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Abstract. This research aimed to evaluate traditional machine learning to achieve
high-resolution LULC classification with multispectral satellites and object-based
classifiers. Multispectral satellites have high importance in getting and download-
ing images of observation land. This article describes the comparative analysis of
Sentinel-2A (10 m resolution) and Landsat8 (30 m resolution)Satellites with two
classifiers from object-based machine learning methods, Random Forest (RF) and
K Nearest Neighbor (KNN), to experiment with the classification of five years
(2015, 2016, 2017, 2018, and 2019) with 95 images downloaded, 60 images with
sentinal2A, and 35 images with landsat8. Area of Sana’a region. This Study indi-
cated that Random Forest proved efficient for Sentinel 2A and Landsat8. Whereas
KNNworkedwell with Landsat8 and provided higher accuracy thanRF. The inter-
pretation of these results may be due to the RF classifier requiring many features
for good accuracy. At the same time, KNN works well with a small number of
input feature variables and gives good accuracy.

Keywords: Multispectral Satellites · Land Use & Land Cover Classification
(LULC C) · Sentinel-2A satellite (10m) · Landsat8 Satellite (30m) · Random
Forest (RF) Classifier · K-Nearest Neighbour (KNN) · Sana’a City

1 Introduction

Multispectral sensors are stimulated by incoming energy reflected or released by things
on the land’s surface, diffused, and collected in sensors sensitive to a wide range of
spectral bands [1]. These spectral bands are represented by a small section of the elec-
tromagnetic spectrum specified by the sensor’s shortest and most effective wavelengths,
resulting in a single bitmap for each spectral band. Figure 1 shows the fourmost often uti-
lized spectral bands in open data multispectral satellite missions worldwide, with black
boxes indicating incoming intensity. Optical imaging technologies include near-infrared
imaging systems [2].

The energy of the sensor is converted into digital data, which is affected by the
weather conditions at the time of measurement. As a result, rather than a quantifiable
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Fig. 1 Types of optical imaging systems and Spectral Resolution Concepts

physical unit, the numerical value indicates the relative relationship of the reversal at
the time of observation [3]. It’s required to translate numerical figures into an inversion,
which is the ratio of the energy reflected for each spectral band to the overall power
the sensor receives while analyzing this data. Spectral differences are used to identify
and characterize land cover. Every spectral range has its unique personality [4]. When
contrasted to the rest of the land, each cover feature has its unique spectral signature,
defined by a considerable change in reflectance in one or more spectral bands, as shown
in (Fig. 2).

High-resolution satellite images are limited compared to multispectral images in
developing countries. This Study comparesmultispectral satellites using robust accuracy
classifiers, Random Forest andKNN. The Pros of multispectral satellites are that it offers
a significant number of free imagery: The images’ spatial resolution varies (10500 m /
pixel).As a result, these satellitesmaybeutilized to get a large area at no cost. The concept
is low-cost, easy to implement, and rapid. Significant differences between Landsat8 and
Sentinel-2 may have a role in this Study’s results. For example: Visiting time Landsat8
16 days and Sentinel-2 ten days per satellite, five days for two satellite constellations.
It may be possible to be influenced by this difference from the workbook. Visiting time
Sentinel-2 ten days per satellite maybe was not suitable with characters KNN that was
my opinion [10].

Fig. 2 Comparison of spectral bands for several multispectral satellites.
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The machine learning algorithms effectively utilize the sensor images for land cover
classification like Random forest and KNN [11]. RF is a collection or group of Classifi-
cation and Regression Trees created through random resampling on the preparation set
on datasets of comparable size to the preparation set, known as bootstraps. It is capable
of accurately classifying large amounts of data. It is a learning system built with many
decision trees during training, and the individual trees anticipate the modal output [12].
It has become a choice of researchers for classification, prediction, investigating variable
importance, and variable selection [13]. The K-Nearest Neighbour method is one of the
most fundamentalMachine Learning algorithms. It is an approach that saves all available
data and categorizes new data points depending on their similarity to the current data.
Further data may be swiftly sorted into a well-defined category utilizing the approach
[14].

The software used in this study is QGIS and SAGAGIS, a free, open-source software
Automated Geoscientific Analysis. SAGA is a GIS application of spatial algorithms
which are simple and effective. It includes an easy-to-use user interface with various
visualization possibilities and a rich, increasing collection of geoscientificmethodologies
[15].

This Study attempted to work on the classification of LULC that depends on several
factors to obtain a high-resolution characterization and varies according to the classifier
used, the image, the time of filming, and theweather conditions inwhich it was captured.,
etc. The results showed that selecting only high-resolution satellite images is not enough.
The characteristics of the classifier have a significant role in obtaining high-accuracy
results in classification. This Study also presented that compatibility of the type of
satellite with the typical characteristics of the classifier chosen is critical, which means
that the specific features of the classifier selected are essential for this satellite.All of these
factors have a role in achieving high-accuracy classification results. The significance of
the Study lies in applyingmultispectral satellites under certain conditions and coming up
with significant results. This research will be a helpful way to reveal to new researchers a
way to obtain high accuracy in classifying changes in land use and land cover.And it helps
specialists in this field decide on the selection type of method and type of satellite and
Search in the development of traditional machine learning. This article will effectively
plan the future aspects of LULC. This research presented the following: It compared
two types of multispectral satellites (Landsat8 and Sentinel-2A) with two object-based
classifiers (KNN and RF) of machine learning. It created a database or references for
LULC of Sana’a city, the capital of Yemen, consisting of five years (2015, 2016, 2017,
2018, and 2019) with 95 images downloaded, 60 images with sentinal2A, and 35 images
with landsat8. The Study presents the experimentation result of two satellite images with
machine learning for Sana city –Yemen’s capital- which is not yet explored with this
approach. The result will assist in monitoring and predicting future land use and cover
changes.
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2 Literature Review

