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Abstract. The identification of power equipment using visible image and deep
learning methods has become widespread in the power industry. However, cur-
rent deep learning algorithms often face issues related to large model parame-
ters and high hardware requirements, making it difficult to integrate them into
mobile devices. To overcome these challenges, a novel approach has been pro-
posed to identify insulators on overhead transmission lines using UAVs that carry
lightweight models. This method utilizes an enhanced lightweight MobileNet-
SSD target detection network, enabling accurate classification and location of
power equipment. The results demonstrate that this approach can quickly and pre-
cisely label power equipment in complex backgrounds. Additionally, it has small
model parameters, high efficiency, strong robustness, and an mAP of 82.47%,
making it ideal for enhancing patrol accuracy and real-time monitoring of mobile
equipment towards the transmission lines.

Keywords: power equipment identification · MobileNet-SSD · insulator · deep
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1 Introduction

Insulators in overhead transmission lines are essential for withstanding voltage and load.
Their integrity is vital for ensuring the stable operation of overhead lines. The patrol
inspection of overhead transmission lines has evolved through four stages: manual,
robotic, helicopter-based, and unmanned aerial vehicle-based inspections [1, 2]. Among
these, UAV-based inspections have gradually become the preferred method for monitor-
ing the status of transmission lines, owing to their efficiency, safety, cost-effectiveness,
and other benefits.

Currently, there are two primary methods for using UAVs to obtain images of insula-
tors for fault identification. The firstmethod is the traditional image processing approach,
while the second is the deep learning convolutional neural network (CNN) method. The
image processing method involves using a sliding window to extract image features, fol-
lowed by training a classifier to identify faults. However, this method requires manual
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extraction of insulator fault characteristics, which is time-consuming and susceptible
to subjective factors. As a result, it often yields low accuracy and efficiency, making it
unsuitable for insulator identification.

The identification method based on deep learning CNN can automatically extract
features, resulting in high efficiency, accuracy, and robustness. Target detection algo-
rithms, such as R-CNN, SPPNet, Fast R-CNN, YOLO, and SSD, have been proposed. In
2016, Wei Liu et al. proposed the Single Shot MultiBox Detector (SSD), which utilizes
the anchor framemechanism of Fast R-CNNand integrates the regression idea ofYOLO,
while also using multi-scale convolution layers for prediction. This approach offers the
high accuracy of Fast R-CNN and the fast speed of YOLO [3], making it one of the
best models for target detection. Researchers such as Du Liqun have used SSD to detect
infrared insulator images [4], while Li Ruisheng and others have used an improved SSD
to detect pin defects of transmission lines [5]. Gao Jinfeng and colleagues have utilized
Fast R-CNN and Full Convolutional Networks (FCN) to identify and segment insulator
images [6].

Based on the analysis above, this paper proposes a fast and efficient insulator iden-
tification model using the lightweight MobileNet-SSD network. This model employs a
lightweight network that can be embedded into a UAV, enabling high-precision and rapid
insulator identification. The application process involves training the network model
using collected images (obtained via UAV or other means) on a ground workstation,
embedding the trained model into the UAV, and using the UAV carrying the model for
power grid inspection and diagnosis. This paper primarily focuses on the construction,
training, and testing of the network models.

2 Target Detection Network of Lightweight Mobilenet-SSD

2.1 Multi-scale Feature Fusion Target Detection Network

The network structure of SSD adopts a pyramid structure of feature fusion of multiple
convolution layers. Its backbone feature extraction network is VGG16 [7]. When con-
necting, SSD removes the last fully connected layer (FC), classification layer (softmax),
and all Dropout layers of VGG16, and replaces FC6 with a 3× 3 layer. The FC7 layer is
modified to a 1 × 1 layer. SSD adds eight convolution layers behind VGG16 to enhance
the feature extraction capability of the network. In contrast to previous target detec-
tion networks, SSD fuses features from six different scales: Conv4_3, FC7, Conv8_2,
Conv9_2, Conv10_2, and Conv11_2. In Conv4_3, an L2 regularization term is used
to ensure that the characteristics of the lower and higher levels are not significantly
different. The network architecture of SSD is shown in Fig. 1.

