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Abstract. To combine the advantages ofVAEs andGANs to generate both diverse
and high-quality samples, this paper proposes ED-VAEGAN which improves
encoder and decoder loss of traditional feature-wiseVAEGAN[4].More precisely,
a reconstruction score term is added to encoder loss function, which accelerates
the training of the whole model. The decoder loss was similar to traditional def-
inition, but discarded an irrelevant term to decoder. This paper applied this new
model to face datasets and compares the generations with other models when the
models are fully trained and when trained for the same iterations. And the latent
space expedition was done by first encode the images and then do the latent code
walk between two images. As a result, ED-VAEGAN outperformed traditional
VAEGAN on training speed, and its latent space expedition result indicates better
continuity comparing to other pixel-wise models. In the end, this paper applied
simple data augmentation method to solve the brightness problem that happened
when training iterations increase.

Keywords: ED-VAEGAN · Feature-wise Reconstruction loss · latent space
expedition

1 Introduction

Think about the problem there is a bunch of input training images, and they need to be
encoded into a lower dimensional latent code z, which can also be treated as a latent
data from complete data (X, Z), where each xi has its corresponding latent data zi, which
was randomly sampled from distribution P(Z). Different latent code zi can be obtained,
and they provide some key information for generating process, for example, in face
generating training, it can contain information that leads to black hair or yellow hair, big
nose or small nose, smiling or not smiling.

To achieve unsupervised learning and to learn underlying data distribution of unla-
beled data and generate new data from it, Variational Autoencoders (VAE) [1], Gener-
ative Adversarial Networks (GAN) [2], or Deep Convolutional Generative Adversarial
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Networks (DCGAN [3]), and their combination in the form of Variational Autoen-
coders Generative Adversarial Networks (VAEGAN) are designed [4]. They enable
much more effective data generation, feature learning, and representation learning than
traditional machine learning models. VAEs use the idea of probabilistic inference and
reparameterization trick to get various latent code z thus are used in tasks such as image
generation and natural language processing. GANs’ creative idea of discriminator and
generator and their ability to generate realistic data, allowing for realistic image gen-
eration, image inpainting, image synthesis, and image super-resolution made it one of
the most popular studies interest these years. VAEGAN is a combination of VAEs and
GANs which combines the advantages of VAEs and GANs while avoiding their separate
disadvantages.

In Autoencoding beyond pixels using a learned similarity metric, they firstly rede-
fined the reconstruction loss of Encoded and then regenerated images. But it seems that
before they propose beyond pixels reconstruction loss, the most popular approach is
still mean squared error [1], they used mean square error between original images and
reconstructed images. However, faces generated by VAEs have the problem of lack of
details such as blur hair, lack of face texture. That is because encoder only uses simple
element-wise error, which is quite different from the human-beings judges since people
see the image features on a higher level but not from element-wise error from an original
image. From this point of view, GANs including DCGANs did a good job by using
the Discriminator to judge the similarity, for the Discriminator use Convolution to save
much higher level of information in images. That’s why GANs can capture fine details
and generate sharp images, but they struggle to be trained steadily because the Generator
in GANs learn from a completely random z distribution and the loss function depends
on discriminators. When the generated images fool the discriminator and that the possi-
bility of judging it as correct goes to nearly 50 percent, the model might start to accept
some strange generation results and the new generated quality will become very bad.
To compare with, VAEGAN additionally train the generator using a more meaningful
latent code z, which contributes to the discriminator loss, thus makes the model training
steadier. Moreover, there seems to be a research gap on pixel-wise VAEGANs since the
feature-wise VAEGAN perfectly achieved the detail generation job. But pixel-wise error
will not be the only judge of encoder’s performance, the discriminator loss also affects
encoder, since Dis(D(E(X))) is all about convolution of the reconstructed image, which
is exactly feature-wise consideration but not pixel-wise. So this paper also propose to
train a pixel-wise VAEGAN to see if it achieves any improvements on detail control
comparing to mere VAEs. Back to the topic of this pioneer paper [4], their method to
solve the concern on detail generation is to consider a new Gaussian observation distri-
bution described by the intermediate layers of discriminator, which in this paper defined
to be the last but one layer output, and the reconstruction loss is instead defined as the
squared error between reconstructed images’ output and the real images’ output.