The summary of the literature survey, this study has concentrated on analyzing the
performance of the multispectral satellites presented by research efforts in recent years
[16–30]. It focused intensely on factors that influence their performance. This Study dealt
with about forty-six studies analyzed systematically. They deal with pixel-based clas-
sifiers and other techniques but did not study multispectral satellites with object-based
classifiers like this Study in explanation, analysis, and comparisons. Previous studies
indicated the gap in studying land change classification with sentinel-2A and landsat8
satellites. In (Fig. 3) has cleared the research line about pixel-based and other techniques
with the sentinel-2A versus landsat8 in recent years. The results of these studies show
that little research supports that Landsat8 Satellite (30 m) is better than Sentinel2A
(10m) [16]. But there are significantly more studies supporting that Sentinel2A (10m)
was better than Landsat8 Satellite (30 m) [22–30]. Their findings reveal that the Sen-
tinel2A (10 m) satellite has a superior resolution to the Landsat8 satellite. Their output
was that Sentinel2A (10m) is better than Landsat8 Satellite [23] is logical because the
pixel classifiers are affected by the location of the images sure gives high accuracy with
Sentinel-2A -10-m more than Landsat8 Satellite (30 m). The review of work in this
study also revealed that, despite the high resolution of deep learning, machine learning
is still widely used and continues to be used today, with classical machine learning out-
performing deep learning in terms of features and characteristics. Machine learning is
less time-consuming and more accessible to implement than deep learning [29, 30]. The
study demonstrated that it is possible without deep learning, we could have achieved
a very high resolution for LULC classification using traditional machine learning and
multispectral satellites [31–35].

Through Recent Years for pixel-based classifiers.

Fig. 3 Research Line Path About The Sentinel2A (10m) Versus Landsat8 Satellite (30m)
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2.1 Limitation of This Study

Toachieve the high-resolution classification of land changes usingmultispectral satellites
and machine learning in a manner that competes for deep learning and high satellite. It
was necessary to study the limitations of methods and satellites used in this Study during
the survey literature review. There are essential details for the restriction of Landsat8
and Sentinel-2 described in (Table 1). The limitation of the methods used in this study
is mentioned in detail in (Table 2 and Table 3).

Table 1. Differences between Sentinel-2A and Landsat8

Limitation Landsat 8 Sentinel-2

Bands Eight color 13 (3 red edge bands have
some vegetation and
chlorophyll in the ocean,
applications)

Thermal bands 2 (band ten is generally better) None

Swath width 185 km 290 km

Inclination (angle orbit
crosses equator)

98.22 98.56

Best spatial Resolution 15 m pan, 30 m MSI 10 m for four bands

Revisit time 16 days Ten days per satellite, five
days for the constellation with
two satellites

Coverage limits 81.8 S to 81.8N systematic coverage: 56S to
84 N

on request to 84S

Recorded data: 16-bit DN, which can be linearly
scaled to TOA radiance or
reflectance using constants in
metadata

16-bit DN, which can be
converted to TOA reflectance
by dividing by 10000

Resolution of space (m) (15),30,100 10,20,60

Temporal reorganization
(days)

16 2–3

Resolution of spectral data 11 bands 13 bands

Resolution in radiometric
terms

16-bit 12-bit

Width of the swath (km) 185 290

Range of wavelengths
(nm)

433–12,500 442–2186

The scale of supported
investigations is large.

National,Regional Local, National
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Table 2. Differences between Pixel and Object-based

No Pixel-based Object-based

1 The image is classed using spectral
information in the pixel-based technique,
which is frequently used to extract low-level
characteristics. Because the classes are
unclear, the pixels in the overlapped region
will be incorrectly identified.

The aggregation of picture pixels into
spectrally homogenous image objects
ensures that the pixels not in an overlapping
region will not be misclassified due to the
object-based approach, frequently used to
extract high-level features from images.

2 Only spectral data (pixel intensity) is used
as a training set.

First, using spectral and geographical data
(neighborhood pixels) as a training set

3 The techniques directly classify a single
pixel.

After first aggregating image pixels into
spectrally homogenous things, approaches
classify individual objects using an image
segmentation algorithm.

3 Materials and Procedures

3.1 Area of Study

Sana’a is Yemen’s capital and the administrative seat of the Sana’a Governorate. Sana’a
is situated at an altitude of 2150 m above sea level, on the line (15–21) north of the
equator and longitude (12–44) east of Greenwich. It is surrounded by two mountains
(Jabal Naqum on the east and Jabal Eiban on the west) and the province [36]. The city
boasts a unique setting at roughly 2,200m above sea level [37]. Sana’a is Yemen’s largest
city and the Governorate’s administrative center. The elevation is 2,300 m (7,500 ft). It
is the country’s highest capital and is near the Sarawat Mountains. It has a population of
roughly 3,937,500 (2012)[19]. It covers about 17,707.214 km2 land area in this study
(Fig. 4).

3.2 Methodology

A brief explanation of the methodology for processing satellite data is shown in Fig. 5.

3.3 Pre-processing for LULC Classification

It is the primary and essential task in the process LULCC, the coordinate reference
system for defining and cutting the map into specific areas. The pre-processing process
procedure includes studying the location of the case study exactly, as evident in this study
(Fig. 6), and identifying the data after being downloaded from satellites under remote
sensing technology precisely (Figs. 7 and 8). The information subject to pre-processing
is divided into the images shown in WGS84 or WGS84 / UTM.

Multispectral images from Sentinel-2 and landsat8 are available for the case study
(Figs. 7 and 8), showing the pre-processing corrections for band 432. The pre-processing
contains valid data with a geometric and radiometric correction, presented in this study
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Table 3. Differences between RF and KNN

No RF KNN

1 RF classifier is object-based and
hyper-parameter.

KNN classifier is object-based.
Its algorithm is nonparametric, meaning it
doesn’t make assumptions about the data.

2 It depends on identifying objects without
going into the details of those objects.

It’s also known as a lazy learner algorithm
since it doesn’t immediately learn from the
training set; instead, it keeps the dataset and
performs a task.