The backbone feature of SSD extracts detailed information from the input image
for network learning, while the eight newly added convolutions delve deeper into the
abstract features of the image. These features are used to predict the position coordinates
of the default box (DB) and the corresponding category confidence. The prediction box
with high overlap rate is then removed using the non-maximum suppression (NMS)
algorithm to obtain the final prediction result. SSD adopts a full convolution network,
which overcomes the limitation of fixed input image size, making it particularly suitable
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Fig. 1. SSD network architecture

for the current UAV power inspection scenario where the image size is not standardized
[8].

2.2 Light Weight Backbone Feature Extraction Network

SSD has many advantages, it uses VGG16 as its backbone network, but the parameter
quantity of VGG16 reaches 138 million, the model parameter quantity is too large
to run on mobile devices with limited memory. In 2016, lightweight models such as
SqueezeNet, ShuffleNet and MobileNet [9–11] appeared successively. MobileNet has
a simple streamlined structure, with the advantages of less parameters and low latency.
The MobileNet network structure is shown in Fig. 2.

MobileNet has a total of 28 convolution layers, of which 26 are deep separable
convolution (DSC). The convolution with stride of 2 is special. It also plays the role
of down-sampling while realizing convolution. Finally, the results are output through
average pooling layer, FC layer and softmax layer.

One of the advantages of the MobileNet model is that it uses DSC to speed up
the operation, so that the central processing unit (CPU) can also meet the real-time
requirements. DSC is composed of a deep convolution (DW) with a kernel of 3 × 3 and
a pointwise convolution (PW) with a kernel of 1 × 1.

The calculation amount of ordinary convolution and DSC is analyzed. DK ∗ DK is
the size of the kernel,M is the number of input channels, and N is the number of output
channels. Assume that the size of input feature map is DF ∗DF ∗M . The output feature

Fig. 2. MobileNet network structure
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map size is DF ∗DF ∗N . DF is the height and width of the feature map, and the size of
the input and output feature maps is the same.

For ordinary convolution, the calculation amount is

C1 = DKDKMDFDFN (1)

For DSC, the calculation amount is

C2 = DKDKMDFDF + MDFDFN (2)

The ratio of DSC to ordinary convolution computation is

η = C2

C1
= DKDKDFDF + MDFDFN

DKDKMDFDFN
= 1

N
+ 1

D2
K

(3)

Generally, N is relatively large. If the kernel of 3× 3 is used, the calculation amount
of DSC can be reduced by about 9 times.

Another advantage of MobileNet is the introduction of two Hyperparameters: width
coefficient α ∈ (0, 1] (used to reduce the number of input and output channels) and
resolution coefficient ρ ∈ (0, 1] (not only can adjust the resolution of the input image,
but also can reduce the number of model parameters), which can obtain smaller and
faster models with minimal changes and will not damage the network structure. The
calculation amount of a volume layer after using α is

C3 = DKDKαMDFDF + αMDFDFαN (4)

Under the joint action of α and β, the calculation amount of a certain volume layer
of MobileNet is

C3 = DKDKαMρDFρDF + αMρDFρDFαN (5)

2.3 Fused Network of MobileNet and SSD

In order to deploy the deep learning target detectionnetworkon embeddedmobile devices
with limited hardware resources and computing power, this paper replaces the SSD
backbonenetworkwithMobileNet. TheMobileNet-SSDnetworkmodel after integrating
lightweight MobileNet is shown in Fig. 3.

In the MobileNet-SSD network, MobileNetV1 extracts the network for its backbone
features. During the fusion, MobileNetV1 deleted the last average pooling layer, FC
layer and classification layer, and changed the size of the input image to 300 × 300, and
adopts SSD multi-scale prediction strategy.

After the last convolution layer ofMobileNetV1, eight convolution layerswith differ-
ent scales are added, which are Conv15_1, Conv15_2, Conv16_1, Conv16_2, Conv17_1,
Conv17_2, Conv18_1 and Conv18_2 in turn. These feature layers decrease in size.

The feature map of the shallow feature layer has high resolution, but the receptive
field is small, which is used to detect small target objects; The resolution of the feature
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Fig. 3. MobileNet-SSD network structure

map of the deep feature layer is small, but the receptive field is large, which is used to
detect large target objects.

