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Abstract. As far as the current social situation is concerned, more and more
people choose credit cards as a way to pay for their daily expenses. When it
comes to credit cards, we have to mention the credit default risk associated with
them. We know that when a person’s credit default risk is too high, his credit
card may be frozen. It means that the credit default risk likes a kind of judgment
for whether a person can apply for a credit card, and it is an important factor in
continuing to use a credit card. In this paper, we analyze how to assess a user’s
credit default risk. First, we use principal component analysis (PCA) to extract
several key factors for judging credit default risk, then we use BP neural network
to evaluate and analyze the extracted key factors, and finally, we analyze the user’s
credit default risk through the results obtained.

Keywords: Credit Cards - Credit Default Risk - Principal Component Analysis
Techniques - BP Neural Networks - Logistic Regression

1 Introduction

A credit card is a non-cash transaction method, which means people do not need to
pay cash when using a credit card but keep a unified account, then settle and repay
until the repayment date. In addition, the credit card also has a certain amount overdraft
function, which is more and more popular with the public. However, because of the
special consumption form of credit cards, the consumption of many people is far greater
than their repayment ability, which will fail to repay in time when the repayment date
comes, and it will produce credit default risk.

With the increasing use of credit cards, people are more and more concerned about
the risk of credit default. There are many aspects to the assessment of credit default risk.
In this paper, we set up three aspects to evaluate and analyze the credit default risk of
the user: whether the loan is paid off, whether the installment is paid off, and the credit
card balance and then we can obtain the user’s credit default risk level, judge whether
the user can hold a credit card again.
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2 Methods

2.1 Introduction of PCA [1]

In this section, we introduce a statistical method called principal component analysis
to analyze the obtained data. This method can transform a set of potentially correlated
variables into a set of linearly uncorrelated variables through an orthogonal transforma-
tion. For example, we choose whether the loan is paid off and whether the installment
is paid off as a set of variables, both of which have a certain correlation, they all relate
to the balance of the credit card.

We then used projection tracking to assign weights to each of the principal compo-
nent metrics from the main analysis. We should try our best to achieve that only one
projection is searched for each projection pursuit to ensure that the extracted projections
are non-Gaussian distribution and reduce errors. Projection pursuit is a commonly used
method for processing and analyzing high-dimensional data. Its basic idea is to project
data in high-dimensional space onto low-dimensional space, to study and analyze high-
dimensional data. When the available data is available, the corresponding projection can
be obtained to realize the separate extraction and analysis of the data.

2.2 Selection of Indicators

There are many aspects to judge the credit default risk level of a user, such as whether the
loans of different credit types are repaid. To identify the reliable key factors in assessing
credit default risk, we analyze it through three aspects: whether the loan of different
credit types is paid off, whether the installment applied by the credit card is paid off,
and the balance of the credit card.

2.3 Data Collection

To further investigate the relationship between credit default risk levels and the three
selected indicators, we collected some data related to the three indicators for analysis.
To make the data more intuitive to reflect the relationship with the risk level, we first
preprocessed the data (Table 1).
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By preprocessing the data, it was found that it was difficult to find correlations from
the bulk of the data, so we decided to take the next step, which is to use principal
component analysis to analyze the preprocessed data (Table 2).

2.4 The Realization Process of PCA

As mentioned in the previous section, the preprocessed data has some kind of correla-
tions, but it is difficult to find it only from the data, so it needs to be converted into a
principal component, and the information on the correlation between the data can be
obtained through principal component analysis.

Following are the steps regarding the principal component analysis implementation
process:

Step 1: Construct a data matrix X.

_xyl ‘e _xyn

Each row represents the imported indicator data about credit cards, and each column
represents the indicator.

Step 2: Use the following formula to centralize the obtained data.

Calculated by the average formula: x = % Y, xi (n for the number of samples).

Calculated by the variance formula: var(x) = anl 27:1 i — )_c)2 (n for the number
of samples).