3 It is known as neural networks, which
provide estimates for variable relevance.

This method merely saves the information
during the training phase. When it receives
new data, it classifies it into a category
similar to the latest data.

4 It also offers a preferable way of dealing
with data that is missing.

Benefits of the KNN Algorithm: It is simple
to implement. It can cope with noisy
training data. It may be more successful if
the training data is vast.

5 Its approach can also handle large datasets
with thousands of variables. When a class is
rarer than other classes, it can automatically
balance data sets.

Disadvantages of the KNN Algorithm: The
value of K must constantly be determined,
which might sometimes be challenging. The
computation cost is high since the distance
between the data points for all training
samples must be selected [16].

6 The method works quickly with variables
suited for more complex jobs [21].

It predicts the output of data points using a
labeled input data set. It’s one of the most
basic Machine Learning algorithms and
may be used for a wide range of issues.

7 Missing values are filled in by the variable
that appears the most in a given node.

The KNN technique is substantially quicker
than earlier training-based algorithms [37].

8 It is implemented using algorithms with
built-in feature selection techniques [34].

It’s primarily based on visual resemblance.

9 It is effective because they have solid
predictive performance, little overfitting,
and is simple to comprehend [34].

The training data is saved and only used to
produce real-time predictions to learn from
it.

[37] with QGIS and SAGA software. These operations improve satellite imagery for
classification and rectify the degraded image to generate a more authentic portrayal of
the actual scene [37].

3.4 Classification Methods Used in This Study

There are four groups for classification models. Every group contains five categories
of the models for five years, 2015, 2016, 2017, 2018, and 2019, as described in



Evaluation of the Multispectral Satellites with Object-Based Classifiers 609

Fig. 4 The location of Sana’a City Study area

Study Area , Study of Data Acquired from Sentinel-2A and landsat8 Satellite

Collect Data

Result

Comparison and Evaluation

Data Pre-processing

Digital Classification

Statistical and Analysis

Collection of results

Accuracy 
Assessment

Fig. 5 Workflow Diagram For Proposed Methodology

(Figs. 9, 10, 11, and 12). Twenty images are selected from the found 95 pictures of
the database for twenty proposed models to train, validate, and test the methods, five
models for landsat8 with RF, five models for landsat8 with KNN, and five models for
sentinel-2Awith RF, and five models for sentinel-2Awith KNN. The band classification
used in this study is RGB 432. There are six samples and six parameters for creating
model classes: High Land, Mountains, Land Area, Built-up, Vegetation, and Bare Land.
Create the samples depending on RGB color composites of Landsat & sentinel-2A satel-
lites, for example, the class Vegetation (red pixels in color composite RGB= 432). This
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Fig. 6 Sana’a area on google map

Fig. 7 Data set of Sentinel-2A Satellite Sensor with selection and clipping of area study in
Composite

Fig. 8 Data set of Landsat8 Satellite Sensorwith selection and clipping of area study inComposite
band 432
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With Sentinel-2A for RF Classifier

2015 2016

2017 2018

2019

Fig. 9 Group1 of LULC Classification From 2015 To 2019 With Sentinel-2A for RF Classifier

article reveals methodology followed by definite outcomes from general level LULCC
planning action for Sana’a city utilizingmultispectral medium goal satellite information.
Our examination shows that the LULC in Sana’a has undergone significant changes from
2015 to 2019.

3.4.1 Random Forest Classifier (RF)

The speed with all test sets is developed to measure the speculation error. Initially
intended for AI, the classifier has acquired prominence in the remote detecting local area,
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Sentinel-2A for KNN Classifier

2015 2016

2017 2018

2019

Fig. 10 Group2ofLULCClassificationFrom2015To2019WithSentinel-2A forKNNClassifier

which is applied in distantly detected symbolism characterization because of its high
precision. It also accomplishes the appropriate speed required and productive definition.
To begin, each tree prepared in the example utilizes arbitrary subsets from the underlying
tests. Besides, the ideal split is browsed through the unpruned tree hubs’ arbitrarily
chosen highlights. Thirdly, every tree develops unbounded [15].
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Landsat8  for RF Classifier

2015 2016

2017 2018

2019

Fig. 11 Group3 of LULC Classification From 2015 To 2019 With Landsat8 for RF Classifier

3.4.2 KNN (K-Nearest Neighbor)

It is to discover a collection of k samples from the calibration dataset that are the most
similar to unknown models. As a result, the k plays a critical role in its performance for
this classifier, and it is the most important tuning parameter. A bootstrap technique was
used to calculate the parameter k. This method merely saves the information during the
training phase. To explain how it works, use the following algorithm: Step 1: Determine
how many neighbors you’ll have (K). Step 2: Calculate the Euclidean distance between
K neighboring points. Step 3: Determine the K nearest neighbors using the Euclidean
distance. Step 4: Among these k neighbors, count the number of data points in each
category. Step 5: Assign the newly acquired data points to the class with the most
neighbors. Step 6: Our model is now complete. Let’s pretend we have a new data point
that has to be assigned to the correct category.
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Landsat8  for KNN Classifier

2015 2016

2017 2018

2019

Fig. 12 Group4 of LULC Classification From 2015 To 2019 With Landsat8 for KNN Classifier

3.5 Creation of Database and Land Changes Classification

This study used images from Sentinel-2A (10m) and Landsat 8 multispectral Resolution
satellites. The image data was collected from 2015 to 2019, and all photos are from
December month. Twelve images are contained each year for Sentinel 2 A. For Landsat8
Satellite, the Spatial Resolution is 30 m. Seven images for respective five years were
gathered. The total data size is the number of pictures of multiple years for each satellite
95, as described in (Table 4).

4 Accuracy Assessment

Four measures are available for evaluating classifier performance: Accuracy, confusion
matrix, log-loss, and AUC-ROC. This article used the Confusion matrix and A kappa
coefficient to estimate classification accuracy.A confusionmatrix, also known as an error
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Table 4. Creation of Database

SENTINEL-2A Satellite Landsat 8 Satellite
The sensor is SENTINEL-2A.
Resolution is  10m. 

