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Abstract. Haze weather negatively impacts the quality of external image collec-
tion and requires prompt resolution. However, most current deep learning image
dehazing models struggle with restoring detail and color accuracy in real-world
hazy images, hindering their practical application for high-quality image projects.
To overcome this issue, we propose a novel connected mode (SSDC) for end-
to-end dehazing that simplifies the problem to an image conversion task without
relying on atmospheric scattering models or precise priors. The SSDC-GAN gen-
erator employs an encoder-decoder, same size densely connected architecture with
residual blocks, and a depth discriminator to balance the relationship during train-
ing. Experimental results demonstrate that the proposed method performs favor-
ably against state-of-the-art dehazing approaches on various benchmarks using
real-world datasets O-HAZE and I-HAZE while preserving accurate contour and
color information.

Keywords: Image Dehazing · Densely Connected · Generative Adversarial
Network (GAN)

1 Introduction

Haze weather appears as a phenomenon where the atmosphere covers the scene. A
large number of suspended particles will make an impact on collected images such as
reflection, refraction and absorption of atmospheric light. The phenomenon will reduce
the scene visibility, lead to blurred image details, low contrast, color distortion, and
information loss. Interfere with the follow-up work of extracting useful information and
solving practical problems in computer vision and otherworks. Inevitably, the problemof
how to improve image quality and reduce the interference of photoelectric acquisition
equipment in harsh environments must be solved. Dehazing algorithms can improve
the accuracy and efficiency of computer vision tasks such as object detection [1], image
classification [2] and semantic segmentation [3]. Surveillance cameras and other sensors
capture images of pedestrians and cars, but hazy images reduce the quality of information
needed for intelligent analysis technology.
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In this paper, image dehazing problem has been converted into image-to-image trans-
lation problem. To improve the quality of image generation and preserve most of the
image details information, inspired byDCPDN connectionmode [4], we propose a novel
connection architecture employed in generator, GAN.

In case ofmodel collapses during training,G (generator)with high-quality conquered
D (discriminator) because of sophisticated structure optimization,wedeepen the network
layer of discriminator and reduce the step size of the convolution kernel.

Our main contributions can be summarized as follows:

• We propose an end-to-end dehazing model with novel connection architecture in
generator for retaining information of the images in SSDC-GAN. The same size
densely connected method is considered from the perspective of image features, that
greatly reduces network parameters, enhances image dehazing effects and alleviates
the gradient vanishing problem.

• SSDC-GAN employs a generator which combines an encoder and decoder struc-
ture with embedded residual blocks in pre-trained Densenet-121 to better preserve
the image details. We employ perceptual loss to generate more visually pleasing
images. SSDC-GAN optimized a deep discriminator structure to deal with network
complexity imbalance problem for non-haze images generation.

2 Proposed Method

2.1 Same Size Densely Connected Encoder-Decoder

Weemploy theGAN framework to convert the dehazing problem into a image conversion
problem, and optimize the network architecture to retain features. To preserve the image
and color features information as possible by modifying the network structure without
estimating intermediate parameters. Generator is required to retain the image content and
cover as much detail as possible. Recently works have revealed the dense connections
possess the potentiality to promote feature extraction and utilization, especially for low-
level vision tasks. For example, previous works [5, 6] demonstrate the excellent ability
of densely connected encoder-decoder in retaining image feature information, including
the color and target outline details.

In addition to the commonly encoder and decoder connections, we propose a novel
same size connection approach. SSDCperformdifferent pooling operations on the output
images in individually generator layer, including pooling layers with filters of sizes 2,
4, 8 and 16 to dwindle the feature map, and insert the reduced image into the network
layer of the corresponding size.

SSDC-GAN employs the Denseblock and Transblock in pre-trained densenet-121 to
extract image features in encoder, andmake pooling operations with different filter sizes.
At the end of each Denseblock & Transblock layer there are 2× times downscaling for
feature map continues to shrink. In the process of gradually shrinking the feature map,
the network extracts the output image of each layer and projects to the decoder layers
of the corresponding size. At the same time, the network merges one or more pooling
operations of the corresponding size layers and different filters.

SSDC-GAN sets feature map transmission as follows: IMid, ln denotes the input
feature graph of the nth layer of the decoder, OMie, ln denotes the output feature map
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Fig. 1. Generator.

of the nth layer of the encoder, and the following formula demonstrates the input of the
second layer in the decoder network:

IM i
d ,l2 = IM i

e,l1/16 + IM i
e,l2/4 + IM i

e,l3/2 + IM i
e,l4 + OM i

d ,l1 (1)

In the Eq. (1), the first three variables on the right equation are the input characteristic
images of the first, second and third layers of the encoder for unequal pooling, and the
output of the first layer in the decoder is attached. The input of the third layer in decoder
is:

IM i
d ,l3 = IM i

e,l1/8 + IM i
e,l2/2 + IM i

e,l3 + OM i
d ,l2 (2)

As shown in Fig. 1, the encoder comprises threeDenseBlocks&TransBlock (inEncoder)
modules, and convolution layer+ReLUwith pooling layer (filter size 4). In the decoder
module, there are 5DenseBlocks&TransBlock (inDecoder) modules utilized to upscale
the feature maps and restore the resolution.

