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Abstract. Blood is an important component of the human, which consists of
many important components including White Blood Cells (WBC). Leukaemia
is one of the dangerous kinds of cancer that affect the blood and bone marrow,
affecting children and adults. Acute lymphoblastic Leukaemia (ALL) is dangerous
and deadly type of blood cancer. Hematologists and experts work on diagnosing
blood by taking patient samples and analyzing them with a high-quality magnify-
ing lens. However, manual diagnosis is boring, time-consuming, and more prone
to errors and differing expert views. Therefore, artificial intelligence techniques
solve this problem and support the opinions of highly experienced experts. This
research aims to develop diagnostic systems using a Convolutional Neural Net-
work (CNN) and a hybrid CNN and SVM to diagnose the ALL_IDB2 dataset for
early diagnosis of Leukaemia. CNN models and a hybrid technique consisting of
two blocks were implemented, the first block of CNN models to extract feature
and the second block, the SVM algorithm, to classify the feature. All the proposed
systems achieved superior results in diagnosing the ALL_IDB2 dataset for early
diagnosis of Leukaemia.
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1 Introduction

Blood is one of the critical components of the human body, and it is the dynamo that
moves the human. Blood comprises several elements, namely plasma 55%, RBC 45%,
WBC and platelets less than 1% [1]. Plasma transports minerals, hormones, proteins and
other nutrients through blood vessels and gets rid of harmful elements in the form of
waste products. Blood is produced in the bone marrow, the soft tissue within the bony
cavity. When there is overactive or abnormal bone marrow [2], it produces immature
cells or multicolored cells. Hematology is diagnosed by extracting WBC information
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[3]. The diagnosis is made based on increased WBC with immature myeloid or lym-
phoid cells, low platelets and neutrophils [4]. Therefore, hematologists analyze blood
samples under a microscope to diagnose and identify blast cells. Thus, the presence of
blast cells in blood smears is one of the most critical symptoms of Leukaemia. There are
some types of Leukaemia, the most dangerous of which is ALL. ALL is considered one
of the most dangerous and deadly types, prevalent in children and adults. Early diag-
nosis of Leukaemia and its types is essential for timely treatment. Diagnosis by blood
smears and microscopic blood tests is one of the methods that accelerate the detection
of Leukaemia without medical risks [5]. There are also many techniques for diagnosing
Leukaemia, such as interventional radiology, biopsy, percutaneous aspiration, catheter
drainage and other methods that have limitations for the sensitivity of the technique
[6]. There are also techniques such as molecular cytogenetics, array-based comparative
genetic hybridization (aCGH) and long-distance reverse transcription-polymerase chain
reaction (LDI-PCR) that require highly experienced hematologists, time and extensive
work to diagnose Leukaemia [7]. There is also a similarity in the characteristics of
normal cells and lymphocytes in their early stages, which are challenges for the early
diagnosis. Therefore, lymphocytes were categorised into some types: normal, reactive,
and atypical. Thus, each type has characteristics that distinguish it from the other type.
Since the diagnosis is completed manually, it is a boring and time-consuming method
and prone to many errors. Therefore, automated diagnosis using artificial intelligence
techniques is essential in the early diagnosis of Leukaemia. Several researchers have pro-
posed automated methods for the early diagnosis of Leukaemia by extracting chromatic,
morphological, and texture characteristics fromWBCmicrographs. Therefore, the diag-
nosis ofmicroscopic blood sample data set by deep andmachine learning techniques will
lead to an accurate, reliable and rapid diagnosis of early detection of Leukaemia. CNN
models have the ability to solve the deficiencies of manual diagnosis and their excellent
ability to differentiate normal and abnormal cells (blast cells). This study focuses on
the diagnosis of the ALL_IDB2 dataset; extracting feature and diagnosing them using
CNNmodels, hybrid techniques betweenCNNmodels, andmachine learning algorithms
(SVM).