The time of the season in December.

The sensor is Operational Land Imager (OLI) & Thermal 
Infrared Sensor (TIRS). 
Resolution is  30m. 
The time of the season in December.

2015 2016 2017 2018 2019 2015 2016 2017 2018 2019
12 12 12 12 12 7 7 7 7 7

matrix, is a table that describes how well a classification model or classifier performs
on a set of test data for which the valid values are known. The kappa measurement joins
the off-slanting components of the mistake frameworks and addresses arrangement after
eliminating the extent of performance anticipated by change.When theKappa coefficient
equals 1, the transaction is in perfect agreement; when it is close to zero, the bargain
is no better than expected by chance. A significant number of pixels are taken from
the grouped image and contrasted, and a reference guide of more significant position to
assess the accuracy of the grouping process. The kappa coefficient goes from 0 to 1, and
values higher than 0.7 are considered adequate. At the same time, those equivalent to or
lower than 0.4 recognize an external connection between the characterized image and
the ground truth. Generally, Kappa values are apparent in (Table 5).

For each class, the confusionmatrix, producer’s anduser’s accuracy, overall accuracy,
and the accuracy estimate that removes the effect of unexpected change on the accuracy,
known as the Kappa statistic, are calculated.

The confusion matrix is straightforward, but the associated nomenclature might be
perplexing. A confusion matrix is calculated in this Study through SAGA GIS software.
There are four groups for the results of the confusion matrix. Every group containing
five categories of the results for five years, 2015 to 2019, is mentioned in (Figs. 13,
14, 15, and 16). The overall accuracy and kappa coefficient calculated in this study are
discussed in (Table 6).

Table 5. Strength of Agreement of A kappa coefficient

No. Kappa Value Degree of agreement

1 < 0.00 low

2 0.00–0.20 medium

3 0.21–0.40 Good

4 0.41–0.60 Very Good

5 0.61–0.80 Excellence

6 0.80–1.00 Very Excellence
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Table 6. Overall accuracy and Kappa coefficient for Sentinel2A satellite with RF & KNN
classifier

RF Classifier KNN Classifier

Sentinel2A satellite Landsat8 satellite Sentinel2A satellite Landsat8 satellite

No Year Overall
Accuracy

Kappa
coefficient

Overall
Accuracy

Kappa
coefficient

Overall
Accuracy

Kappa
coefficient

Overall
Accuracy

Kappa
Coefficient

1 2015 99.87% 0.997470 99.66% 0.045511 83.26% 0.919499 92.90% 0.781132

2 2016 99.92% 0.998937 99.83% 0.997137 91.56% 0.977268 96.34% 0.954044

3 2017 99.78% 0.996582 99.59% -0.056751 91.49% 0.952622 94.88% 0.794250

4 2018 99.82% 0.996878 99.81% 0.997368 84.56% 0.933182 94.88% 0.780590

5 2019 99.79% 0.996686 99.29% 0.653902 83.83% 0.736954 93.86% 0.781132

5 Results and Discussion

The land changes’ results are detailed in Tables 7, 8, 9 and 10. Also, the area under
major land-use or land-cover classes was calculated for 2015 to 2019. It is observed
that the region has changed during the mentioned period. There are differences in the
entire geographic space of the Land use and land cover maps. There has been a persistent
reduction inVegetation&BareLand and increased land coverwith expansion in cropland
and developed regions. The part was advancing in urban area density, built-up area, and
land presence, and the built-up area fell. The land area expanded, and the built-up area
was 30.56% in 2015, 25.27% in 2016, 17.78% in 2017, 28.76% in 2018, and 20.24%
in 2019, depending on LULC. They were using Sentinel-2A for RF consideration for
the highest accuracy. The Land Use & Land cover classification using RF classifier with
Sentinel-2A gave accuracy results higher than Landsat8 f with the same period. But, the
KNN classifier type with Sentinel-2A gave less accuracy than Landsat8 with the same
period. That means Landsat8 results were better than Sentinel-2A with the same period
(Table 11). Since the Sentinel-2A satellite has a 10m resolution, which is efficient for
object classification, thus proved good with RF and KNN.
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2015
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 0 0 0 0 0 0 250 0

Mountains 1230 0 0 0 0 0 0

Land Area 0 0 55 0 0 0 120 100

Builtup 0 0 0 0 0 0 44 0

Vegetation 0 0 0 250 0 0 158 0

Bare Land 0 0 0 0 0 0 1235 0

Unclassified 0 0 0 0 0 0 0 0

SumProd 44 55 250 158 1235 120

AccProd 0 100 0 0 0 100

2016 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 222 0 0 0 0 0 82 98.78049

Mountains 0 81 0 1 0 0 165 99.39394

Land Area 0 0 164 1 0 0 107 100

Builtup 0 0 0 107 0 0 2075 99.80723

Vegetation 0 0 0 0 2071 4 824 100

Bare Land 0 0 0 0 0 824 58 100

Unclassified 222 0 0 0 0 0 0 0

SumProd 81 164 109 2071 828 58

AccProd 100 100 98.16514 100 99.51691 100

2017 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 203 0 0 0 0 0 59 0

Mountains 0 0 0 0 438 0 52 0

Land Area 0 59 0 0 0 0 226 0

Builtup 0 0 52 0 0 0 0

Vegetation 0 0 0 226 0 0 21 0

Bare Land 0 0 0 0 0 0 614 0

Unclassified 203 0 0 0 0 0 0 0

SumProd 203 672 52 226 439 21

AccProd 100 0 0 0 0 0

2018 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 1838 2 0 0 0 1 1841 99.83705