In other VAEGAN studies, researchers did not attempt to change the feature-wise
VAEGAN loss function or used pixel-wise error. In AC-VAEGAN [5], an auxiliary
classifier was applied to the last but one layer of discriminator so that it not only outputs
the possibility of input image being a real image, but also outputs the classification
of input image. But the loss function was still based on mean squared error between
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reconstructed images and original images, and their datasets are not face datasets. In
lifelong VAEGAN [6], the L-VAEGAN was designed to be a lifelong learning system,
meaning that it can continuously learn from new data and transfer knowledge from
previous tasks. While the loss function for Lifelong VAEGAN is composed of four
parts: a reconstruction loss, an adversarial loss, a KL divergence loss, and an entropy
regularization loss. The reconstruction loss encourages theVAE to accurately reconstruct
the input image, which is done by minimizing the mean squared error between the
input image and the image reconstructed by the VAE. In Hierarchical Patch VAE-GAN:
Generating Diverse Videos from a Single Sample [7], they used patches of VAE and
patches ofGANs, yet reconstruction loss is still defined as squared error between images.

In this paper, VAE, DCGAN, p-w VAEGAN (pixel-wise reconstruction error), f-
w VAEGAN (feature-wise reconstruction error which was first proposed by [4]), and
ED-VAEGAN (Encoder and Decoder loss improved) are trained and compared. ED-
VAEGAN is proposed with the BCE loss between reconstruction images’ discriminator
score and real labels joining the encoder loss to make the training process faster and
more stable, and decoder loss no longer use the old way of minus the discriminator loss,
instead remove one of the three components of discriminator loss and change the rest
of the two to a more understandable representation. The result section will include the
generation results, the continuity of encoded space Z measured by latent walk method.

2 Methods

In GMM, Gaussian mixed models, when dealing with real life images, the latent data
z will be a continuous, high-dimensional random variable and it can be assumed that
data distribution obeys an unobserved Gaussian Distribution. Using a formula to mea-
sure this scenario, maximizing the probability of generating something that is close
to the training dataset X is tried. P(X) = ∫

P(X|z,Θ)P(z)dz, where P(z) indicates
the probability of sampling out z from distribution Z, P(X|z,Θ) indicates a mapping
f from the sampled z and parameter Θ to X, and if this mapping describes a distri-
bution that is widely used in VAEs, which is Gaussian distribution, then it can be
wrote in another way: P(X|z,Θ) = P(X|f (z|Θ), σ 2∗I). If z is sampled from a nor-
mal Gaussian distribution, z would hardly describe correct guidance to generate images,
in another word, P(X|z,Θ) will be mostly zero. This gives us the idea to find a prior
distribution Q(z|X) which aims at sample better latent code z. This was encoder’s obli-
gation. Now it is not necessary to compute P(z) and then P(X|z,Θ), which most of
the time in GANs defined as N(0, I), instead consider Ez∼Q(P(z)). To connect a bridge
betweenP(X|z) andEz∼Q(P(z)), first use KL-divergence (Kullback-Leibler divergence)
to measure the similarity of two distributions P(X|z) and Q(z), D[Q(z)||P(z|X)] =
Ez∼Q[logQ(z)− logP(z|X)], apply Bayes Rule further derives it to: D[Q(z)||P(z|X)] =
Ez∼Q[logQ(z) − logP(X|z) − logP(z)] + logP(X). Here, log(P(X)) has nothing to do
with z so it can be written outside the expectation. Next, use the definition of continuous
P,Q KL-divergence, which is D(P||Q) = �zlog(P(z)) − log(Q(z))P(z) the equation
becomes log P(X) − D[Q(z)||P(z|X)] = Ez∼Q[logP(X|z)] + D(Q(z)||P(z)), note that
in the work, the distribution Q is required to depend on dataset X, so write Q(z) as
Q(z|X):
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logP(X) − D[Q(z|X)||P(z|X)] = E_{z ∼ Q}[logP(X|z)] + D(Q(z|X)||P(z)) (1)

