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Abstract. Like many deep learning models, graph neural networks (GNNs) are
regarded as black boxes and lack interpretability. Therefore, it is difficult forGNNs
to be fully trusted by humans to be applied to various life scenarios. Based on this
problem, we propose a new interpretability method called LAExplainer, which is
used to explain GNNs hierarchically at themodel level. In particular, LAExplainer
not only focuses on the overall interpretation of the model, but also analyzes the
interpretation problems between layers. Our approach interprets the middle-level
process of themodel through layer-by-layer analysis, and uses it as a basis to guide
the construction of sub-graphs to reduce the size of the sub-graph set, which effec-
tively explain the overall model. In addition, the approach will analyze the impor-
tance of model features and produce an adjustable principal component selection
mechanism. In terms of evaluation indicators, we propose to set hyperparameters
so that the two results of Fidelity and Sparsity can be changed simultaneously by
adjusting the hyperparameters during the interpretation of GNNs. Experimental
results show that our proposed method is effective in synthetic data sets and real
data sets, and the results of the visualized sub-graphs are more in line with human
understanding.

Keywords: Graph Neural Networks · Explanations · Model-level · Generation

1 Introduction

Many machine-learning tasks require the analysis of non-Euclidean data, such as social
networks, knowledge maps, recommendation systems, and data from the life sciences
field [6, 9, 20, 44]. These data can be represented by graphs using node characteristics
and node connections (edges) [3, 19, 34]. The outstanding ability of graph neural net-
works (GNNs) to model the dependency relationship between graph nodes has made a
breakthrough in the research field related to graph analysis.

A GNN is an organic combination of connectionism and symbolism [1, 2]. It enables
the application of the deep learning model to the non-Euclidean structure of a graph and
endows the model with a certain causal reasoning abilities [11, 21].
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Because of their recursive-messaging scheme, the GNNs can achieve the most
advancedperformanceonvarious tasks [3, 37]. In this scheme, the information is encoded
at the node and passed along the edge of the graph. Similar to the traditional deep learn-
ing framework [45], GNNs exhibit a complex function that is quite opaque to humans
[10, 15].

It is necessary to explain the black box model [2, 22, 25]: the deep model cannot
be fully trusted without understanding the underlying mechanism behind the prediction,
which hinders the use of the deep model in applications related to fairness, privacy, and
security [5]. To deploy the depth model safely and reliably, it is necessary to provide
accurate prediction and human-understandable interpretation, especially for users in
interdisciplinary fields [8, 16].

Compared with the fields of image and text [8, 24, 29], there is less research on the
interpretability of graph models. However, this is the key to understanding deep GNNs.
In recent years, several methods have been proposed to interpret GNN prediction [27,
41], such as XGNN [42], PGExplainer [23], and GraphSVX [4, 7]. These methods [12]
provide different interpretations from different angles. However, there is still a lack of
standard datasets andmetrics to evaluate the interpretation results. Therefore, the existing
methods of interpreting GNN show significant differences in the interpretation effects
of different GNN models or datasets.

Using XGNN as an example, this method proposes explaining, this method proposes
to explain the GNN through graph generation. Instead of directly optimising the input
graph, it trains a graph generator to maximise the target graph prediction. The generated
graph is then considered the interpretation of target prediction and is expected to include
discriminant graph patterns. In XGNN, the expression of the graph generation is a
reinforcement-learning problem. For each step, the generator predicts the addition of an
edge to the current graph. Then, the generated graph is input into the trained GNN, and
feedback is obtained through the policy gradient to train the generator. In addition, some
graph rules are added to encourage interpretation to be both effective and understandable.

However, the set of partitioned subgraphs increases exponentially with the number
of nodes and features [26, 28]. When the depth of the GNN model is deep or the graph
structure is complex, it is difficult to select a limited set of subgraphs and evaluate them.
Most existing methods explore the effects of changing the input on the model prediction
and interpreting the model based on it, which cannot explain the GNN clearly. These
methods cannot focus on the content and path of information transmission in each step
of the information transmission of GNN.