Mountains 3 2178 0 1 0 0 2182 99.81668

Land Area 0 0 205 1 0 0 206 99.51456

Builtup 0 0 0 328 0 0 328 100

Vegetation 0 0 0 1 562 0 563 99.82238

Bare Land 0 0 0 1 0 175 176 99.43182

Unclassified 0 0 0 21 0 0 0 0

SumProd 1841 2180 205 332 562 176

AccProd 99.83705 99.90826 100 98.79518 100 99.43182

2019 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 0 0 0 0 0 0 61 100

Mountains 0 0 56 0 0 0 106 100

Land Area 0 0 0 938 0 0 0

Builtup 0 0 0 0 376 0 128 99.21875

Vegetation 0 0 0 0 0 0 0

Bare Land 0 637 0 0 0 0 56 100

Unclassified 0 0 0 0 0 344 0 0

SumProd 127 637 56 938 376 0

AccProd 100 0 100 100 100

Fig. 13 Group1 of Confusion Matrix Tables to Landsat8 with RF Classifier from 2015 To 2019
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2015
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 0 0 0 0 0 0 84 85.71429
Mountains 0 0 0 92 0 1 93 98.92473
Land Area 0 0 0 0 55 0 57 96.49123

Builtup 0 0 0 2 0 370 372 99.46237
Vegetation 0 5 43 1 0 0 356 86.23596
Bare Land 0 0 80 1 0 0 112 0

Unclassified 0 0 0 0 0 0 0 0
SumProd 100 77 124 96 58 371
AccProd 100 93.50649 0 95.83333 94.82759 99.73046

2016 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 73 0 7 1 0 0 81 90.12346
Mountains 0 158 7 9 1 0 175 90.28571
Land Area 8 1 94 0 0 0 103 91.26214

Builtup 0 4 1 1978 65 0 2048 96.58203
Vegetation 0 1 0 82 761 0 846 89.95272
Bare Land 0 0 0 0 0 58 58 100

Unclassified 0 0 0 0 0 0 0 0
SumProd 81 164 109 2071 828 58
AccProd 90.12346 96.34146 86.23853 95.50942 91.90821 100

2017 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 50 0 0 2 0 0 52 96.15385
Mountains 0 225 1 0 0 0 226 99.55752
Land Area 0 1 399 0 5 0 436 91.51376

Builtup 2 0 0 19 0 0 21 90.47619
Vegetation 0 0 0 0 609 0 609 100
Bare Land 0 0 0 0 0 96 96 100

Unclassified 0 0 6 0 0 0 0 0
SumProd 52 226 433 21 614 96
AccProd 96.15385 99.55752 92.14781 90.47619 99.18567 100

2018 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 684 1 1 0 0 0 686 99.70846
Mountains 1 8361 11 8 14 0 8395 99.595
Land Area 0 4 21126 1 5 0 21136 99.95269

Builtup 0 2 0 2924 1 0 2927 99.89751
Vegetation 0 0 0 1 2048 0 2049 99.9512
Bare Land 0 0 0 0 0 28 28 100

Unclassified 0 0 0 0 0 0 0 0
SumProd 685 8368 21138 2934 2068 28
AccProd 99.85402 99.91635 99.94323 99.65917 99.03288 100

2019 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 445 0 0 0 0 0 445 100
Mountains 0 2353 0 1 1 2 2357 99.83029
Land Area 0 0 45 0 0 0 45 100

Builtup 0 6 0 13952 1 3 13962 99.92838
Vegetation 0 2 0 0 1511 3 1516 99.67019
Bare Land 0 13 0 3 0 6112 6128 99.7389

Unclassified 0 0 0 0 0 0 0 0
SumProd 445 2374 45 13956 1513 6120
AccProd 100 99.11542 100 99.97134 99.86781 99.86928

Fig. 14 Group2 of Confusion Matrix Tables to Landsat8 with KNN Classifier from 2015 To
2019
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2015
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 770 0 0 0 1 0 771 99.8703
Mountains 0 698 0 0 1 0 699 99.85694
Land Area 0 1 4981 1 1 0 4984 99.93981

Builtup 6 7 1 19285 44 0 19343 99.70015
Vegetation 6 0 0 21 44121 3 44151 99.93205
Bare Land 0 0 0 0 2 816 818 99.7555

Unclassified 837 0 0 0 0 0 0 0
SumProd 782 706 4982 19307 44170 819
AccProd 98.46547 98.86686 99.97993 99.88605 99.88907 99.6337

2016 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 497 0 1 1 0 0 499 99.5992
Mountains 0 1123 0 1 0 0 1124 99.91103
Land Area 0 0 482 0 0 0 482 100

Builtup 0 0 1 3015 0 0 3016 99.96684
Vegetation 0 1 0 0 258 0 259 99.6139
Bare Land 0 0 0 0 0 1103 1103 100

Unclassified 0 0 0 0 0 0 0 0
SumProd 497 1124 484 3017 258 1103
AccProd 100 99.91103 99.58678 99.93371 100 100

2017 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 11513 11 16 17 5 0 11566 99.54176
Mountains 5 3489 1 0 0 0 3495 99.82833
Land Area 2 0 14202 5 1 0 14210 99.9437

Builtup 0 0 0 935 0 0 935 100
Vegetation 1 0 0 0 485 0 486 99.79424
Bare Land 0 0 0 0 0 290 290 100

Unclassified 0 0 0 0 0 0 0 0
SumProd 11523 3500 14219 957 491 290
AccProd 99.91322 99.68571 99.88044 97.70115 98.778 100

2018 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 8355 14 6 14 1 0 8392 99.5591
Mountains 6 21124 3 8 0 0 21141 99.91959
Land Area 3 0 2925 2 0 0 2930 99.82935

Builtup 3 0 0 1883 0 0 1886 99.84093
Vegetation 0 0 0 0 160 0 160 100
Bare Land 0 0 0 0 0 28 28 100

Unclassified 0 0 0 0 0 0 0 0
SumProd 8368 21138 2934 1907 161 28
AccProd 99.84465 99.93377 99.69325 98.74148 99.37888 100

2019 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 15187 26 9 22 2 0 15248 99.59995
Mountains 2 22921 1 14 0 0 22938 99.92589
Land Area 5 5 4796 2 0 0 4808 99.75042

Builtup 3 0 1 2124 0 0 2128 99.81203
Vegetation 1 0 0 0 210 0 211 99.52607
Bare Land 0 0 0 0 0 45 45 100