MobileNet-SSD extracts six effective feature maps of different scales from the six
layers Conv12, Conv14, Conv15_2, Conv16_2, Conv17_2 andConv18_2 formulti-scale
feature prediction, with resolutions of 19 × 19, 10 × 10, 5 × 5, 3 × 3, 2 × 2, 1 × 1.

Assuming that there are m feature maps, the calculation of prediction frame size is
shown as follows.

Sk = Smin + Smax − Smin

m − 1
(k − 1), k ∈ [1,m] (6)

where: Sk is the size of the prediction box; Smin indicates the minimum value of the
prediction box, with a value of 0.2; Smax indicates the maximum value of the prediction
box, with a value of 0.9; k represents the kth feature map.

The width w and height h of the default box and the coordinates x and y of the center
point of the default box are calculated as follows.

w = Sk
√
ar (7)

h = Sk√
ar

(8)

⎧
⎪⎪⎨

⎪⎪⎩

x = i + 0.5

|fk |
y = j + 0.5

|fk |
(9)

where: ar is the aspect ratio of the prediction box; i indicates the ith prediction box; j
indicates the jth true box; fk indicates the length or width of the kth feature map.

The loss function of MobileNet-SSD is the weighted sum of category confidence
loss and location loss. Assuming that the input sample is defined as x, the total loss
function is shown as follows.

L(x, c, l, g) = 1

N
(LC(x, c) + βLL(x, l, g)) (10)

where: N is the number of prediction boxes matched to ground truth (GT); LC is the
loss of classification confidence; LL is position loss; β is used to adjust the proportion
between LC and LL, default β = 1.
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c indicates the classification confidence, l is the predicted value of the default box;
g is the position information of the real box.

The classification confidence loss function uses cross entropy loss is shown as
follows.

LC(x, c) = −
M∑

i∈P
xpij ln

(
ĉpi

) −
∑

i∈N
ln

(
ĉ0i

)
(11)

where

ĉpi = exp
(
cpi

)

∑
p exp

(
cpi

) (12)

where: P is the position of the positive sample boundary box; xpij ln
(
ĉpi

)
represents prob-

ability prediction, which predicts the matching probability of prediction frame i and real
frame j in category p.

xpij ∈ {0, 1},When xpij = 1, it means that the prediction box i matches the real box

of the jth in the category p; ĉpi indicates the confidence level of the target class, which
corresponds to the positive default box containing the target category p.

M is the position of the negative sample boundary box; ĉ0i indicates the confidence
level of the background class, corresponding to the negative default box that does not
contain the target object.

The position loss function is shown as follows.

LL(x, l, g) =
N∑

i∈P

∑

m∈{cx,cy,w,h}
xkijLS

(
lmi − ĝmj

)
(13)

where: xkij indicates whether the i
th prediction box and the jth real box are the same in

the kth category; LS is to use smooth L1 loss for position error;
(
cx, cy

)
represents the

center of the bounding box.
w and h represents thewidth and height of the prediction box; ĝ represents the relative

offset between the real box and the default box; lmi is the prediction box; ĝmj is a real
box.

The calculation of LS(x) is shown as follows.

LS(x) =
{
0.5x2, |x| < 1

|x| − 0.5, other
(14)

In the prediction stage, after the image passes through MobileNet-SSD, multiple
prediction boxes are generated in advance at each location (x, y) of each feature map
and category confidence and position regression are performed.

A large number of prediction boxes may contain or overlap with each other. It is
necessary to use the non-maximum suppression algorithm for iterative optimization,
filter out the prediction boxes with high coincidence, and obtain the final prediction
results.



166 X. Tan et al.

3 Sample Analysis

For this paper, a proprietary insulator dataset was created, consisting of 2004 images of
insulators with a resolution of 640 × 480 pixels.

To address the issues of insufficient training sample data and low detection and
recognition accuracy, we have performed data augmentation on the original dataset using
techniques such as mirroring, contrast adjustment, rotation, cropping, and brightness
adjustment, based on variations in drone shooting distances, angles, lighting, and other
factors.

