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Abstract. Detection andMarking of Intervertebral discs (IVD) of the spinal cord
is relevant as it notably enables experts to diagnose spinal cord injury. Many of
the experts frommedical field do this task manually, therefore there may be risk of
wrong labeling of in-vertebral disks and this job is tedious. There are several auto-
mated methods are already implemented for CT-SCAN images and MRI images
as well. Most of the methods are not freely available and the existing methods
fails if the image quality fluctuates. There is another factor that affects the local-
ization go wrong when the algorithms for localization fails to hit discs or it has
false positive detection. In this paper we adopted Fully Convolutional Network
(FCN), Stacked Hourglass Network with Multi-level Attention Mechanism and
region growing technique for vertebral disc localization and segmentation. Deep
learning has been used to tackle with false positive detection with the help of pose
estimation and semantic segmentation techniques. The accuracy of the results
were compared by the ground truth pixel location against predicted pixels loca-
tion. Spine generic public multi-center dataset was used to evaluate the proposed
method.

Keywords: Spinal cord segmentation · IVD localization · Intervertebral Disc ·
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1 Introduction

The spine is the name given to a bone structure composed of vertebrae that jointly move
with each other and extend from the skull to the pelvis. Spine, it starts at the neck and
extends to the coccyx. Figure 1 shows structure of spine where it is seen like “S” shaped.
It is composed of 33 vertebrae. It is divided into 5 areas: nape (7 vertebrae), back (12
vertebrae), lumbar vertebrae (5 vertebrae), coccyx (sacrum) (5 vertebrae), coccyx (4
vertebrae). The vertebras of the vertebrae join to form the spinal canal. The spinal canal
contains the spinal cord. The vertebrae that make up the spine are connected by semi-
movable joints. Only the coccyx and coccygeal vertebra have immobile joints between
them. The spine protects both the spinal cord and the skeleton from behind. It allows
the body to stand upright. It is the cage that protects the lungs through the ribs. It is also
a connection point for internal organs. The S-shaped curved structure ensures that the
spine is light in jump and balance.
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Fig. 1. The Anatomy of the Spine [https://www.motionspineinstitute.com/spine-101/]

Any harm injury to the spinal cord and it’s in-vertebral discs lead to major health
problems. To diagnose the injury of the spinal cord and in-vertebral discs, images are
required. There are two popular methods to acquire images of Intervertebral discs such
as Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT). Medical
imaging provides images of human spine and its In-vertebral disc to determine the
anatomical structure of scoliosis, hernia, disc. It is important for diagnosing diseases such
as slippage of disc, disc gaps. Today, the disc in a lumbar MRI image and localization of
the vertebrae has been analyzed by radiologists manually. This process takes a long time
which may lead to an error. There are several computer aided techniques and tools have
been introduced for automatic detection and localization of IVD and Vertebrae. For this
reason, many methods have been presented for automatic identification and positioning
of the disc. Existing methods are usually based on machine learning. A classifier is used.
Recent deep learning methods, men. Most successful in recognizing the structure of
the spine. Record the value. In this article, we adopted a fully convolutional network
(FCN), StackedHourglassNetworkwith aMulti-levelAttentionMechanism, andRegion
Growing techniques for disc localization and segmentation (Fig. 2).

The spine has 23 discs that are situated between the 24 cervical, thoracic, and lumbar
vertebrae. Six cervical discs (also known as the cervical spine) are placed in the neck
(also known as the cervical spine) between seven cervical vertebrae (C1–C7) just beneath
the skull. The lower back (also known as the lumbar spine) has five lumbar discs that
are positioned between five lumbar vertebrae.

Each vertebral region performs a specific job in the human body, such as breathing,
walking, and protecting the spinal cord. Damage to the in-vertebral disc might result in
back discomfort or hypersensitivity in various body areas. The accident or high pres-
sure/tension on the disc usually causes any form of damage to the in-vertebral disc.
As a result, diagnosing the in-vertebral disc is critical; assessing the disc form and/or
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Fig. 2. Damaged IVD

locating the damaged disc may aid in the analysis. The detection of in-vertebral discs
is the first step in the diagnosis. Detecting the discs manually is a difficult task. Several
strategies have been proposed in existing works to conduct automatic disc recognition
and localization mentioned in the Sect. 2.