Unclassified 0 0 0 0 0 0 0 0
SumProd 15198 22952 4807 2162 212 45
AccProd 99.92762 99.86494 99.77117 98.24237 99.0566 100

Fig. 15 Group3 of Confusion Matrix Tables to Sentinal-2A with RF Classifier from 2015 To
2019
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2015
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 71 0 0 0 0 0 71 100
Mountains 0 497 0 5 0 0 502 99.00398
Land Area 0 0 1123 4 0 0 1127 99.64508

Builtup 0 0 0 253 0 0 253 100
Vegetation 0 0 1 0 3017 2 3020 99.90066
Bare Land 0 0 0 0 0 1101 1101 100

Unclassified 0 0 0 480 0 0 0 0
SumProd 71 497 1124 262 3017 1103
AccProd 100 100 99.91103 96.56489 100 99.81868

2016 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 497 0 1 1 0 0 499 99.5992
Mountains 0 1123 0 1 0 0 1124 99.91103
Land Area 0 0 482 0 0 0 482 100

Builtup 0 0 1 3015 0 0 3016 99.96684
Vegetation 0 1 0 0 258 0 259 99.6139
Bare Land 0 0 0 0 0 1103 1103 100

Unclassified 0 0 0 0 0 0 0 0
SumProd 497 1124 484 3017 258 1103
AccProd 100 99.91103 99.58678 99.93371 100 100

2017 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 561 1 0 0 0 0 562 99.82206
Mountains 3 11515 20 11 18 0 11567 99.55045
Land Area 0 4 3479 3 0 0 3486 99.7992

Builtup 0 3 1 14205 4 0 14213 99.94371
Vegetation 0 0 0 0 1426 0 1426 100
Bare Land 0 0 0 0 0 290 290 100

Unclassified 0 0 0 0 0 0 0 0
SumProd 564 11523 3500 14219 1448 290
AccProd 99.46809 99.93057 99.4 99.90154 98.48066 100

2018 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 684 1 1 0 0 0 686 99.70846
Mountains 1 8361 11 8 14 0 8395 99.595
Land Area 0 4 21126 1 5 0 21136 99.95269

Builtup 0 2 0 2924 1 0 2927 99.89751
Vegetation 0 0 0 1 2048 0 2049 99.9512
Bare Land 0 0 0 0 0 28 28 100

Unclassified 0 0 0 0 0 0 0 0
SumProd 685 8368 21138 2934 2068 28
AccProd 99.85402 99.91635 99.94323 99.65917 99.03288 100

2019 
CLASS High Land Mountains Builtup Land Area Vegetation Bare Land SumUser AccUser

High Land 445 0 0 0 0 0 445 100
Mountains 0 2353 0 1 1 2 2357 99.83029
Land Area 0 0 45 0 0 0 45 100

Builtup 0 6 0 13952 1 3 13962 99.92838
Vegetation 0 2 0 0 1511 3 1516 99.67019
Bare Land 0 13 0 3 0 6112 6128 99.7389

Unclassified 0 0 0 0 0 0 0 0
SumProd 445 2374 45 13956 1513 6120
AccProd 100 99.11542 100 99.97134 99.86781 99.86928

Fig. 16 Group4 of Confusion Matrix Tables to Sentinal-2A with KNN Classifier from 2015 To
2019
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Table 7. Area and Percentages for LULC Using Sentinel-2A for RF from 2015 to 2019

No. NAME 2015 2016 2017 2018 2019

Area, km2 % Area, km2 % Area, km2 % Area, km2 % Area, km2 %

1 High Land 8712800 0.54% 13669300 0.79% 6743200 0.38% 23567000 1.23% 4077900 0.23%

2 Mountains &

High Land

900226900 55.33% 279508700 16.05% 742869700 41.85% 734593900 38.41% 714204300 40.33%

3 Land Area

Roads& buildings

61831200 3.80% 704028100 40.44% 605930900 34.14% 472178100 24.69% 585212200 33.05%

4 Builtup Area 497245100 30.56% 440027300 25.27% 315670100 17.78% 550033600 28.76% 361557300 20.42%

5 Vegetation 27778600 9.35% 208762600 11.99% 32317600 1.82% 82921500.00% 4.34% 81325800 4.59%

6 Bare Land 131257500 8.07% 95098700 5.46% 71481500 4.03% 49147800 2.57% 24343900 1.37%

7 Total of area= 1627052100 100.00% 1741094700 100.00% 1775013000 100.00% 1912441900 100.00% 1770721400 100.00%

Table 8. Area and Percentages for LULC Using Sentinel-2A for KNN from 2015 to 2019

No. NAME 2015 2016 2017 2018 2019

Area, km2 % Area, km2 % Area, km2 Percentage Area, km2 % Area, km2 %

1 High Land 15952300 1.02% 13162600 0.76% 6782300 0.38% 23465600 1.23% 30886700 1.74%

2 Mountains

&

High Land

364087100 23.35% 275873200 15.84% 732874600 41.29% 748233400 39.12% 836821700 47.26%

3 Land Area

Roads&

buildings

688764900 44.17% 704557400 40.47% 616511800 34.73% 465641400 24.35% 233687900 13.20%

4 Builtup

Area

374969400 24.05% 449061900 25.79% 312892200 17.63% 540760200 28.28% 465307600 26.28%

5 Vegetation 11811200 0.76% 210669100 12.10% 33643600 1.90% 85667800 4.48% 161504300 9.12%

6 Bare Land 103773000 6.65% 87770400 5.04% 72308700 4.07% 48673500 2.55% 42513300 2.40%

7 Total of

area=
1559357900 100.00% 1741094600 100.00% 1775013200 100.00% 1912441900 100.00% 1770721500 100.00%