Step 3: Calculate the sample correlation index matrix.

Yi1 - Yin
Y = . .

Yyl o Yyn

Calculated by the covariance formula: cov(x, y) = n% Yo i =i —y)

Step 4: Calculate the eigenvalues of the relevant index matrix and its eigenvalue
vector.

Set eigenvalues: z1, 22,23, ** , Zn

Set the eigenvalue vector: v; = (vi1, Vi2, Vi3, - - - , Vin)

Step 5: Obtain the final principal components through principal component analy-
sis. The principal component contribution rate of each index can be calculated by the
following formula, that is, the proportion of the variance of the principal component of
the index in the total variance

Zi
PR
Step 6: Calculate Cr by Python and get the following data [Fig. 1].

Cr =
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Fig. 1. Data obtained by calculating Cr

3 Implementation Steps

Step 1: Import the dataset.

Use the read_csv method in pandas to read the CSV file and we can obtain
six sets of data: application_train, bureau, bureau_balance, POS_CASH_balance,
credit_card_balance, and installments_payments. After reading the data in the CSV
file, then output the shape of each dataset.

Step 2: Transform and clean the acquired data.

Some special data whose values are relatively deviated from other values in the data
set, if they are still retained, will affect subsequent data processing and other operations,
resulting in large deviations in the results of data processing. Therefore, such data needs
to be converted and processed. Preprocessing operations such as cleaning.

The first is to remove constant values from the dataset and data that are not related
to or cannot be explained by credit default risk. After removing the relevant values, start
processing the missing data in the dataset. After processing all the data, calculate the
proportion of each data to its total data dichotomy, convert the categorical variables to
continuous variables, and finally create a new variable.

(1) the bureau_balance dataset

1. Import the bureau_balance data set, calculate the proportion of the value of 0 in
the variable and judge whether a new variable needs to be created. If some data
does not contain 0, the data needs to be converted; or use sum or ¢ to get a non-
zero scale, you can get a non-zero scale of and add three columns of status_sum,
status_total, and O_or_not to the data list.

2. Remove months_balance, status_sum, status_total, and 0_or_not as this data is
not related to customer behavior.

3. bureau_balance
and bureau through SK_ID_BUREAU to generate bureau_combine to get the
following data list (Table 3).
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(2) the bureau dataset

L.

10.

For each SK_ID_ CURR, calculate the ratio of closed and active in its
CREDIT_ACTIVE and output the number of closed, active, old, and bad debt
in CREDIT_ACTIVE respectively.

. Set a choice, if CREDIT_ACTIVE is lost or active, output clos_active_or_not

= 1, otherwise clos_active_or_not = 0.

. a: Regroup the data of CREDIT_ACTIVE and count the number of times it

appears in SK_ID_CURR, then rename it to status_total and reassign it to an
index starting from 0; b: Regroup the data of clos_active_or_not and sum it,
then rename it to status_sum and reassign it to 0-based index; c: combine a, b,
and on = ‘* SK_ID_CURR’, set the formula ¢ [ ‘ clos_active_or_not ‘] = c[*
status_sum ]/ c[* status_total ], calculate the obtained data, and the final output
called bureau_combine is the merger of c, the bureau_combine obtained in step
(1) and on = * SK_ID_CURR “.

. Remove irrelevant variables in the output data list: first remove the three inter-

mediate variables status_sum, status_total, and clos_active_or_not in the data
list, then remove the constant variable and five uncorrelated variables. Finally,
output the shape of bureau_combine (Table 4).

. Analysis of the CREDIT_TYPE in bureau_combine and output the account of

consumer credit, credit card, and different loans.

. Set an option, if CREDIT_TYPE is consumer credit or credit card, output

cons_cred_card_or_not = 1, otherwise cons_cred_card_or_not = 0.