Given these limitations, we propose a systematic interpretation framework that
encapsulates the recently introduced GNN interpretations inspired by some methods
of CNN interpretation. It provides different and common views on the functions of sev-
eral existing works, which will make our interpretation framework more complete and
inspire future work. In this study, we use this framework to define the LAExplainer
interpreter. The LAExplainer interprets the middle layer process of the model through
a layer-by-layer analysis. After obtaining the interpretation results, it will be used as a
basis to guide the construction of subgraphs, reduce the size of the subgraph set, and
effectively explain the whole model. Finally, we evaluated the LAExplainer’s node and
graph classification tasks on real-world and synthetic datasets.We show that it is superior
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to the existing baseline in interpretation accuracy and further verify its desirable aspects,
such as robustness or certainty.

2 Related Work

2.1 Graph Neural Networks

Nodes and edges of connected nodes make up graphs. Popular in-depth learning-based
GNNs are networks that process graph-type data. The goal of these networks is to learn
the representation of each node. The representation of each node is calculated from the
characteristics of the node, the edges connected to the node, and the representation and
characteristics of its neighbour nodes [42]. Tasks that focus onnodes canbe accomplished
by using direct representations, while tasks that focus on the entire graph can obtain
a global representation by pooling all the representations of nodes or other methods
and then performing the corresponding tasks. GNNs are mainly divided into graph
convolution networks (GCNs) [7, 17], attention-based update graph networks (GATs)
[5, 18, 33, 35], gated update graph networks, and graph networks with jump edges
[36, 40]. The GCN is currently the most important graph network [31]. It is a natural
generalisation of vehicles in a graph structure. A convolution neural network is a method
that uses a local perception area [43], shared weights, and downsampling in the spatial
domain. It has stable and invariant characteristics relative to displacement, scaling, and
distortion, and can extract the spatial features of images well.

2.2 Instance-Level Explanations

The design of the instance-level methods [30] is similar to feature engineering in that
they find some of the features in the input data that most affect the prediction results
and provide input-dependent explanations for each input graph. Given an input graph,
the instance-level approach design explores the important features that affect model
predictions to interpret depth models. The instance-level method is divided into four
branches based on how they obtain signature importance scores:

Gradients [32] or eigenvalues usage represents the importance of different input
features based on the gradient/feature method.

The perturbation-based method monitors the change in the predicted values under
different input perturbations to learn the importance score of the input characteristics.

Based on the decomposition method, the prediction score, such as the prediction
probability, is first decomposed into the neurons of the last hidden layer. The scores
are then propagated back one by one to the input space, and the decomposition score is
considered as the importance score.

The proxy-based method first extracts a sample of a dataset from the neighbours of
a given example. Next, a simple and interpretable model, such as a decision tree [14], is
fitted to the sampled dataset. The original forecast is explained by interpreting the proxy
model.
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2.3 Model-Level Explanation

Model-level methods directly interpret themodel of a GNNwithout considering any spe-
cific input instances. This input-independent interpretation is high-level and can account
for general behaviour. This direction is less explored than the instance-level approach.
In recent years, the main methods that have been used include XGNN, PGExplainer, and
GraphSVX. They are primarily graph-based, maximising the prediction probability of
a class by generating graph patterns and interpreting this class using the graph patterns
[13, 38].

XGNN trains a graph generator so that the generated graph patterns maximize a
certain prediction of the model. Then formulate the graph generation as a reinforcement
learning task, where for each step, the graph generator predicts how to add an edge into
the current graph. The graph generator is trained via a policy gradient method based on
information from the trained GNNs.

PGExplainer adopts a deep neural network to parameterize the generation process
of explanations, which enables PGExplainer a natural approach to explaining multiple
instances collectively.

GraphSVX is a decomposition technique that captures the “fair” contribution of each
feature and node towards the explained prediction by constructing a surrogate model on
a perturbed dataset. It extends to graphs and ultimately provides as explanation the
Shapley Values from game theory.