This is aimed at improving recognition accuracy that may have been compromised
due to inadequate data or low image quality. As a result of data augmentation, we have
obtained 13,782 images of insulators.

The open source LabelImg labeling tool was used to label the images, and a dataset
was constructed with 90% of the data used for training and 10% for testing.

Currently, most UAVs use CPU processors to simulate hardware environments, and
this example analysis was performed on an NVIDIA GeForce RTX 2060 GPU and an
AMD Ryzen 7 4800H CPU.

The Windows 11 operating system, along with the Keras deep learning framework
and Pycharm compilation environment was used for the analysis.

The model training and parameter settings are as follows: the input image resolution
is set to 300 × 300, the initial learning rate (LR) is set to 0.001 and adopts a gradient
attenuation method, and the SGD optimizer is used. As the number of samples is small,
the features extracted from the backbone network are universal.

Using the method of transfer learning, the model was first pre-trained on a small
dataset of 2004 insulation images, and then the pre-trained weights were used as initial
training weights for the larger dataset of 13782 insulation images.

The networkwas fine-tuned in this process. Due to the small sample size, the features
extracted by the backbone network were generic, and freezing the training during the
fine-tuning stage could speed up the network training and prevent the weights from being

Fig. 4. Single-target, double-target, and multi-target detection results of 110 kV and 500 kV
insulators
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disrupted in the early stages of training, thereby avoiding the phenomenon of unclear
feature extraction caused by overly random weights.

To speed up network training and prevent weight values from being damaged at the
initial stage, the method of freezing training is used. The freeze training stage has a batch
size of 32. At the thawing stage, the batch size is 16, and the LR is reduced to 0.0001.

To improve the accuracy of target recognition and positioning, firstly, in order to
improve the accuracy of insulator detection, the number of default boxes in the first
shallow effective feature layer of MobileNet-SSD was reset to 4. After improvement,
the number of default boxes in the 6 effective feature layers were adjusted to 4, 6, 6, 6,
6, and 6, respectively.

The size of the default boxes in the effective feature layers was also adjusted from
[30, 60, 111, 162, 213, 264, 315] to [21, 45, 99, 153, 207, 261, 315]. By reducing the size
of the default boxes in the shallow feature layers, the detection accuracy of the model
for defective parts was further improved.

Secondly, in order to improve the accuracy of predicted boxes matching real boxes,
the coordinates of the insulator were extracted using code programs, and the aspect ratio
of the default boxes was adjusted using statistical analysis.

Through data augmentation, network improvement, and the transfer learningmethod
presented in this paper, the accuracy of insulator detection and the matching degree of
detection areas have been improved to a certain extent. The results of insulator tests are
shown in Fig. 4, and the training loss curve of MobileNet-SSD is shown in Fig. 5.

The loss value decreases rapidly during the initial and fine-tuning stages of training,
and eventually stabilizes at around 11.67. The accuracy-recall (PR) curve and average
precision (AP) curve for insulator detection are shown in Fig. 6 and Fig. 7.

The lightweight and simple structure of MobileNet-SSD allows for the shortest
training time and fastest detection speed. However, the main advantage of MobileNet-
SSD lies in its flexibility for adjusting parameters to match the requirements of platforms
with limited resources.

Fig. 5. Network training loss curve
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Fig. 6. PR curve of 110 kV insulator

Fig. 7. PR curve of 500 kV insulator

Other models have fixed computation and parameter requirements, and may require
other methods to reduce the parameter count. It can be observed that MobileNet-SSD is
particularly suitable for embedded mobile devices like UAVs.

4 Conclusion

In response to the applicationneeds of embeddedmobile devices likeUAVs, a lightweight
MobileNet-SSD networkmethod has been developed for identifying insulators. The pro-
posed method achieves an mAP (mean average precision) of 82.47% and can recognize
images at a rate of 97.31 FPS.
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This method maximizes the advantages of deep learning, delivering high accuracy
and efficiency while leveraging the small parameters of the MobileNet-SSD model.
It is ideally suited for transplantation onto embedded mobile devices, offering a new
approach to intelligent fault diagnosis of power insulators with small devices.
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