. Calculate the proportion of consumer credit and credit card; a: Regroup the data

of CREDIT_TYPE and count the number of times it appears in SK_ID_CURR,
then rename it to status_total and reassign as a O-based index; b: regroup and
sum the data cons_cred_card_or_not, then rename it status_sum and reassign it
as a 0-based index; c: merge a and b with on = ‘SK_ID_CURR °, set the formula
c[ “ cons_cred_card_prop ‘] = c[* status_sum ‘]/ c[* status_total ‘] to calculate
the obtained data, output bureau_combine (Table 7) in the combination of ¢ and
on = ‘ SK_ID_CURR °* obtained in step (1).

. Regroup the data of bureau_combine and count the number of times it appears

in SK_ID_CURR, calculate the average value of each value, and then reassign
it to an index starting from O, name bureau_num, and output.

. Group the data in it according to the numerical features of SK_ID_CURR, and

output the shape of bureau_num.

Filter the value of object_dtypes in bureau_combine for one - hot encoding
and name it bureau_cat, but this will ignore the most important column of
SK_ID_CURR, so we need to replace it; regroup and count the data of bureau_cat
The number of times it appears in SK_ID_CURR, calculate the average value
of each value, and then reassign it to an index starting from 0, replace the result
obtained in the previous step with bureau_cat (Table 5), and output the shape of
bureau_cat (Table 6).
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Table 5. List of Bureau_cat Data

CREDIT_ACTIVE_Active CREDIT_ACTIVE_Bad debt CREDIT_ACTIVE_Closed
0.186047 0.0 0.813953
0.181818 0.0 0.818182
0.380952 0.0 0.619048
0.500000 0.0 0.500000
0.000000 0.0 1.000000
0.146875 0.0 0.853125
0.620690 0.0 0.379310
0.470085 0.0 0.529915
0.000000 0.0 1.000000
0.317406 0.0 0.682594

CREDIT_TYPE_Consumer | CREDIT_TYPE_Credit CREDIT_TYPE_Real estate | CREDIT_TYPE_Unknown | STATUS_0
credit card loan type of loan

1.000000 0.000000 0.0 0.0 0.180233
0.472727 0.527273 0.0 0.0 0.409091
0.380952 0.619048 0.0 0.0 0.666667
0.500000 0.000000 0.0 0.0 0.277778
0.473913 0.000000 0.0 0.0 0.343478
0.887500 0.037500 0.0 0.0 0.206250
0.678161 0.321839 0.0 0.0 0.137931
0.735043 0.264957 0.0 0.0 0.401709
1.000000 0.000000 0.0 0.0 0.216216
0.843003 0.156997 0.0 0.0 0.215017
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(3) the installment_payment dataset

1. AMT_INSTALMENT and AMT_PAYMENT into the same variable to show if a
credit card user has a bill on time for installment payments. Set a new data named
pay diff, pay diff = AMT_PAYMENT - AMT_INSTALMENT, when pay diff is
greater than or equal to 0, paid_on_time = 1, otherwise paid_on_time = 0.

2. Rename the data of paid_on_time to the percent of paid on time and output;
remove the n a value in pay diff and calculate its maximum value, rename it to
maximum paydiff and output.

3. Get a new installment data list named installments_payments_new; calcu-
late the maximum value of aid_on_time; combine max_paid_on_time and
installments_payments_new to get installments_payments_new (Table 9) data
list.

(4) Preprocessing the credit_card_balance dataset

1. Set the na value in the variables to 0.

2. Calculate the average value of each data in the credit_card_balance data set, and
then regroup it and assign to an index starting from 0, named ccb_num data list
(Table 10).

3. Filter the value of object_dtypes in credit_card_balance for one-hot encoding and
name it ccb_cat, but this will ignore the most important column of SK_ID_CURR,
so we need to replace it; regroup the data of ccb_cat (Table 11) and count it in
SK_ID_CURR the number of occurrences, calculate the average of each value in
it, and then reassign it to a 0-based index.