The significant contributions in this study are as follows:

• Noise and all artifacts were removed using overlapping filters.
• Increasing the dataset images by using the data augmentation method.
• Adjust the parameters of CNNmodels to extract deep features with accurateness and

efficiency.
• Applied a hybrid technique between CNN models and SVM algorithm to obtain

superior results for early detection of Leukaemia.

The rest of the article is arranged as follows: Sect. 2 presents a group of related work.
Section 3 describes the methods and techniques used to analyze and classify a data set.
Section 4 presents the results execution of the systems. Section 5 offers a discussion of
the systems. Concludes the work in Sect. 6.
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2 Related Work

This section reviews many previous studies related to the diagnosis of microscopic
images of microscopic blood samples for the early detection of Leukaemia. CNN and
SVM help diagnose microscopic images and identify Leukaemia.

Nizar et al. presented the CNN and machine learning techniques to diagnose the
ALL-IDB Image Bank datasets to detect Leukaemia subtypes. The data augmentation
method to obtain images was also applied artificially. The CNN got an accuracy of
81.74% [8]. Goutam et al. proposed a model consisting some stages: preprocessing,
region of interest, extraction of features, and classification stage for classifying micro-
scopic blood samples. Feature extraction based on Local Directional path (LDP) and
feature classification by SVM, which achieved superior results for the classification of
microscopic images [9]. Rawat et al. presented a method for diagnosing lymphoid and
myeloid cells for the giagnosis of Leukaemia. The system optimizes the images of the
AML and ALL datasets and extracts 331 features textures, geometrics, and chromatici-
ties to distinguish between normal and malignant cells. The features were classified by
SVM, which achieved good results for classifying the two data sets [10]. Amin et al.
discuss an approach to discovering lymphocytic Leukaemia. All dataset images were
enhanced, WBC was extracted using k-means, then statistical and geometrical features
were extracted from WBC. The features were classified by the SVM algorithm, which
got an accuracy of 97% [11]. Zhana et al. proposed two approaches; the first approach
is to separate WBCs from the rest of the cells, and the second approach is to extract
the most critical geometrical, statistical, and shape features and transform the discrete
cosine. The result of systems on the ALL-IDB data set, and it achieved an accuracy of
97.45% [12]. Cecilia et al. presented a new approach to identifyWBC from images of the
ALL-IDB dataset to diagnose them as normal or leukemic. All images passed through
the stages of enhancement, segmentation, WBC recognition and classification; the sys-
tem achieved an accuracy of 99.7% [13]. Nizar et al. offered a method for diagnosing
Leukaemia subtypes using CNN models and machine learning. The data augmentation
has been used to augment the images. All models performed well, as the performance
of the CNN was more useful than the machine learning algorithms, which reached an
accuracy of 88.25 [8]. Aqsa et al. presented a method to detect Leukaemia in its early
stages. A color filter was applied to detect white blood cells, and then a wavelet and
curvelet descriptor was used to extract structural features. Then feature classification by
KNN and SVM algorithms has yielded promising results [14]. Rawat et al. presented a
novel method for diagnosing lymphocytes by first isolating white blood cells from other
blood cells. The GLCM extracted the texture and shape features algorithm and classified
by the SVM classifier. When diagnosing texture features, the system got an accuracy of
86.7%, while the system got an accuracy of 56.1% with shape features [15]. Lakshmi
et al. offered a method for early diagnosis of Leukaemia. They applied the K-means
clustering to cluster the lesion and isolated it from the rest of the cells. The diagnosis
was made using the SVM algorithm, which got an accuracy of 95% [16].
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3 Materials and Methods

In this section, the most critical strategies and materials for analyzing and classifying the
ALL_IDB2 data set as described in Fig. 1. All images have been enhanced to remove
noise and obtain high efficiency in the following stages. After the improvement process,
two proposed systems were applied. The first system through two CNN models. The
second system is a hybrid between CNN with SVM.