Overall, these twomethods explain the depthmapmodel from different perspectives.
Instance-level methods provide case-specific explanations, while model-level methods
provide high-level insights and a general understanding of how depth map models work.

2.4 Desirable Properties of Explanations

Often overlooked when designing interpreters are the ideal attributes of interpretation
that have become the focus of social sciences and the machine learning community.
From a theoretical point of view, a good explanation is accurate (true) and reflects the
proportional importance (meaningful) of a feature to the prediction. They are also stable
and consistent (robust), which means that when changed to a similar model or similar
instance, the variance is small. In addition, they reflect the certainty (decomposability)
of the model and represent its (global) functionality as much as possible [39].

3 Method

3.1 Preliminary Concepts and Background

Graph Rules
When generating graphs to interpret GNNs, we often produce meaningless graphs or
graphs that are not people-centric and inconvenient to understand. Therefore, we defined
some easy-to-understand graph rules. First, only one edge is allowed between any two
nodes. Second, the resulting graph cannot contain more nodes than a predefined maxi-
mum number of nodes. In addition, we combined dataset-specific rules to guide graphics
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generation. For example, in a chemical dataset, each node represents an atom; hence its
degree cannot exceed the valency of the corresponding atom. At the same time, to be
more explanatory, we need to minimise the number of subgraphs independent of other
nodes in the generated graph such that the resulting graph is not too fragmented. It is
important to generate as few edges as possible to find interpretable parts in GNNs.

Shapley Value
The Shapley value equitably distributes the benefits of cooperation by considering the
contributions made by each participant. It describes the fair distribution of the total
game revenue based on each participant’s contribution, assuming they all cooperate. We
obtain it by calculating the average marginal contribution of each participant to join
any possible alliance of participants. This approach is based on the game theory. The
complete set of participants is defined asN = {x1, x2, ..., xn}with n elements xi And any
number of participants can form a subset S ⊆ N . .. V (S) represents the value generated
by the cooperation of the elements in the S subset. The value of the final allocation is
expressed as ϕi(N, v).

When allocating the benefits, we must meet the following principles. Effectiveness,
that is, all values are distributed

∑

i∈N
ϕi(N , v) = v(N ). Symmetry, that is, if xi and xj are

equivalent in status (and can be interchanged with each other), the benefits should be the
same. Income from not being a contributor is 0. Additivity, that is, if the same person
performs two tasks, then the benefits of the two tasks should be divided together as if
their division was separate.

Previous studies have proved that the Shapley value is the only solution that satisfies
the four conditions of appeal, and the formula is as follows:

ϕi(N , v) = 1
N !

∑

S⊆N\{i}
|S|!(|N | − |S| − 1)![v(S ∪ {i}) − v(S)] (1)

Unified Framework for GNN
By identifying the relationship between graphic patterns and GNN predictions, we can
better understand the model and verify that it works as expected. As mentioned previ-
ously, the existing GNN interpreters focus only on the impact of changes to the input on
the predicted results, trying to explain the GNN black box in a single step. This leads
to two problems: first, it is difficult to effectively explain the black box in the subgraph
segmentation of the step; second, when the graph structure is too complex, the subgraph
segmentation will be blind if the subgraph set is too large.

Therefore, we constructed a new GNN interpreter framework to solve these two
problems. Intuitively, given a trained GNN model, its model-level interpretation should
explain what graph patterns or subgraph patterns lead to certain predictions, while at
each layer of GNN, the model focuses more on the graph patterns. A meaningful graph
pattern may consist of several fixed modules. Different motifs can be found in graphs
with different functions, which means that different motifs may be directly related to
the graph function. For example, the function of a DNA strand is expressed through the
sequence of bases to which it is anchored. In this framework, we refined each part of the
algorithm to form the final interpreter, LAExplainer.
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Formally, f(·) represents the trained GNN classification model, and C =
{c1, c2, ...cm} represents the classification set, ln(·) represents the output of the nth layer.
In the layer-by-layer interpretation of the GNN model, our goal was to partition the
subgraph that can maximise the output of this layer. It can be expressed as

g∗
n = argmax

g
ln(g) (2)

The g∗
n table is the target subgraph when we explain the nth layer of the GNN

network. We adopt the gradient calculation method to find this subgraph, which will be
explained later.