(5) the POS_CASH_balance dataset (Table 12)
1 Convert the na value in the variables to 0, and then set a new dummy variable
according to the following conditions: if the original variable is 0, keep its output
equal to 0, otherwise output the variable equal to 1.

2 Calculate the mean of this new dummy variable data, then regroup it and combine
with the data list of POS_CASH_balance.

3 Change the na value to O, then take the average value in SK_ID_CURR, and finally
obtain the processed POS_CASH_balance (Table 13) data list.
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Table 8. List of Bureau_combine data (2)

AMT_ANNUITY 0_prop MONTHS_BALANCE
1236.244186 0.180233 —16.279070
0.000000 0.409091 —24554545
608.785714 0.666667 —4.333333
NaN 0.277778 —46.000000
0.000000 0.343478 —29.373913
4837.617904 0.206250 —27.281250
170124.655862 0.137931 —14.149425
58369.500000 0.401709 —14.282051
0.000000 0.216216 —18.000000
1059.695565 0.215017 —26.392491

4 Logistic Regression

4.1 Basic Concepts of Logistic Regression [2]

For some data with a linear relationship, we generally use a straight line to fit these data,
the fitting process is called regression. The main idea of logistic regression is to establish
aregression formula for the boundary line of the classification according to the obtained

data: 7 (x) =

Tewir”

4.2 Steps to Perform Logistic Regression

1.

Split the combined dataset into 70% training set and 30% training set

2. Convert the input data list to matrix format and divide it into a numerical list and a

W

9,

categorical list

. Characterize digital data and classified data
. Define the function cv_plot and set two parameters alpha and cv_auc; assign the

return value obtained by the plt. Subplots() function to the two variables fig and ax
respectively

. In the ax variable, plot the logarithm of the alpha parameter which is based in 10
. Setup afor loop, round the value of the floating point number in the cv_auc parameter,

put the entire tuple into the loop, and add the subscript i to the alpha parameter and
the cv_auc parameter in the ax variable. Set the grid lines and coordinates of the
chart, name the chart Cross Validation Error for each alpha, name the x-axis of the
chart Alpha i’s, name the y-axis of the chart as Error measures, and finally display
the chart.
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4.3 Select Features According to the WOE Table

List the table mylist (Table 14) according to the required data, and form a table named
x _taset_final and output it.

4.4 Calculating Feature Importance with Boosting Method

(1) Solve the naming problem of train_features, valid_features, and X_train_final

(2) Introduce pickle and lightgbm to convert the obtained data list into a histogram

(3) Introduce plot, add the obtained histogram [Fig. 2] to the coordinates and label and
output

4.5 Fit the Logistic Regression Model According to the Smf Package

Introduce the statsmodels [5] package to process the x_train_in2 dataset, and output the
list (Table 15) sum of logistic regression.

5 Model Evaluation [3]

5.1 Definition of the Confusion Matrix

A confusion matrix is one of the standard formats for evaluating the accuracy of clas-
sification models. Each column of the confusion matrix represents the predicted class,
and each row represents the true attribution class of the data [Fig. 3].

True Positive: The sample category is a positive class, and the model recognizes it
as a positive class.

False Positive: The sample category is a positive class, and the model recognizes it
as a negative class.

True Negative: The sample category is a negative class, and the model recognizes it
as a positive class.

False Negative: The sample category is a negative class, and the model recognizes
it as a negative class.

5.2 Results and Results Analysis of Performing Confusion Matrix

1. In the Precision Matrix [Fig. 4], we can see that nearly 90% of the data is Re_paid,
so the conclusion will be that the two cases of False are higher than the two cases of
True.

2. When running the confusion matrix this time, there are two sets of data that, by
definition, deviate from actual life situations. The definition of False Positive is that
the customer cannot repay the loan, but the model still believes that it can be paid;
the definition of False Negative is: the customer can pay, but the model thinks that it
cannot pay.



