
Tm are the period of the task with the largest period among all the tasks in the original
task set. In addition, it also analysed a special task set with increasing task cycles and
the cycle ratio of adjacent tasks less than 2, and proved that sufficient conditions for this
task set to be scheduled by a single processor were shown in Eq. (5) in [5].

m∑
i=1

Ci

Ti
≤

m−1∑
i=1

[
Ti+1

Ti

]
+ 2

T1
Tm

− m (5)

where Ti and Ci are the cycle and execution time of the task i in the special task set, and
Ti+1, Ti, Tm represents the cycle of the task i + 1, i and the maximum cycle of the task
in the task set, and m represents the number of tasks in the task set.

The above researches are all aimed at the scheduling decision conditions and schedul-
ing algorithms on single processor. The current researches on task scheduling on multi-
processor are not very mature. The packing problem in [6] proves that the scheduling
problem of assigning a task to a processor has been proved to be NP hard. Meanwhile,
based on the prior knowledge in [1], a multi-processor scheduling algorithm with com-
plexity O(n · log(n)) is proposed. By transforming the task cycles in the task set, this
algorithm can provide a higher utilization bound than the RM algorithm.

In [7], it studies the decision conditions of schedulability of multi-processor tasks,
proving that when all tasks in the task set meet the deadline equal to the period, the
sufficient and necessary condition of multi-processor schedulability is that the sum of
the utilization rate of the task set is less than or equal to n the number of processors, as
shown in Eq. (6).

U ≤
m∑
i=1

Ci

Ti
≤ n (6)

Meanwhile, for all task sets whose deadlines are smaller than their cycles, the
scheduling condition satisfying Eq. (6) becomes a sufficient condition formultiprocessor
schedulability.

2.2 Preemptive Non-strict Periodic Task Scheduling

In [1], Liu and Layland studied the scheduling problem of preemptive strict periodic
tasks, and analyzed and proved that correlation algorithms and schedulable decision
conditions were also applicable to preemptive non-strict periodic tasks. It studies the
data transmission and communication technology of time deterministic network (TDN)
in [8], and proposes a time deterministic network scheduling algorithm. Aiming at the
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preemptive non-strict periodic task scheduling problem, a non-strict periodic scheduling
algorithm based on multi-matrix periodic joint scheduling is designed. The algorithm
takes the receiving and sending time of network nodes as the optimization variable, and
minimizes the sum of sending time points of the terminal system that triggers TT service
at each time in the network as the optimization objective to establish an optimization
problem.By solving the optimization problem, the time scheduling table of each network
node in the time trigger network is obtained.

2.3 Non-preemptive Strict Periodic Task Scheduling

The execution conditions of tasks are limited in [9], and it is believed that different
executions of the same task must be completed on the same processor. In this case, the
sufficient and necessary conditions for the schedulability of two tasks by single processor
are proved by analyzing the relationship between task cycle and execution time, as shown
in Eq. (7).

gcd
(
Ti,Tj

) ≥ Ci + Cj (7)

where gcd
(
Ti,Tj

)
is the greatest common divisor of the period Ti of the task i and the

period Tj of the task j, Ci and Cj represents the execution time of the task i and the task
j respectively.

At the same time, it is proved that the non-preemptive strict periodic task scheduling
problem is NP-complete. On the basis of the study in [9, 10] analysed that when two
tasks were extended to m task, the sufficient and necessary conditions of the original
uniprocessor schedulability became sufficient conditions, as shown in Eq. (8):

m∑
i=1

Ci ≤ gcd(∀i,Ti) (8)

It further analyzed and proved the decision conditions for the schedulability of two-
task single processor in [11]. The sufficient and necessary conditions for the schedu-
lability of two tasks τi = (ci, ti, si), τj = (

cj, tj, sj
)
in single processor are shown in

Eq. (9).

ci ≤ (
sj − si

)
mod

(
gi,j

) ≤ gi,j − cj (9)

where ci and cj respectively represents the execution time of task τi and τj, si and sj
respectively represents the time interval between the request time and the execution
time of task τi and τj, gi,j represents the greatest common divisor of the cycle of task τi
and τj.

It analyzed the sufficient and necessary conditions for the scheduling of the m − 1
task when task m has been scheduled by a single processor in [12]. A multi-processor
scheduling algorithm is proposed which provides an upper bound on the number of pro-
cessors required for multi-processor scheduling. [13] proposes the concept of maximum
scaling factor and presents a heuristic algorithm to determine schedulability and provide
an efficient allocation method in multiprocessors.
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A TSS algorithm is proposed in [14], which can transform any task set into a Har-
monic task set that is convenient for scheduling. Harmonic task set is defined as any two
tasks τi and τj, satisfied Ti/Tj = a ∨ Tj/Ti = a, a ∈ N. The specific steps of periodic
transformation are as follows:

1. Arrange the tasks in the task set in a way that the cycle does not increase;
2. For each task, perform periodic transformation of the task set as shown in Eq. (10);
3. Select a task set with the smallest sum utilization rate of the task sets in all

transformation periods as the transformed Harmonic task set.