3.1 Description of Two Datasets

All the systems presented were evaluated using the publicly available ALL-IDB dataset
using the machine, deep learning, and a fusion them. The publicly available dataset
contains images of microscopic blood samples for ALL and normal images. The data set
focused on ALL, which were more severe and lethal than other types. Lymphomas were
classified and identified for each image by specialized experts. All images were acquired
by a Canon PowerShot G5 optical microscope and RGB color at a high-resolution of
1944 x 2592 pixels. This data set consists of ALL_IDB1 and ALL_IDB2; each image
contains approximately 39,000 blood cells. This study targets the ALL_IDB2 dataset,
which includes 260 images equally divided into 130 images ofmalignant and 130 normal
blood cells [17]. Figure 2.a describes a set of samples for the data set.

3.2 Pre-processing

The data set images were fed before applying the enhancement process; because of
the noise and lack of image contrast, the performance of the proposed systems was
inaccurate. Thus, all dataset images were enhanced before feeding them into deep learn-
ing models [18]. The first step in biomedical image processing is to remove unwanted
noise and artifacts. When analyzing blood samples under the microscope, there are light
reflections, in addition to liquid samples that are placed with the blood sample, all of
which affect the performance of artificial intelligence techniques. Thus, applying filters
to enhance the images is required to obtain high performance in the later stages of image
processing [19]. In this study, the images were optimized using two filters. First, an

Fig. 1. Methodology for diagnosing the ALL_IDB2 dataset.
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Fig. 2. A set of data set samples before and after enhancement (a) ALL-IDB2 samples and (b)
Enhanced ALL-IDB2 dataset images.

average filter is used to improve the contrast of the images. The filter size is set to 7*7 so
that the filter replaces each goal pixel by an average of 48 neighbouring pixels, and the
process continues for each image pixel. Equation 1 shows how the average filter works
[20].

z(n) = 1

N

∑M−1

i=0
y(n − 1) (1)

where z(n) refers to input, y(n-1) refers to earlier input and N is the pixels numbers.
Second, a Laplacian filter was used to detect white blood cells’ edges. Equation 2

defines the technique of action of the filter.

∇2f = ∂2f

∂2x
+ ∂2f

∂2y
(2)

differential equation of second order is ∇2f and x, y are the location of the matrix.
Finally, the system produces an improved image using subtracting the images pro-

duced by the Laplacian method from the image produced using the average method.
Equation 3 describes the final step of producing an enhanced image.

EN = z(m) − ∇2f (3)

where EN represents the enhanced image
Figure 2.b represents set of images after the enhancement process.

3.3 Convolutional Neural Networks (CNN)

The CNN are called deep learning and have the superior ability to classify, and recognize
patterns. CNNwork inmany fields, such asmotionmodelling, speech recognition, object
segmentation, and biomedical image processing. CNN contain many 2D layers and are
suitable for processing and diagnosing 2D images. CNN models differ in the number of
layers and the weights of each layer [21]. The work of filters is to convolute around the
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image to be handle. In each layer, neurons receive associations from the earlier layers
and neurons of the same layer. The core of CNN’s work is to represent the input images
at many levels; To classify images, layers amplify aspects of the most important features
and suppress unimportant (irrelevant) differences. Figure 3 shows the architecture for
the AlexNet and ResNet-18 [22]. Where layers work on specific processing of images,
for example, the first layer detects the edges of the image, the second layer for extracting
the geometric features, the third layer extracts the features of texture and shape, and so
on. As described in Fig. 3, networks consist of the following most important layers:

• Convolutional Layer: The number of convolutional layers differs from model to
another. The name CNN comes from the name of the Convolutional Layer. The
convolutional layer is one of the major layers in CNN, and the convolution process
is implemented between the filter w (t) and the image to be processed x (t). The
mechanism is done as described in Eq. 4. Three critical parameters that define and
control the work of convolutional layers are the size of the filter, p-step and zero
padding. The larger the size of the filter, will more the filter wrap around the image,
while zero-padding keeps the original image size. The p-step operates to specify the
number of filter steps on the image [24].

s(t) = (x ∗ w)(t) =
∫

x(a)w(t − a)da (4)

• pooling Layer: This layer reduces the resulting dimensions of the convolutional layer.
There are two types of this layer: Max and Average Pooling. Max-Pooling specifies
the max pixel from the pixels specified by a filter and represents it in the following
stages [25]. Average-Pooling calculates the average weight of the weights set by the
filter and represents all values by their average value.