317

Using Machine Learning Models to Assess Users’ Credit Default Risk

LL6LIE0 T8T9Y1'0— NEN L9989%°0 98CSSY'0— 869891°0— YLYIST'0—
SIYOLE0O— 8eor1I'0— NeN L9989%°0 L106SY'0— 869891°0— YLYIST'0—
Y8TYTl'0— TETTO9'1 NeN L9989Y°0 99L9SY'0— 869891°0— YLYIST0—

12005¥°0 8O0~ NeN L9989Y°0 TLTOLYO— T20989°0 8€0€81°0—

9¥81TI'0 SIV61Y0 NeN L9989%°0 8¥859Y°0— Cr100Lc YIveo 1 —

SIYOLE0— 8O0~ NEN L9989%°0 66¥T9v'0— 8698910— YLYIST0—

SSSST0— T8TOV1'0— NEN L9989%°0 6107y 0— 61VELT0— 8LTTOTO

87€90T0— T8T9V1°0— NEN L9989%°0 STV 0— 6¥6109'0— 6918¢Y'T—

1¥Cey0'0— 90LL8T0— NEN L9989%°0 TS6T9Y°0— 869891°0— YLYIST'0—

Y8TYCl'0— 8eor1I0— NeN L9989%°0 8COVSY0— 869891°0— YLYIST'0—

TVIOL ANOODNI LAV | g9V d4VD NMO | HddAL DNISNOH VN ANOHd dNd DVT1d | ddAOTdNA SAVd | ddON VAIVNOWINOD 1IN LNHNLIVAVONIAI'T

ISTIAW J0 IS vIeQ P AqEL



318 Y. Huang

Top 20 important features

OWN_CAR_AGE
AMT_DRAWINGS_CURRENT
AMT_DRAWINGS_AMT_CURRE..:
AMT_RECIVABLE
DAYS_ID_PUBLISH
DAYS_EMPLOYED
DAYS_REGISTRATION
DAYS_BIRTH
CNT_INSTALMENT _FUTURE
EXT_SOURCE_3

0 200 400 600 800 1000 1200 1400
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Fig. 2. Histograms Obtained

Table 15. List Sums

Dep.Variable: target No. Observations: 20286
Model: GLM Df Residuals: 20212

Model Family: Binomial Df Model: 73

Ling Funtion: Logit Scale: 1.0000

Method: IRLS Log-Likelihood: -5312.6
Date: Thu, 10 Feb 2022 Deviance: 100625.

Time: 21:14:16 Person chi2: 1.95¢ + 04

No. Iterations: 22 Pseudo R-squ. (CS): 0.05482
Convariance Type: nonrobust

5.3 Model Diagram for the Confusion Matrix

Plot the ROC [Fig. 5] curve that can show the performance of the model.

In the ROC curve, the closer the drawn model is to the rated 45° diagonal line, the
lower the accuracy of the drawn image. The AUV value of the ROC curve obtained this
time can be known from the annotations in the figure is 0.709, which means that the
image obtained this time is more accurate.

5.4 Computing Performance Indicators

Using the test dataset, evaluate the performance of the logistic regression model by
calculating the precision, recall, F_1 score, precision, and total misclassification rate
[Fig. 6].
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Fig. 3. A basic form of the confusion matrix
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Fig. 5. ROC Curve for model diagram



320 Y. Huang

precision recall fl-score support

0.95 0.69 0. 80 3979

1 0.16 0.63 0.25 369

accuracy 0. 68 4348
macro avg 0.55 0. 66 0.52 4348
weighted avg 0. 88 0. 68 0.75 4348

The total misclassification rate 31.92% :

Fig. 6. Calculated precision, recall, F_1 score, precision, and total misclassification

6 Random Forest [4]

6.1 Definitions of Random Forest

Random forest mainly refers to the use of multiple decision trees to train, classify and
predict the sample data obtained. While classifying the data, it can also evaluate the role
of each variable in the classification.

6.2 Executing Random Forests

(1) By changing the number of trees and the maximum depth of the tree, the accuracy
of AUC in different situations is obtained [Fig. 7].