When a graph is identified by a given GNN (f(·)), the model provides a classification
ci ∈ C. In the overall interpretation of the GNN model, our goal was to divide the GNN
model prediction into the maximum probability prediction category of the subgraph.
This can be expressed as

G∗ = argmax
G

P(f (G) = ci) (3)

where G∗ represents the divided target subgraph. Popular methods to find this subgraph
include perturbation-based methods and graph generator methods based on reinforce-
ment learning. Their disadvantages have been described above. We adopted the app-
roach of aggregating the small-scale subgraphs obtained through layer-by-layer analysis
to generate the explanatory subgraphs of the GNN model. Before the aggregation, we
analysed the Shapley value of the subgraph. We set the threshold to select the part that
had the most significant influence on the prediction result, which was represented by
SHP (·). At the same time, the part of the subgraph that conformed to the graph structure
was selected through the graph rule judgment, represented by GraphR(·). This can be
expressed as

G∗ ≈ Gexp = GraphR

(
N∑

n=0
gn · Shp(gn)

)

(4)

This is an approximate calculation. In this process, we effectively reduced the algo-
rithm complexity such that it can explain the deep GNN model and improve the robust-
ness of the algorithm. We calculated the degree of similarity later to prove the feasibility
of this approximation.

An overview of the proposed approach presentation is shown in Fig. 1. The GNN
model was obtained by training a batch of graph datasets. These graphs, classified as
the third category through human observation, contained the same characteristics: rect-
angular boxes composed of four nodes, red, yellow, green, and blue, which is the basis
for classification. By maximizing the output layer by layer in the frame, we obtained
the subgraph of each layer of the GNN, such as an edge of the rectangle. Then, by
calculating the Shapley values of these subgraphs, we evaluated their importance and
provided a basis for selecting aggregation. Finally, the aggregate subgraph was modi-
fied and verified by graph rules to obtain the total subgraph G, which maximised the
prediction probability of the GNNmodel. Finally, the interpretation of GNNmodel was
completed.
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Fig. 1. Proposed GNN model interpretable framework through interlayer analysis.

3.2 Detailed Method

Interpretation of GNN at Each Level
In this section, we explain a separate layer of GNNs. Suppose the graph calling GNN
has N nodes, and each node has F features. ln(·) was used to represent the nth layer
of the trained GNN. The inputs of this layer were the feature matrix hn ∈ R

N×F and
the adjacency matrix A ∈ R

N×N of the graph and the output was the feature matrix
hn+1 ∈ R

N×F of the next layer. This can be expressed as

hn+1 = ln(hn,A) (5)

Our goal in this section is to find a suitable subgraph mask MAn ∈ R
N×N to divide

the input graph to explain this layer, as shown in Fig. 2. We need to input the subgraph
as much as possible to the nth layer to obtain a larger output characteristic matrix hn+1,
and at the same time, we need to divide the subgraph as small as possible in structure,
so the optimization objective can be expressed as follows:

MAn = argmax
MAn

(λ1‖ln(hn,A � MAn)‖ − λ2‖A � MAn‖) (6)

where � represents the multiplication of two matrices by bits, and the element in the
subgraph mask MAn is only 0 or 1. If it is 1, it indicates that the adjacency relationship
is selected; otherwise, it is abandoned. Each row in the feature matrix hn represents the
feature vector of a node, and the adjacency matrix A is symmetric and represents the
connection between two nodes. In the optimisation goal, it is evident that λ1 and λ2 are
two hyperparameters. When the proportion of λ1 is relatively high, a larger subgraph
will be output as the interpretation of this layer of the model; otherwise, a smaller
subgraph will be output as the interpretation of the model. In practice, because the depth
of the GNN model is generally much larger than the number of nodes in the graph, we
often use smaller subgraphs in the inter-layer interpretation. The final output subgraph
is represented by gn = A � MAn.
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Fig. 2. Schematic diagram of GNNs interlayer interpretation subgraph by maximum output.