Since KL-divergence must be bigger than 0, predecessors named the right-hand side
of Eq. 1 the lower bound. The target is tomaximize logP(X ), which can be done optimize
the right side and also minimize the KL-div, meaning that this training process should
encode X to z without much loss to normal gaussian distribution. To be more specific,
usually it is assigned like:Q(z|X ) = N (z|μ(X ;Θ), �(X; Θ)). Here Θ is the encoder
network parameter, with X as input. Notice that using the property that both distributions
are multi-variate Gaussian distribution, rewrite KL-divergence

D(Q(z|X )||P(z)) :

D[N (μ(X ;Θ),�(X ;Θ))||N (0, I)] = 1

2
(tr(�(X ;Θ))

+μ(X ;Θ)Tμ(X ;Θ) − k − log(det(�(X )))) (2)

2.1 VAE’S Reparameterization Trick

For the right hand side of Eq. 1,Ez∼Q[logP(X |z)]was too computation consuming when
sample many z and then take the average of it, instead it would be reasonable to only
sample one z and let Ez∼Q[logP(X |z)] = logP(X |z). Effort is being made to optimize
log Pz∼Q(X |z) +D(Q(z|X )||P(z)) and then minimize D[Q(z|X )||P(z|X )] to maximize
log(P(X )). However, when trying to backpropagate through encoder, which is Q, there
mustn’t be totally random. But it needs to be a multi-variate Gaussian distribution. The
solution is to separately sample a ε ~ N(0,I), and the encoder encode X to mean μ (X)
and covariance �(X), then produce z = μ(X )+ ε ∗�2(X ). Finally, write the right hand
side ELBO as Eε∼N (0,I)[logP(X |z = μ(X ) + ε ∗ �2(X ))] − D[Q(z|X )||P(z)], which
is able for us to compute its gradient [8].

2.2 Training Theory of GANs

In GAN, it has a generative network G and a discriminator D. D distinguish the input
image as real or fake, while the generator tries to fool the discriminator by producing
better images. This study use theta to map the Gaussian Distribution z to another distri-
bution and use G as generator to represent this process, and for a data (real or fake), it
was feed into into a discriminator D. So when the G is fixed, the optimal discriminator
should haveDG∗(x) = pdata(x)

pdata(x)+pG(x) , which roughly means it can be said that the correct
probability to say this data is real to the proportion that this data comes from sampled
real data [8].

The loss function regarding discriminator D is
J (D) = Ex∼realdata[−log(D(x))] +Ez∼N (0,I)[−log(1−D(G(z))], which should be

close to 0 + plus 0 + when the discriminator correctly labeled every true data as 1 and
every generated fake data as 0. For generator loss, J(G)=Ez∼N (0,I) [−log(1−D(G(z)))],
which should also be 0 + when the generator successfully generate nearly true image
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from random noise sampled z, so that D(G(z)) gets close to 1 and expectation (also
can be written as summation since deep neural network almost makes the continuous
problem to discrete problem) goes close to 0 from positive end. By iteratively update
both discriminator and generator, model will converge [8].

2.3 Loss Functions VAE

Update encoder and decoder using the combined loss of MSE and KL-div, same as part
of VAEGAN, here is the previous mentioned loss function:

Eε∼N (0,I)[logP(X|z = μ(X) + ε ∗ �2(X))] − D[Q(z|X)||P(z)] (3)

−DKL((qϕ(z)||pθ(z)) =
∫

qθ(z)(logpθ(z) − logqθ(z))dz

= 1

2

J∑

j=1

(1 + log
(
σj

)2 − (
μj

)2 − (
σj

)2
) (4)

The derivation of KL-divergence [1].
Using this formula, the KL divergence can be wrote easily in python code. For the

first part expectation computation of logP(X |z), use the mean squared error between the
reconstructed image D(E(X )) and original image X.

2.4 Loss Functions DCGAN

Discriminator loss of DCGAN is the sum of: 1. BCEloss between (x: random z gener-
ation on Discriminator score’s, y: fake labels); 2. BCE loss between (x: true image on
Discriminator score, y: true labels).

Generator loss is the BCEloss between (x: another random z generation score out
of Discriminator, y: true labels, since this loss is required to be small which means that
discriminator judges generated images as true.