(2) By performing step (1) multiple times, the optimal number of trees is 200 and the
maximum depth of the optimal tree is 7. After setting the number of trees and the
maximum depth of the tree to the optimal values, show the training of AUC value,
the verification of AUC value, and the test of AUC value in the figure below [Fig. 8].

(3) Put the obtained data into the confusion matrix to obtain the evaluation result of the
confusion matrix [Fig. 9].

For n_estimators 200, max_depth 7 cross validation AUC score 0.7120111563971722
For n_estimators 200, max_depth 10 cross validation AUC score 0.7064391042101467
For n_estimators 500, max_depth 7 cross validation AUC score 0.7119107652130204
For n_estimators 500, max_depth 10 cross validation AUC score 0.7067901318880643
For n_estimators 1000, max_depth 7 cross validation AUC score 0.7113493941016423
For n_estimators 1000, max_depth 10 cross validation AUC score 0.7066487647103817
For n_estimators 2000, max_depth 7 cross validation AUC score 0.711550859403171
For n_estimators 2000, max_depth 10 cross validation AUC score 0.7072292579520745

Fig. 7. Accuracy of AUC under the number of different trees and the maximum depth of the tree
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The optimal values are: n_estimators 200, max_depth 7

For best n_estimators 200 best max_depth 7, The Train AUC score is (. 8398387088279861

For best n_estimators 200 best max_depth 7, The Validation AUC score is (.7120111263971722
For best n_estimators 200 best max_depth 7, The Test AUC score is 0.7093977800798366

The test AUC score 1s : 0.7093977800798366

The percentage of misclassified points 08.49% :

Fig. 8. The value of AUC when the number of trees is 200 and the maximum depth of the tree is
7

Confusion matrix Recall matrix Precision matrix
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Fig. 9. Results of the confusion matrix

6.3 Model Ilustration for Random Forest

Plot the ROC curve [Fig. 10] that can show the performance of the model.
Precision, recall, F_1 score, and support based on the evaluation results of the
confusion matrix [Fig. 11].

ROC curve

0.8
0.6
0.4
0.2

0.2 0.4 0.6 0.8 1

Fig. 10. ROC Curve for model illustration
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precision recall fl-score support

0 0.92 1. 00 0.96 3979

1 0.00 0.00 0.00 369

accuracy 0.92 4348
macro avg 0. 46 0. 20 0. 48 4348
weighted avg 0.84 0.92 0. 87 4348

The total misclassification rate 08.49% :

Fig. 11. Calculated precision, recall, F_1 score, precision, and total misclassification

7 Conclusion [5-14]

With the development of science and technology, machine learning and deep learning
models have been widely used in different industries, and credit default risk analysis is
no exception. Machine learning models play an important role in analyzing the credit
default risk of users. In the process of data preprocessing, machine learning can help us
eliminate data irrelevant to risk analysis, constant quantities, and data that deviate too
much from other data. In addition, we can also use the logistic regression method in
the machine learning model to fit the preprocessed data set model to obtain the fitting
curve corresponding to each data set; using the confusion matrix method, by calculating
the accuracy, recall rate, F _1 score, accuracy rate and total misclassification rate to
evaluate the performance of the logistic regression model and determine the accuracy
rate of the logistic regression model; use the random forest method to train, classify and
predict the acquired data. Make a classification and assess the role each data plays in that
classification. The machine learning model evaluates the user’s credit default risk based
on the user’s loan amount, whether the loan and installment are repaid on schedule and
whether the installment is repaid on schedule, and obtains the user’s credit default risk
level. Compared with the previous method of assessing risks by paper questionnaires, the
risk level assessed by the machine learning model is more objective and more reliable.
Therefore, the assessment of users’ credit default risk based on the machine learning
model can be implemented in the market.
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Commons license, unless indicated otherwise in a credit line to the material. If material is not
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