Explanation of the Overall GNN
In this section, we explain the GNN as a whole. During this period, we obtained many
small subgraphs to explain the GNN at each layer, and our goal is to rationally aggregate
these graphs to form a subgraph to explain the GNNmodel. In the overall framework, we
mentioned that to screen the subgraph and splice the selected subgraph into a complete
subgraph. Assume that the GNN has an M layer and use G = {g1, g2, g3, . . . ..gM }
to represent the set of subgraphs generated in the previous step. We first calculate the
Shapley value of each subgraph to measure the importance of each subgraph. To extend
the Shapley value to the graph, the gain function is represented by GNN prediction
probability, which is v(gn) = P(f (gn) = ci). Therefore, for the i ∈ {1, 2, 3 . . . .,M }
subgraph, its Shapley value is:

ϕi(G,P) = 1
M !

∑

S⊆G{i}
|S|!(|M | − |S| − 1)![P(f (S ∪ i) = ci) − P(f (S) = ci)

]
(7)

From this,we can filter the subgraph for Shp(gi) = 1 ifϕi(G,P) > ε, or Shp(gi) = 0.
There is a threshold ε where the selection of a subgraph is if its Shapley value is greater
than this threshold. This is a hyper-parameter, and the subgraph used to explain GNNs
increases when ε is smaller and smaller when ε is larger. After screening, to form a
complete subgraph, the aggregation of the selected subgraph denoted is G,

exp.
Subsequently, to explain the overall GNNs, we generated subgraphs. However, this

subgraph only seeks to maximise the prediction probability as much as possible without
considering the meaning of generating subgraphs. In many cases, we sacrifice a certain
degree of accuracy for the convenience of people to generate a human-centred subgraph
as the output of the interpreter. Therefore, the generated sub-graph verification and mod-
ification is through graph rules, which expression is Gexp = GraphR

(
G,
exp

)
. Previously

described are the specific graph rules.

Interpretation of Graph Node Features
We divided the graph structure and interpretation and the node feature interpretation
into two independent parts and then summarised the results into GNNs interpretation.
Similar to the screening of subgraphs, we can also sort and filter the contributions of
node features using Shapley values. Its use is to represent the set of features, so we can
also calculate the Shapley value of each feature and sort it. In this interpretation, we can
choose some more important features.
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4 Evaluation of Experiment

4.1 Datasets and Experimental Settings

We conducted several experiments on different datasets and GNN models to prove the
validity of our proposed method. We evaluated our LAExplainer with five datasets for
graph classification and node classification tasks, including synthetic and biochemical
data, The results are shown in the Table 1. We summarise these datasets as follows:

BA-community: This is a node classification dataset with eight different labels. By
combining two Ba-shaped graphs with randomly added edges, we obtained for each
graph. The membership of the Ba-shape diagram and its structural location determine
the node label.
Tree-cycle: This is a node classification dataset with two different labels. Each graph
consists of a base-equilibrium tree graphwith a depth equal to eight and a 6-node periodic
motif. The connection between these two parts was random. The labelling of nodes in
the base diagram is 0; otherwise, 1.
BA-2motifs: This is a graph classification dataset with two different graph labels. There
are 800 graphs, each obtained by attaching different motifs, such as house-like and
five-node cycle motifs, to the base BA graph. The labelling of the different figures is
according to the type of motif.
BBBP: This is a molecular dataset for the graph classification task. In these datasets,
each graph represents a molecule, whereas nodes are atoms and edges are bonds. The
chemical function of the molecule determines the label.
Tree-grids: This is a node classification dataset with two different tags. It is the same as
the tree-cycle dataset, except that the tree-grids dataset uses 9-node grid motifs instead
of periodic motifs.