T ′
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T ′
j+1

T ′
j+1/Tj

, j < i

Tj, j = i

T ′
j−1 ·

⌊
Tj

T ′
j−1

⌋
, j > i

(10)

where Tj−1′,Tj′,Tj+1′ respectively represents the period of the task j − 1, j, j + 1 in the
task set after the cycle change, and Tj, Ti represents the period of the task j, i in the
original task set.

Based on the above conditions, a sufficient condition for the schedulability of the
original task set is given, the sum of Harmonic task sets’ utilizations is less than or equal
to 1.

It has done some research on EDF algorithm in [15], it analyzed and proved the
sufficient conditions for the algorithm to be capable of multi-processor scheduling. If
the task set τ = (τ1, · · · , τm)meets the conditions shown in Eq. (11), it can be scheduled
by EDF algorithm.

Vsum(τ ) ≤ m − (m − 1) · Vmax(τ )

V (τi, τ ) = c(τi)
max(0,t(τi)−cmax(τ ))

Vsum(τ ) = ∑
τi∈τ V (τi, τ )

Vmax(τ ) = maxτi∈τV (τi, τ )

(11)

where c(τi), t(τi) represents the execution time and cycle of the task τi, and cmax(τ )

represents the execution time of the task τ with the longest execution time in the task
set.

2.4 Non-preemptive Non-strict Periodic Task Scheduling

As for the non-preemptive non-strict periodic task scheduling problem, [16] has done
some studies on this problem, proving whether the non-preemptive non-strict periodic
task can be scheduled as NP-complete by one processor, and giving some sufficient and
necessary conditions to determine whether the task set is schedulable. At the same time,
some related scheduling algorithms, such as pattern pruning method and fast solution
method, are given. However, the number of tasks considered in the task scheduling
problem is generally small, and no good scheduling algorithm has been proposed for the
task set with a large number of tasks.
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Pattern pruning method reduces the search space by using pruning method, which
can significantly improve the efficiency of traversal algorithm and the speed of obtaining
the optimal solution. However, when the number of tasks is large, the time complexity of
the algorithm is too high, and the feasible scheme cannot be obtained within the tolerable
time.

The computational complexity of the fast solution method is much lower than that
of the model pruning method, and the feasible solution can be obtained in a faster time.
However, the algorithm mainly scales the value of T the task and determines whether
it is schedulable by the sufficient condition of schedulable decision of single processor.
So there are some cases where there is a feasible solution, but the algorithm can’t get
the feasible solution.

3 Non-periodic Task Scheduling

At present, the division of non-periodic tasks in academic circles can be roughly divided
into two categories. One is the sporadic tasks with minimum lower bound between task
request times, that is ti ≥ Ti, and ti is not equal to a certain constant. The other is that
the task is executed only once. For the single-execution non-periodic task scheduling, it
mainly analyzes themanufacturing period, total completion time and other objectives. At
present, a complete theoretical systemhas been developed, and this issue has been studied
and analyzed in detail in [17]. For single-execution tasks, both preemptive scheduling
and non-preemptive scheduling problems have been proven to be NP hard [18].

As for the scheduling problem of sporadic tasks, T.P.Baker et al. proposed sufficient
conditions for multi-processor scheduling of sporadic task sets through comparative
analysis of sporadic tasks and strict periodic tasks [19][20].

For sporadic task set τ = (τ1, · · · , τm), when the task set satisfies Eq. (12), it can
be scheduled by EDF algorithm on n processor.

m∑
i=1

Ci

Ti
≤ n(1 − λ) + λ (12)

where λ = max{Ci/Ti|i = 1, · · · ,m}.
Based on the research of T.P.Beaker et al., [21] proposed the sufficient condition that

sporadic task sets could be scheduled by n processor, as shown in Eq. (13).

m∑
i=1

Ci

Ti
≤ n2

2n − 1
(13)

As for the static priority scheduling algorithm RM and dynamic priority scheduling
algorithmEDF proposed in the previous paper, which have been proved to be the optimal
of single processor, [22] has proved that the algorithm is no longer optimal in the multi-
processing scheduling problem.

[23] proposes a new task set τ = (τ1, · · · , τm), which is composed of strict periodic
tasks and sporadic tasks. By analyzing relevant parameter information of the task set, it
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is proved that sufficient conditions for the task set to be scheduled on n processing are
shown in Eq. (14).

λtot ≤ n(1 − λmax) + λmax

λk = Ck
Dk

(14)

where Ck and Dk respectively indicate the execution time and deadline of the task τk ,
λtot = ∑

τk∈τ λk , λmax = maxτk∈τ (λk).

4 Conclusion

This paper describes the properties of the task and build the model of the task. on the
basic of the difference on the properties of task scheduling problems, we divided the
task scheduling problems into five parts (pre-emptive strict periodic task scheduling,
non-pre-emptive strict periodic task scheduling, pre-emptive non-strict periodic task
scheduling, non-pre-emptive non-strict periodic task scheduling, and non-periodic task
scheduling), and elaborate the research of those scheduling problem in details. In future,
we will design the scheduling algorithms to solve those scheduling problems.
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