Table 9. Area and percentages LULC with Landsat8 for KNN from 2015 to 2019

No. NAME 2015 2016 2017 2018 2019

Area, km2 % Area, km2 % Area, km2 % Area, km2 % Area, km2 %

1 High Land 121965300 2.58% 121965300 4.63% 12273300 0.61% 23465600 1.23% 33465600 2.23%

2 Mountains &

High Land

1512416700 31.96% 1512416700 53.08% 205126200 10.23% 748233400 39.12% 848233400 40.12%

3 Land Area 232313400 4.91% 232313400 10.58% 588451500 29.36% 465641400 24.35% 565641400 25.35%

4 Builtup Area 1972601100 41.68% 1116102600 18.75% 228424500 11.40% 540760200 28.28% 640760200 29.28%

5 Vegetation 567041400 11.98% 567041400 8.05% 848327400 42.33% 85667800 4.48% 95667800 5.48%

6 Bare Land 326055600 6.89% 326055600 4.92% 121594500 6.07% 48673500 2.55% 58673500 3.55%

7 Total of area= 4732393500 100.00% 1911456900 100.00% 2004197400 100.00% 1912441900 100.00% 3012441900 100.00%
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Table 10. Area and Percentages for LULC Using Landsat8 for RF from 2015 To 2019

No. NAME 2015 2016 2017 2018 2019

Area, km2 % Area, km2 % Area, km2 % Area, km2 % Area, km2 %

1 High Land 152003700 7.33% 80561700 4.21% 10071900 0.81% 10184400 0.48% 6527700 0.65%

2 Mountains &

High Land

791696700 38.18% 890460900 46.59% 501359400 40.28% 861487200 40.94% 219599100 21.87%

3 Land Area 266358600 12.84% 180999900 9.47% 116273700 9.34% 343812600 16.34% 127650600 12.71%

4 Builtup Area 597589200 28.82% 548289900 28.68% 453569400 36.44% 337429800 16.03% 461995200 46.00%

5 Vegetation 141367500 6.82% 155898900 8.16% 15237000 1.22% 344167200 16.35% 67280400 6.70%

6 Bare Land 124767000 6.02% 55244700 2.89% 148232700 11.91% 207279000 9.85% 121186800 12.07%

7 Total of area= 2073782700 100.00% 1911456000 100.00% 1244744100 100.00% 2104360200 100.00% 1004239800 100.00%

Table 11. Overall accuracy for Sentinel-2A & Landsat8 Satellites from 2015 to 2019 with RF &
KNN classifiers

No. Year Accuracy LULCC With RF Accuracy LULCC With KNN

Landsat8 Sentinel-2A Landsat8 Sentinel-2A

1 2015 99.66% 99.87% 92.90% 83.26%

2 2016 99.83% 99.92% 96.34% 91.56%

3 2017 99.59% 99.78% 94.88% 91.49%

4 2018 99.81% 99.82% 94.88% 84.56%

5 2019 99.29% 99.79% 93.86% 83.83%

6 Conclusion

This Study offered criteria for classification using machine learning with multispectral
satellites. It is not enough to select high-resolution data. The classifier’s type must also
be considered. Classifying land-use changes and land cover requires an integrated study
of everything related to classification, focusing on three sides: 1) The type of the satel-
lites. 2) The type characteristics of the classifier chosen are suitable for this satellite. 3)
Appropriateness of the typical characteristics of the classifier chosen suitable for this
satellite is critical. All of these factors have a role in achieving high-accuracy classifi-
cation results. According to this Study’s findings, the effectiveness of any classification
system is mainly dependent on precise knowledge of satellite data, classifier features,
and the user’s skill. Random forest is observed to be efficient for Sentinel 2A satellite
images. The RF classifier may have needed numerous features to achieve acceptable
accuracy, which could explain how these results were interpreted. At the same time,
KNN provides decent accuracy and performs well with few input feature variables.This
study also showed that machine learning is still widely utilized and used today, beating
deep learning in features and characteristics despite deep learning’s high resolution.Deep
learning is more challenging to implement and takes more time than machine learning.
The study showed that, without deep learning, we could have classified LULC with a
very high resolution using multispectral satellites and conventional machine learning.
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ing Satellite Missions for Land Monitoring and Conservation: A Review. Land, 9(11), 402.
doi:https://doi.org/10.3390/land9110402, (2020).

12. Sarica, A., Cerasa, A., &Quattrone, A. Random forest algorithm for classifying neuroimaging
data in Alzheimer’s disease: a systematic review. Frontiers in aging neuroscience, 9, 329.,
(2017).

13. Johnson, D. M., & Mueller, R. Pre-and within-season crop type classification trained with
archival land cover information. Remote Sensing of Environment, 264, 112576, (2021).

14. Loi, D. T., Khac, D. V., Hung, D. N., Dong, N. T., Vinh, D. X., &Weber, C. Using Sentinel-2A
and Landsat 8 data, a case study of Cam Pha city-Quang Ninh province, monitoring coastline
change. Vietnam Journal of Earth Sciences, 43(3), 249-272, (2021).

15. Dhillon, M. S., Dahms, T., Kübert-Flock, C., Steffan-Dewenter, I., Zhang, J., & Ullmann, T.
Spatiotemporal Fusion Modelling Using STARFM: Examples of Landsat 8 and Sentinel-2
NDVI in Bavaria. Remote Sensing, 14(3), 677, (2022).

16. Gu, S., Zhang, R., Luo, H., Li, M., Feng, H., & Tang, X. Improved singan integrated with an
attentional mechanism for remote sensing image classification. Remote Sensing, 13(9), 1713,
(2021).

17. Ahady, A. B., & Kaplan, G. Classification comparison of Landsat-8 and Sentinel-2 data in
Google Earth Engine, study case of the city of Kabul. International Journal of Engineering
and Geosciences, 7(1), 24-31, (2022).