• Fully Connected Layer (FCL): This layer containsmillions of interconnected neurons
responsible for classifying the input images. It works to convert feature maps from
binary representation to mono representation.

• There are also many auxiliary layers, such as the ReLU (Rectified Linear Unit) layer,
which comes after the convolutional layers and works to handle positive weights,
suppress negative weights, and convert them to zero as explained in the Eq. 5. CNN
models producemillions of parameters, which causes overfitting, so the dropout layer
solves this problem by setting it to, say, 50%, whichmeans 50% of neurons are passed
in each iteration, but one of the disadvantages is that it doubles the training time [26]

ReLU(x) =
{
x, x ≥ 0
0, x < 0

(5)

.
• Finally, the Softmax activation layer works to classify each input image into its

appropriate class. In this work, the Softmax function will produce two neurons that
are either Leukaemia or normal according to the data set classes.
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Fig. 3. Structure of a. AlexNet and b. ResNet-18.

3.4 Hybrid of Deep and Machine Learning

This section presents a hybrid method of CNNmodels and SVM for the diagnosis
of Leukaemia. CNN models require high specification computer resource specifi-
cations to train the data set, and it takes a long time to train the data set, so these
hybrid techniques solve this challenge [26]. The technique removes Fully Con-
nected Layer from the CNNmodel and replaces them with the SVM algorithm. In
this section, the hybrid approach consists of two blocks: the firstly is AlexNet and
ResNet-18 models to extract the deep feature [27]. Secondly is the SVM classifier
for classifying deep features. Figures 4a and b show the hybrid architecture. The
SVM algorithm replaces the fully connected layer of deep learning models.

Fig. 4. Hybrid technique a. AlexNet + SVM and b. ResNet-18 + SVM.
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Table 1. Splitting the ALL_IDB2 datasets

Phase training and validation Testing
(20%)Classes Training

(80%)
validation
(20%)

Leukaemia 83 21 26

Normal 83 21 26

4 Experimental Result

4.1 Splitting Dataset

All proposed systems in thisworkwere evaluated on theALL_IDB2 dataset that contains
260 images equally divided into two classes, Leukaemia and normal. The data set has
been split into 80% for training and validation (80:20, respectively) and 20% for testing.
Table 1 describes the splitting of the ALL_IDB2 data set through stages of the training,
validation, and testing systems (Leukaemia and normal). The systems were executed on
theMATLAB 2018b executable environment and implemented on a computer with Intel
® i5 a 6th generation, GPU of 4 GB, and RAM of 12 GB.

4.2 Evaluation Metrics

In this section, we explain the appropriate statistical measures that evaluate the per-
formance of the networks implemented in this study, whether deep learning models or
hybrid method on the ALL_IDB2 dataset for early diagnosis of Leukaemia. Equations 6,
7, 8, 9 and 10 show the most critical measures that evaluate the performance of systems.
Each network produced a confusion matrix from which to obtain information for the
equations. The confusion matrix includes all correctly classified images named TP and
TN and incorrectly classified images named FP and FN [28].

Accuracy = TN + TP

TN + TP + FN + FP
∗ 100% (6)

Precision = TP

TP + FP
∗ 100% (7)

Sensitivity = TP

TP + FN
∗ 100% (8)

Specificity = TN

TN + FP
∗ 100% (9)

AUC = TruePositiveRate

FalsePositiveRate
= Sensitivity

Specificity
(10)

where:
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The true positive (TP) denotes the number of Leukaemia images which correctly
classified.

True negative (TN) means the number of normal images which correctly classified.
A false positive (FP) describes the number of normal images incorrectly categorised

as Leukaemia.
False negatives (FN) represent the number of Leukaemia images incorrectly

categorised as normal.