2 Review of the Literature

Automatic labeling and analysis of the IVD is a critical task. Recently, many meth-
ods have been introduced in the field of medical image analysis for Intervertebral disc
segmentation and localization [1, 2]. Recent study shows that IVD localization interest
have been focused on the deep convolution neural networks (CNNs), and many studies
reveals that it outperforming traditional localization techniques. Cohen et. al. [3] pro-
posed 3D Fully Convolutional Network (FCN) to retrieve center coordinates of IVD
and segment the disc. In the work proposed in the work proposed by Ji et al. [4] have
adopted standard CNN for Intervertebral disc segmentation by using a patch around each
pixel. The authors have used 2D patch and impact of vicinity size to evaluate different
patch strategies. The authors of [5] adopted deeply supervised multi-scale fully CNN for
Intervertebral disk segmentation applied on MR-T2 weighted images. In their work risk
of loss of gradients during the training was reduced by use of multi-scale deep supervi-
sion in the architecture. In the work proposed by Forsberget. al. [6] clinically annotated
spine labels were used for detection and labeling pipelines for cervical and lumbar MR.
They have used two distinct pipelines for labeling and detection of vertebrae. And two
neural networks (CNNs) were configured for locating lumbar/cervical vertebra. Zhuet.
al. [7] introduced amethod based on Gabor filter bank for Intervertebral disc localization
and segmentation. Alomari et al. [8] employed a two-level probabilistic model for IVD
discs localization fromMRI images.Michopoulou et al. [9] introduced a semi-automatic
method for detection and segmentation of IVDs. In their work they have considered both
degenerated and normal lumbar IVDs. Another model based searching method was used
to localize entire spine discs by Penget. al. [10]. Castro et al. [11] used active contour
model with fuzzy C-means technique to segment the IVDs. Haq et al. [12] used the dis-
crete simplex surface model for segmentation of the IVDs. Anovel anisotropic-oriented
flux model employed in the work proposed by Law et. al. [13] to segment the IVDs.

Above mentioned methods needs manual operations or human interaction to refine
the results for effective IVDs localization and segmentation. Some studies have proposed
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early fusion and late fusion techniques of IVD features for Multi-modal segmentation
of IVDs [14–20].

3 Proposed Methodology

3.1 Data

We employedMRI spinal cord dataset [3]. The dataset consist of T1w and T2wMRI data
from 235 subjects, the dataset includes inconsistent images since, images were captured
from 40 different centers. The network was fed an average of each subject’s six center
slices as input images. For training, testing, and validation, the dataset was divided into
three parts: 75%, 10%, and 15%, respectively. Ground truth data was manually formed
through “labelme” annotation tool [21].

3.2 Pre-processing

The Spinal Cord Toolbox (SCT) v4.0.1 was used to preprocess 3D volumes of the MRI
data [22]. The images were re-sampled at 1 mm isotropic resolution and straightened
using the spinal cord segmentationmethod to produce the spinal cord centerline [23]. The
imagewas cropped to256*256pixels around the spinal region as part of the straightening
procedure [24]. To reduce contrast variability in the image, a Contrast Limited Adaptive
Histogram Equalization technique was used [25]. We increased the target size to deal
with class imbalance by applying a 10-pixel Gaussian kernel to single-pixel labels.

Further we extract the average of 6 sagittal slices (centered in the middle slice) as a
data sample for each subject. We normalize each image to be in range [0, 1] to reduce
the effect of data variation. In order to prepare the ground truth data for the training
process, first, we extract the intervertebral disc position (single pixel) from the ground
truth data then we convolve the image with a Gaussian kernel to generate a smooth
ground truth with increased target size (radius 10). We repeat this process for each inter-
vertebral disc separately to produce V channel ground truth, where V is the number of
intervertebral discs. Since the Spine Generic dataset consists of samples with variable
number of intervertebral discs (between 7–11), we extract 11 intervertebral discs for
each subject. For any missing inter vertebral disc we consider unknown position and
eliminate its effect on the training process by simply filtering out with the visibility flag
on the loss function.

The proposed method starts with the pre-processing for the proposed model. The
position of the intervertebral discs were extracted using the pose estimation method
with attention mechanism of Haourglass model. Figure 3 depicts the proposed method.
Steps involved in the methodology are discussed in the subsequent section.

3.3 Proposed Method

The stacked hourglass network [26] learns the object posture using (N-1) intermedi-
ate (shown in 3 as intermediate prediction) and one final prediction, as illustrated in
Fig. 3. As a result, the multi-level representation is taken into consideration in terms of
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Fig. 3. Proposed stacked hourglass network, An attention mechanism is built into a stacked hour-
glass network. The model considers the loss function between each hourglass prediction and
ground truth mask (intermediate supervision). Further it feds the intermediate representation into
an attention layer to produce the attention map (heat map). The attention map guides the decoder
layer to focus on the in-vertebral disc.

the N stacked hourglass network. We propose using a multi-level attention technique
to enhance the power of representation space. To do this, each hourglass network’s
intermediate representation (shown in step 2) is concatenated to build a multi-level
representation.