18. Aksoy, S., Yildirim, A., Gorji, T., Hamzehpour, N., Tanik, A., & Sertel, E. Assessing the
performance of machine learning algorithms for soil salinity mapping in Google Earth Engine
platform using Sentinel-2A and Landsat-8 OLI data. Advances in Space Research, 69(2),
1072-1086, (2022).

https://en.wikipedia.org/wiki/Sentinel-2
https://en.wikipedia.org/wiki/Landsat_8
https://doi.org/10.5772/intechopen.71049
https://doi.org/10.1007/978-981-32-9915-3_3
https://doi.org/10.3390/rs12152495
https://doi.org/10.3390/land9110402


624 E. A. Alshari and B. W. Gawali

19. Ai, B., Huang, K., Zhao, J., Sun, S., Jian, Z., & Liu, X. Comparison of Classification Algo-
rithms for Detecting Typical Coastal Reclamation in Guangdong Province with Landsat 8
and Sentinel 2 Images. Remote Sensing, 14(2), 385, (2022).

20. Rumora, L., Miller, M., & Medak, D. Contemporary comparative assessment of atmo-
spheric correction influence on radiometric indices between Sentinel-2A and Landsat 8
imagery. Geocarto International, 36(1), 13-27, (2021).

21. Alhedyan,M.A. Change detection of land use and land cover, using landsat-8 and sentinel-2A
images (Doctoral dissertation, University of Leicester), (2021).

22. Ghayour, L., Neshat, A., Paryani, S., Shahabi, H., Shirzadi, A., Chen, W., ... & Ahmad, A.
Performance evaluation of sentinel-2 and landsat 8 OLI data for land cover/use classification
using a comparison between machine learning algorithms. Remote Sensing, 13(7), 1349
(2021).

23. Deliry, S. I., Avdan, Z. Y., & Avdan, U. Extracting urban impervious surfaces from Sentinel-2
and Landsat-8 satellite data for urban planning and environmental management. Environmen-
tal Science and Pollution Research, 28(6), 6572-6586, (2021).

24. Nandasena, W. D. K. V., Brabyn, L., & Serrao-Neumann, S. Using Google Earth Engine to
classify unique forest and agroforest classes using Sentinel 2a spectral data topographical
features: a Sri Lanka case study. Geocarto International, 1–16, (2021).

25. Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., &
Homayouni, S. Support vector machine versus random forest for remote sensing image classi-
fication: A meta-analysis and systematic review. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 13, 6308–6325. Dou, P., Shen, H., Li, Z., Guan,
X., & Huang, W. (2021), (2020).

26. Skakun, S., Vermote, E. F., Artigas, A. E. S., Rountree,W. H., & Roger, J. C. An experimental
sky-image-derived cloud validation dataset for Sentinel-2 and Landsat 8 satellites over NASA
GSFC. International Journal of Applied Earth Observation and Geoinformation, 95, 102253,
(2021).

27. Mitri, G., Nader, M., Abou Dagher, M., & Gebrael, K. Investigating the performance
of Sentinel-2A and Landsat 8 imagery mapping shoreline changes. Journal of Coastal
Conservation, 24(3), 1-9, (2020).

28. Demirkan, D. Ç., Koz, A., & Düzgün, H. S. Hierarchical classification of Sentinel 2-a images
for land use and land cover mapping and its use for the CORINE system. Journal of applied
remote sensing, 14(2), 026524, (2020).

29. Mansaray, L. R., Wang, F., Huang, J., Yang, L., & Kanu, A. S. Accuracies of support vector
machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A
datasets. Geocarto International, 35(10), 1088-1108, (2020).

30. Xi, Y., Thinh, N. X., & Li, C. Preliminary comparative assessment of various spectral indices
for built-up land derived from Landsat-8 OLI and Sentinel-2A MSI imageries. European
Journal of Remote Sensing, 52(1), 240-252 , (2019).

31. Najafi, P., Navid, H., Feizizadeh, B., Eskandari, I., & Blaschke, T. Fuzzy object-based image
analysis methods using Sentinel-2A and Landsat-8 data to map and characterize soil surface
residue. Remote Sensing, 11(21), 2583, (2019).

32. Chastain, R., Housman, I., Goldstein, J., Finco, M., & Tenneson, K. Empirical cross sen-
sor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of
atmosphere spectral characteristics over the conterminous United States. Remote sensing of
environment, 221, 274-285, (2019).

33. Çavur,M.,Duzgun,H. S.,Kemeç, S.,&Demirkan,D.C.Landuse and land cover classification
of Sentinel 2-A: St Petersburg case study. The International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences, 42, 13-16, (2019).

34. Varade, D., Sure, A., & Dikshit, O. Potential of Landsat-8 and Sentinel-2A composite for
land use land cover analysis. Geocarto International, 34(14), 1552-1567, (2019).



Evaluation of the Multispectral Satellites with Object-Based Classifiers 625

35. Liu, Y., Gong, W., Hu, X., & Gong, J. (2018). Forest type identification with random
forest using Sentinel-1A, Sentinel-2A, multi-temporal Landsat-8, and DEM data. Remote
Sensing, 10(6), 946.

36. Al-shalabi, M., Pradhan, B., Billa, L., Mansor, S., & Althuwaynee, O. F. Manifestation of
remote sensing data in modeling urban sprawl using the SLEUTH model and brute force
calibration: a case study of Sana’a city, Yemen. Journal of the Indian Society of Remote
Sensing, 41(2), 405-416, (2013).

37. Abdelkareem, O. E. A., Elamin, H. M. A., Eltahir, M. E. S., Adam, H. E., Elhaja, M. E.,
Rahamtalla, A. M., ... & Elmar, C. Accuracy assessment of land use land cover in umabdalla
natural reserved forest, South Kordofan, Sudan. Int J Agric Environ Sci, 3(1), 5–9. (2018).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/

	Evaluation of the Multispectral Satellites with Object-Based Classifiers for Land Use and Land Cover Classification
	1 Introduction
	2 Literature Review
	2.1 Limitation of This Study

	3 Materials and Procedures
	3.1 Area of Study
	3.2 Methodology
	3.3 Pre-processing for LULC Classification
	3.4 Classification Methods Used in This Study
	3.5 Creation of Database and Land Changes Classification

	4 Accuracy Assessment
	5 Results and Discussion
	6 Conclusion
	References