4.3 CNN Models Results

In this section, the evaluation results of CNN models based on transfer learning are
AlexNet and ResNet-18 on the ALL_IDB2 dataset. The dataset contains a small number
of images, which affects the accuracy of the diagnosis because CNNmodels need a large
number of images. Thus, a data augmentation technique was used, in which the images
artificially increased. There are many operations performed by the image augmentation
technique, such as rotation in many angles, shifting, flipping, and other operations [29].

Table 2 describes the tuning of AlexNet and ResNet-18 models. The optimizer
"adam" is set for both models and the setting of Max Epochs, Validation Frequency,
Mini Batch Size, and Execution Environment.

Table 3 illustrates the results of both AlexNet and ResNet-18, where it is noted that
ResNet-18 outperforms the AlexNet model for classifying the ALL_IDB2 dataset. The
ResNet-18 model achieved an accuracy of 97.4%, a precision, sensitivity, specificity
of 97.5% for all measures, and an AUC of 97.44%. In contrast, the AlexNet model got
accuracy, precision, sensitivity, specificity, andAUCwith a percentage of 96.2%, 96.5%,
96%, 96%, and 98.82%, respectively.

Figure 5 displays the execution of AlexNet and ResNet-18 for classifying the
ALL_IDB2 dataset for diagnosis of Leukaemia.

Figure 6 illustrates the confusion matrix created by the AlexNet and ResNet-18
models for diagnosing ALL_IDB2 dataset for detection of Leukaemia. The confusion
matrix includes all rightly classified dataset images represented by the primary diameter
called TP and TN and inaccurately classified represented by the secondary diameter
FP and FN. Figure 6.a shows the confusion matrix for AlexNet, which reached an
overall accuracy of 96.2%, an accuracy of 100% for diagnosing Leukaemia samples,

Table 2. Tuning training options for AlexNet and ResNet-18 models

Options AlexNet ResNet-18

training Options adam Adam

Mini Batch Size 128 15

Max Epochs 10 4

Initial Learn Rate 0.0001 0.0001

Validation Frequency 50 5

Execution Environment 4 GB GPU 4 GB GPU
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Table 3. The results of the CNN models

Measure AlexNet ResNet-18

Accuracy % 96.2 97.4

Precision % 96.5 97.5

Sensitivity % 96 97.5

Sepecificy % 96 97.5

AUC % 98.82 97.44

95

97

99

Accuracy % Precision % Sensi�vity % Sepecificy % AUC %

AlexNet ResNet-18

Fig. 5. Display execution of CNN models for classifying the ALL_IDB2 images.

and an accuracy of 92.3% for diagnosing normal images. While Fig. 6.b describes the
confusionmatrix ofResNet-18,which reached an overall accuracy of 97.4%, an accuracy
of 94.9% for diagnosing Leukaemia samples, and an accuracy of 100% for diagnosing
normal blood samples.

4.4 Results of the Hybrid CNN with SVM Algorithm

This section reviews the performance results of hybrid technologies between AlexNet
and ResNet-18 and SVM machine learning. These techniques worked to overcome the
challenges in machine learning models related to their demand for high-performance
computer specifications. They are taking a long time to train the data set. This technique
consists of CNN for feature map extraction and the SVM for classification. Hybrid
techniques have achieved superior results for diagnosing Leukaemia dataset.

Table 4 presents the results of the AlexNet + SVM and ResNet-18 + SVM hybrid
technologies. It is noted that these techniques have achieved superior results for the
detection of Leukaemia. It is noted that ResNet-18 + SVM has slightly outperformed
AlexNet + SVM. The AlexNet + SVM network achieved an accuracy of 98.1% and an
equal ratio of accuracy, sensitivity, specificity by 98% for all measures.While ResNet-18
+ SVM network achieved an accuracy of 98.7% and an equal percentage of precision,
sensitivity, specificity by 98.5% for all measures.