2.5 Loss Functions ED-VAEGAN

Encoder loss: KL-divergence + reconstruction loss + reconstruction score. The KL
divergence was computed between a normal Gaussian distribution and the real image’s
encoded z. The reconstruction loss is the same as feature-wise (f-w) reconstruction loss,
this study used the last but one layer of discriminator as the feature extraction layer,
which should have encoded the performance of the input images to a 512 latent space.
Mean squared error between True images encoded space and Reconstructed images
encoded space should be the reconstruction loss. Reconstruction score is the BCEloss
between real labels and reconstructed images. This additional loss would accelerate the
whole training process by increasing the gradient for each optimizer step, and when the
encoder performs better, the generator would perform better too.

Discriminator loss is the sum of the following 3 parts. 1: BCE loss of real image
score and true label. 2: BCE loss of random z generated fake image score and fake
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labels. 3: BCE loss of real image encoded z then decoded half true image score (the aim
is to eventually make it close to “true” but to update discriminator, the discriminator is
punished to say it true) about fake labels.

Decoder loss is the sum of three parts. 1: BCE loss (random z generated image’s
discriminator score, real labels). 2: BCE loss (reconstructed image’s discriminator score,
real labels). 3: Reconstruction loss.

This paper proposes such an approach different from f-w VAEGAN because the
minus discriminator loss in f-wVAEGAN’s decoder losswas confusing. The explanation
of f-wVAEGAN is that the discriminator losswill be higherwhen the generator generates
images that fools the discriminator, so that minus the discriminator is reasonable. In ED-
VAEGAN one part of the discriminator, BCEloss(Dis(X),real labels) is discarded since
it has nothing to do with decoder. And the two minus term becomes adding up, which
is more common sense, and just change the fake labels to real labels.

2.6 Loss Functions f-w VAEGAN

As this paper instructed [4], it is reasonable to use weighted Reconstruction loss minus
Discriminator loss as the Decoder loss. But in this paper this gamma was not applied.

For Discriminator loss, same as ED-VAEGAN. For decoder loss, use reconstruction
loss minus discriminator loss. For encoder loss, use KL-divergence + Reconstruction
error. No reconstruction score in consideration comparing to ED-VAEGAN and the
reconstruction loss is the same with ED-VAEGAN.

2.7 Loss Functions p-w VAEGAN

The only difference between f-w and p-wVAEGAN is that the reconstruction loss should
be themean squared error between the reconstructed image from the real image’s encoded
z and the real image itself.

2.8 Latent Space Continuity Quality

In order to do feature transfer well, it is required that the latent space is smooth. In
another word, the latent space should be meaningful almost everywhere. Latent walk is
done by encoding two images into z1 and z2, and then set the total steps as number_int,
for this paper 10 steps is used, meaning that there will be in total 10 images for 2 imgs
in total, from z1, and eventually it gets to z2. For each step, alpha is updated from the
beginning 1/11 to 2/11 all the way to 10/11, and the z_intp is defined as z1*alpha +
z2*(1.0-alpha). This makes the transition from z1 to z2.

In this paper [9], the application on 3D face reconstruction shows how important it is
to train a powerful latent space to store the information. And in the experiment part, this
paper will compare different model’s performance in latent walk feature transfer. Also,
in DCGAN [3], it showed a latent walk over two images of bedroom, and the transfer
was smooth, without sudden change in the scene. And the discussion of sharp transitions
was explained as the latent space was hierarchically collapsed.

What’s more, CycleGAN is used as a good standard of transferring horses to zebras
and vice versa [10]. CycleGAN is a type of GAN used for image-to-image translation
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Table 1. Architecture of ED-VAEGAN