In this experiment, we used an RTX 3090 graphics card with 24 G video memory, an
Intel Xeon E5-2678 V3 24-core 32 GCPU, 2 TB hard disk, and the running environment
was PyTorch - CUDa10-CUDNn7 1.4.0 and Python 3.6.

In this study, the LAExplainer method use is to explain the GNN model both as a
whole and between layers. Therefore, in addition to the subgraphs explaining the model,
the algorithm output includes many smaller subgraphs. As shown in Table 1, because
the number of layers of each GNN model is different, there was a selection of six
representative interlayer subgraphs for each data as illustrations. We can also intuitively
observe that obtaining subgraphs of the overall interpretation of the GNN model is
through overlapping and stitching these subgraphs. In terms of accuracy, LAExplainer
can correctly identify basic graphic structures and outperform leading baselines in all but
one task, in addition to providing higher theoretical assurance and humane interpretation.
On theBA-Community dataset, owing to the relatively complex node types and structures
involved in the graph features, accuracy improvement was not substantial.
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Table 1. Visualization and precision comparison of experimental results.

Visualization Accuracy

Explainer 
of GNN Explainer of Layer LAExplainerGNNExplainer XGNN PGExplainer

BA-
Communit 0.89 0.74 0.90 0.79

Tree-Cycle 0.97 0.85 0.93 0.95

BA-2Motif 0.95 0.67 0.90 0.83

BBBP 0.78 0.64 0.71 0.77

Tree-Grid 0.90 0.83 0.86 0.87

4.2 Fidelity and Sparsity

The explanatorymethod performance analysis should be based on themodel’s prediction
results. The interpretation should be faithful to the model, and the explanatory method
should identify the input characteristics that are important to the model. There has
been a proposal for fidelity metrics to assess this. The key idea is that if the important
input features identified by the interpretation technique (node/edge/node features) are
discriminant to the model, the model’s prediction should significantly change when we
remove these features. Therefore, fidelity definition is the difference in accuracy between
the original forecast and a new forecast that hides important input characteristics.

By analysing the performance of explanatory methods in terms of input graph data,
explanatorymethods should be sparse, that is, to capture themost important input features

Fig. 3. Fidelity and sparsity adjustment relationship of LAExplainer algorithm.
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and ignore irrelevant features; such features measurement can be using sparsity metrics.
Specifically, it measures the score chosen by the interpretation method as an important
feature. The higher the value, the sparser is the generated data.

In the LAExplainer method, because of the hyperparameters settings, fidelity and
sparsity can change the results of the two parts synchronously in the GNNs interpretation
process by adjusting the hyperparameters.We drew the relationship curves of fidelity and
sparsity in BBBP and tree-grids data sets by adjusting parameters, and comparing them
with GNNExplainer, PGExplainer, XGNN, and SubgraphX. The results are in Fig. 3.

Seen from the figure that the evaluation of fidelity and sparsity in the two data
sets, LAExplainer based on the existing mainstream algorithm, it is worth noting that
fidelity cannot decrease to zero at the end of the curve when the sparsity is large. The
algorithm by design cannot generate a large subgraph, so it does not have sufficient
guiding significance.

5 Conclusion

In recent years, graph neural networks have been extensively studied, and many model-
level interpreters of GNNs have been produced. In this study, we first introduce a new
INTERPRETATION framework of GNNs, which focuses on interpreting the model
as a whole and analyses the interpretation problem between layers. The LAExplainer
algorithm was developed in the process of refining the framework. The algorithm uses
the characteristics of the above framework to interpret the layers of GNNs through
the subgraph. It aggregates the subgraph into a large subgraph of model interpretation
through Shapley values. In addition, the method also analyses the importance of model
features and generates an adjustable principal component selection mechanism. Finally,
we verified the validity of this method by using synthetic and real data sets and visualized
the resulting partial-molecular diagrams. The results produced by observation were also
consistent with human understanding.
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