Figure 7 displays hybrid technique performance.
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Fig. 6. Confusion matrix for diagnosing ALL_IDB2 data sets (a): AlexNet and (b): ResNet-18

Table 4. The results of the hybrid models on the ALL_IDB2 datasets

Measure AlexNet + SVM ResNet-18 +
SVM

Accuracy % 98.1 98.7

Precision % 98 98.5

Sensitivity % 98 98.5

Sepecificy % 98 98.5

95

97

99

Accuracy % Precision % Sensi�vity % Sepecificy %

AlexNet+SVM ResNet-18+SVM

Fig. 7. Displays the performance of the hybrid techniques.

Figure 8a and b describe the confusion matrix produced by AlexNet + SVM and
ResNet-18 + SVM hybrid technologies, respectively, to classify the ALL_IDB2 dataset
for early diagnosis of Leukaemia. AlexNet + SVM achieved an overall accuracy of
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Fig. 8. Confusion matrix for diagnosing ALL_IDB2 data sets (a): AlexNet + SVM and (b):
ResNet-18 + SVM

98.1%, an accuracy of 100% for diagnosing Leukaemia, and 96.2% for diagnosing
normal blood samples. In contrast, ResNet-18 + SVM reached an overall accuracy
of 98.7%, an accuracy of 97.4% for diagnosing Leukaemia, and 100% for diagnosing
normal blood samples.

5 Discussion

This section discusses the proposed systems in this paper. Four proposed systems are
two CNN models and two-hybrid technologies to classify the ALL_IDB2 dataset for
early detection of Leukaemia. All dataset images were subjected to optimization to
remove artifacts. A data augmentation method was used to avoid overfitting. The first
proposed system is twoCNNmodels based on the transfer learningmethod, AlexNet and
ResNet-18, the two models, have achieved excellent results. AlexNet got an accuracy of
96.2%, while ResNet-18 achieved an accuracy of 97.4%. The second proposed system is
two hybrid networks between deep learning and the SVM algorithm. The two networks
achieved superior results, with AlexNet + SVM achieving an accuracy of 98.1%, while
ResNet-18 + SVM achieved 98.7%.

Table 5 outlines the results of the proposed systems performed on the ALL_IDB2
dataset. First, AlexNet and AlexNet + SVM achieved the best performance and reached
100%accuracy for classifying leukaemia images. Second, for normal class, bothResNet-
18 and ResNet-18 + SVM reached 100% accuracy. The table shows that the hybrid
systems between CNN and SVM models have better results than CNN models, and this
is one of our main contributions in this study.

Figure 9 illustrates the execution of all the proposed systems for classifying each
class in the data set.
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Table 5. Accuracy of each system in diagnosing each class

Diseases Deep learning Hybrid

Alex-Net Res-Net-18 AlexNet + SVM ResNet-18 + SVM

Leukaemia 100 94.9 100 97.4

Normal 92.3 100 96.2 100

85
90
95

100

Alex-Net Res-Net-18 AlexNet + SVM ResNet-18
+SVM

Deep learning Hybrid

Leukemia Normal

Fig. 9. Display the implementation of the systems for each class in the data set.

6 Conclusion

Artificial intelligence techniques in the medical sector have helped the challenges in
manual diagnosis represented by the shortcomings of manual diagnosis, and the taking
a long time to track images. Deep and automated learning techniques are considered
highly efficient analytical and diagnostic tools. In this study, four different networks
were developed between two CNN are AlexNet and ResNet-18, and extracting deep
features. Two-hybrid networks between CNN and SVM consist of two blocks, firstly,
the CNN model to extract deep features. The secondly deep feature map diagnosis
is SVM. All systems have achieved outstanding results, and the superiority of hybrid
techniques over CNN models is noted.

Data Availability. In this work, the data were collected from the dataset ALL_IDB2 used to
support the results of this work: https://www.kaggle.com/nikhilsharma00/leukemia-dataset.

Conflicts of Interest. No conflict of interest among the authors.
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