Encoder k = 5 Decoder k = 5 Discriminator k = 5

↓64 × 64 × 64
BatchNorm2d,Relu

Linear,256*8*8
BatchNorm1d,Relu

↓32 × 64 × 64 Relu

↓128 × 32 × 32
BatchNorm2d,Relu

↑256 × 16 × 16
BatchNorm2d,Relu

↓128 × 32 × 32
BatchNorm2d,Relu

↓256 × 16 × 16
BatchNorm2d,Relu

↑128 × 32 × 32
BatchNorm2d,Relu

↓256 × 16 × 16
BatchNorm2d,Relu

↓256 × 8 × 8
BatchNorm2d,Relu

↑64 × 64 × 64
BatchNorm2d,Relu

↓256 × 8 × 8
BatchNorm2d,Relu

Linear,2048
BatchNorm1d,Relu

↑32 × 128 × 128
BatchNorm2d,Relu

Linear,512
BatchNorm1d,Relu

2 × Linear 128 for mean and
logvar

→ 3 × 128 × 128 Tanh Linear 1, Sigmoid

that works by training two separate GANs, one to convert an image from one domain
to another, and the other to convert it back to the original domain. CycleGAN works
by forcing the two networks to “cycle” through the two domains, thus ensuring that the
model is able to generate realistic images in both directions. This process is referred to as
“cycle consistency”, which is why CycleGAN works so well and this paper tries to use
latent walk on horse2zebra dataset to see what results 10 steps of latent space expedition
would present. Would the zebra lines appear on a horse during two horse transitions?
Would the zebra lines turn to brown and red just like the color of horses’ skin? The Table
1 presents the architecture of ED-VAEGAN.

3 Experiments

This paper mainly used two datasets: CelebA and horse2zebra [11, 12]. The CelebA is
a widely used human face dataset while the horse2zebra is used in CycleGAN. Latent
dimension is set to 128, and the images are preprocessed to size (bs,3,128,128) using
torchvision.transforms, center cropped to 128 × 128 and normalized using mean =
(0.5,0.5,0.5) and std= (0.5,0.5,0.5), which means this study is applying mean= 0.5 and
std = 0.5 to every 3 channels. Then split the dataset to training set and test set. And only
use the training set to do training work while the test set are for all experiments.

For optimizer choice, this paper usedAdam forVAE,DCGANandRMSprop for p-w
VAEGAN, f-w VAEGAN and ED-VAEGAN. The learning rate for RMSprop is origi-
nally 3e-4, and continuously decaying after each epoch using torch.optim.lr_scheduler
which has its gamma set to 0.75. Other RMSprop hyperparameters are alpha = 0.9, eps
= 1e-8, weight_decay = 0, momentum = 0, centered = False. For DCGAN training, it
was suggested to choose a learning rate of 0.0002 and betas (0.5,0.999) [3]. The training
batch size and iterations are provided in Table 2.

For one iteration, there are bs numbers of images being trained. This means that
f-w VAEGAN trained more than ED-VAEGAN both for iterations and total number of
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Table 2. Training batch size and iterations

VAE DCGAN p-w VAEGAN f-w VAEGAN ED-VAEGAN

Iterations 279000 219300 339900 161100 129300

Batch size 64 64 64 32 16

images and per iteration images, but actually the parameters only update once for each
iteration, so batch size doesn’t matter much.

4 Results and Discussions

From the generations shown in Fig. 1 andFig. 2, it is obvious thatVAEand p-wVAEGAN
doesn’t differs much. They both have the problem of lack of details. This indicates that
the guess of discriminator contributes feature wise error does not balance the error of
pixel-wiseMSE.Which implies that as long as there is pixel-wise error, the training result
will be lack of details. For f-w VAEGAN and ED-VAEGAN, the results are similarly
good in both random z generation and reconstruction. But sometimes f-w VAEGAN
generates strange results. All the results that did not use pixel-wise error (DCGAN, f-
w VAEGAN and ED-VAEGAN) suffered gray color problem. Where the color of the
images becomes grayer when training process goes. To solve this problem, the dataset
should have more bright color images. While from testing set generations it is not hard
to find that many human faces are in dark light or there are some black people images
that are totally black for both faces and background (Fig. 3). To do data augmentation
for celebA dataset, this comprehensive paper introduced many methods used by other
papers [13], in conclusion, the most convenient way to improve feature-wise models
generation results is by adding flipped images and do color space augmentations such
as changing the brightness, contrast, saturation, and hue of the image. For DCGAN,
generation results are as good as f-w VAEGAN and ED-VAEGAN when the training
iterations is supervised, but most of the second half training results, the generated images
are about the same, and sometimes even restarted from random noise. This is because the
discriminator can’t perform its job and thus the generation results are wrongly guided.