This representation can be viewed as a collection of collective knowledge gathered
from multiple levels of the network at various scales; consequently, employing this col-
lection of collective knowledge as a supervisory signal to calibrate thefinal representation
can result in a superior representation. We stack all of the intermediate representations
to incorporate this supervisor signal. To construct a single channel attention mechanism,
this stacked representation is given to the attention block (series of point-wise convo-
lution with sigmoid activation). To re-calibrate the representation space and train the
model to pay more attention to the disc position, we multiply this attention channel with
the final representation. The attention block fed to region growing technique. Centroid of
the block of attention map/ heat map was considered as a seed point for region growing.
In the instance of the Region expanding approach, start with a seed pixel and then look
at the neighboring pixels. If the neighboring pixels follow the preset rules, that pixel is
added to the seed pixel’s region, and the procedure continues until no similarity remains.
The bottom-up strategy is used in this procedure. The preferred rule might be specified
as a threshold in the event of an expanding region. Threshold for region growing is
computed using Eq. 1.

|Zmax − Zmin| ≤ threshold (1)

where, Zmax → Maximum pixel intensity value in a region
And Zmin → Minimum pixel intesity value in a region.

4 Results and Discussion

The Spine Generic Dataset is used to assess the performance of the proposed technique.
Each participant has both T1w and T2w contrasts in this sample. Images were taken in
42 various locations across the world. The dataset encompasses a wide range of sample
quality, scale, and imaging devices, making it a difficult baseline for intervertebral disc
labeling.We use Adam optimization to train the proposed model over 150 epochs with
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Fig. 4. (A) Original image. (B) Seed point detected by hourglass network. (C) attention map
produced by Hourglass Network

a learning rate of 0.00025 and a batch size of 4. In our tests, we found that employing
two stacks yielded the greatest results on the validation set. The approach may be easily
used via the Spinal Cord Toolbox [22], and the implementation and model training were
done in ivadomed [27].

4.1 Evaluation Matrices

Dice Overlap Coefficients
The percentage of successfully segmented voxels is measured using the Dice metric.
Dice is calculated using Eq. (1).

Dice = 2|A ∩ B|
|A| + |B| × 100% (2)

The percentage of successfully segmented voxels is measured using the Dice met-
ric. Where A represents the sets of foreground voxels in the ground-truth data and B
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Fig. 5. A) Input images (left), B) ground truth image (middle), C)output predictions of our
proposed method (right)

represents the matching sets of foreground voxels in the segmentation result, Dice is cal-
culated. Better segmentation accuracy is associated with a higher Dice metric. Further,
dice value was received by confusion matrix as 1 (correctly identified) and 0 (missed)
the target and predicted pixel coordinates. Figure 9(a) and (b) depicts the produced
confusion matrix from localization distance technique (Figs. 5, 7 and 8).

4.2 Effect of Hourglass Attention Mechanism

The proposed approach makes use of the attention mechanism to re-calibrate the rep-
resentation space and focus the model’s attention to the target region. We trained the
model with and without the attention mechanism to see how it affected the results. The
results in Fig. 6 show that the attention mechanism model performance in both T1w
and T2w modalities. Figure 4(C) shows a sample attention map on the input images to
visualize the influence of the network’s attention mechanism.
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Fig. 6. (a) Confusion matrix for testing sample 1, (b) Confusion matrix for testing sample 2

Fig. 7. (a) Precision recall graph for sample 1, (b) Precision recall graph for sample 2

Fig. 8. Features extracted from sample 1
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Fig. 9. Features extracted from sample 2

5 Conclusion

In this work we fabricated the IVD localization and labeling through region growing
and pose estimation technique. The structural information of the IVDs is employed for
training and to localize the true location of the discs.

The proposed approach re-calibrates the representation space to focus more on the
intervertebral disc area by utilizing the strength of the attentionmechanism. To eliminate
the FP and FN detection, we presented a skeleton-based post-processing technique.

A new design for recognizing intervertebral discs is presented in this study. The
approach improves localization precision while reducing false positives and negatives.
Extending the testing of this model tomore “real-life” datasets in patients will be a future
goal.
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