For latentwalk ofVAEand p-wVAEGANshown inFig. 4 andFig. 5, it is obvious that
the sharp change occurs at the fourth image, while the f-w VAEGAN and ED-VAEGAN
avoided sharp change. And the images by ED-VAEGAN has higher fidelity comparing
to f-w VAEGAN, VAE and p-w VAEGAN in Fig. 5 first few steps. The sharp change
eventually appeared for horse2zebra dataset. ED-VAEGAN was merely trained in 16
epochs for 311400 iterations, and apparently the latent space was not well defined by
generator. Maybe longer training time and better tuned hyperparameters such as learning
rate would help define the latent space more continuously to avoid sharp changes. For
the image overall color, since all the images in horse2zebra dataset are photographed
during the day, so there is no color graying problem comparing to celebA dataset.

Inception v3 is a convolutional neural network architecture developed by Google
for image recognition tasks. It is based on the earlier Inception model and is capable
of recognizing complex patterns in images with high accuracy. It has been trained on
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Fig. 1. Result of random sampled z generations. From top to bot: VAE, GAN, p-w VAEGAN,
f-w VAEGAN, ED-VAEGAN

Fig. 2. Reconstruction results. From top to bot: Original image, VAE, p-w VAEGAN, f-w
VAEGAN, ED-VAEGAN

Fig. 3. Examples of dark original images

the ImageNet dataset and is widely used in many computer vision applications. The
mean Inception Score shown in Table 3 indicates the overall quality of the generated
images. A higher mean score indicates that the images are of higher quality. The standard
deviation of the score indicates the amount of variation in the scores, which can be used
to determine the reliability and consistency of the generated images. A lower standard
deviation indicates that the images aremore consistent, while a higher standard deviation
indicates that the images are more varied. From the table, the statistics are all average
values. ED-VAEGAN and p-w VAEGAN have the higher mean and standard deviation
than other 3 models, meaning they better recognize complex patterns in the images.

From the loss graph shown in Fig. 6, ED-VAEGAN has a lower encoder loss and
decoder loss comparing to f-w VAEGAN while ED-VAEGAN has one half the batch
size comparing to f-w VAEGAN and the encoder loss is defined with an extra term
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Fig. 4. Latent walk of 2 images, from the top to the bottom they are VAE, p-w VAEGAN, f-w
VAEGAN and ED-VAEGAN

Fig. 5. 2 Images of h2z latent walk by ED-VAEGAN

comparing to f-w VAEGAN. For discriminator loss, the ED-VAEGAN rise and fall
rapidly, the reason might be the fast-training speed makes generation process performs
well so that the discriminator is fooled by the generation results, so the loss sometimes
goes up high.

In Fig. 7, ED-VAEGAN takes the lead over training time, and for the last column of
image, ED-VAEGAN’s result started to become grayer earlier than traditional method.

Figure 8 results are trained in epochs 30, batchsize 16, with input images ran-
domly flipped and randomly brightened to 100%–150% using transforms. Colorjitter,
the training results avoided dark color problem and the details were kept as good.
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Table 3. Inception score

Inception v3-mean V3-std

VAE 1.7474 0.0757

DCGAN 1.6555 0.0762

p-w VAEGAN 1.7189 0.0764

f-w VAEGAN 1.9254 0.0951

ED-VAEGAN 1.8685 0.1984

Fig. 6. p-w VAEGAN, f-w VAEGAN and ED-VAEGAN loss over iteration
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Fig. 7. f-w VAEGAN (second row) and ED-VAEGAN (first row) comparison overtime

Fig. 8. Random generation after data augmentation

5 Conclusion

The present study puts forward a novel methodology, namely ED-VAEGAN, which
enhances the efficacy of the encoder and decoder loss in the feature-wise VAEGAN.
The study undertakes a comparative analysis of the quality of the training result images,
while ensuring identical neural network and optimizers, at the same training iterations.
The outcomes of the investigation reveal that the proposed ED-VAEGAN approach
displays faster training times in comparison to the traditional VAEGAN. Furthermore,
the exploration of the latent space highlights superior continuity in the ED-VAEGAN
approach as compared to other pixel-wise models.
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