2.2 Depth Discriminator

We compared the capabilities of the original generator and SSDC-GAN generator using
a newly designed depth discriminator (Fig. 2). By deepening the network layers structure
of the discriminator, we increased its feature extraction, analysis, and judgment ability,
necessitating the rival generator to possess equal image generation ability. Compared
to the original discriminator, we added more layers to improve its image information
collection from G (generator) and better compare image features of real datasets for
improved image authenticity determination. D competeswithG to achieveNash balance.
To balance network complexity, we increased the stride of the convolution kernel to 2,
reducing the number of parameters per layer and improving processing efficiency.

2.3 Loss Function

We employ the L1 loss function to estimate the pixel loss between the prediction and
the target image. Pixel-wise loss is utilized to estimate image differences in detail, and
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Fig. 2. Depth discriminator, by increasing the step size and layer depth.

actively fed back to the network for regulation.

L1 =
∑N

i=1
‖G(I i) − Ji‖1 (3)

Where Ii denotes the input hazy image, taking the output of generator G(Ii) and
ground truth Ji into estimation. N denotes the total sample in dataset images. It measures
the distortion and fidelity between the ground truth image and the dehazed images.

Perceptual loss compares the feature obtained by convolution of the real images
with the feature obtained by the convolution of the generated picture, so that high-
level information, such as the content of the images, is close to the global structure.
Perceptual loss will improve the similarity of the entire image frame, and adjust the
images information through functions in general.

LP = 1

CHW

∑C

c=1

∑H

h=1

∑W

w=1

∣∣ϕc,h,w(Id ) − ϕc,h,w(Ig)
∣∣ (4)

The symbol ϕ represents the feature extracted from the pre-trained VGG16 model.
C,W and H denotes the height, width, and image channel of the feature map in the j-th
layer of the backbone network, where Id denotes dehazed image and ground truth image
is Ig.

We employ the adversarial loss of GAN. The generator is initialized to convert the
hazy image into a haze-free image, and discriminator is employed to distinguish whether
the image is real or fake. GAN is trained through a straightforward formula in Eq. (5),
which can be expressed as:

LA = 1

N

∑N

i=1
log(1 − D(Ii, J̃i)) (5)

Adversarial loss is a distancemeasure of each layer in theGAN.Where the J̃i denotes
the processed output of generator, and Ii is the ground truth image. Optimizer rectify
the training direction after estimation.

We combine Pixel-wise loss, which is used to make the dehazing image closer to the
ground truth, perceptual loss that perfects the balance between the advanced information
of images, adversarial loss is employed to advance restore photo-realistic images, and
set weights for each one to adjust parameters dynamically. The parameters are α1, α2
and α3.

LT = α1L1 + α2LP + α3LA (6)
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3 Experiment

3.1 Datasets and Implementation

Recently, there are various algorithms for image dehazing, whereas, since pair real-world
haze maps and haze-free images are laborious to collect on a massive scale for network
training, most of the existent datasets for dehazing are artificially synthesized, such as,
RESIDE [7], NYU [8], Haze-RD [9], KITTI [10], and Artificial haze, such as D-HAZY
[11], O-HAZE [12] and I-HAZE [13]. Datasets can be divided into different categories
from indoor, outdoor, haze density and synthesized or not, there are real world haze
maps dataset BeDDE [14] as well.

Weight parameters α1, α2 and α3 are set to 1, 0.5 and 0.1, the most critical pixel-level
loss parameter is 1, visual loss whose importance is lower than the former determines
image balance, and adversarial loss in GAN set to 0.1 as a rule of thumb. Due to the
limitations of the experimental facility memory and the large model of some previous
meth-od, this type of methods cannot process original size image.

We select appropriate images from the dataset and resize them to 1600 × 1200 ×
3. 7 of the 45 images in the O-HAZE dataset are randomly selected as the testset, while
5 of 25 pieces in the I-HAZE dataset were selected as test sets. The remaining images
are employed as the training set. Each image is divided into 16 pieces with the size of
400 * 300 to enlarge the trainset. We employ Adam optimizer with initial learning rate
of 1-e4 for both generator and discriminator, the whole training epoch is 3,000 times,
on the frame-work Pytorch with a Nvidia TITAN GPU.

3.2 Metric

Some quantitative measurement methods are employed to automatically evaluate the
image quality objectively, so as to acquire the parameters reflecting the quality on the
degree of loss as the evaluation result.

Utilizing images in the same scene on sunny days as the evaluation reference is the
ideal objective metric, and estimating the degree of distortion between the dehazing
result and the references.

PSNR (Peak Signal to Noise Ratio) is employed to measure the ratio between the
maximum possible value of the signal and the distortion noise power that affects the
quality of signal. PSNR is based on the error between the corresponding pixels, and the
most widely used objective image evaluation metric.

SSIM [15] (Structural Similarity) is the realization of the structural similarity the-
ory, the structural similarity index defines structural information from the perspective of
image composition as being independent of brightness and contrast, reflecting the prop-
erties of the object structure in the scene, and modeling distortion into three aspects:
brightness, contrast and structure.

LPIPS [16] (Learned Perceptual Image Patch Similarity) permits the features
extracted from the network structure of the model can be measured to obtain judg-
ments that are more consistent with human perception. Feature difference between the
real sample and the generated sample in the model has been analyzed along with the dif-
ference estimated in each channel by L2. Ultimately, LPIPS makes a weight summation
for all channels.
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3.3 Result Evaluation

We draw a comparison (Fig. 3) (Table 1) between SSDC-GAN and mainstreammethods
on the dataset O-HAZE since it matches the features of real-world hazy maps. We
employ an improvedDCPmethod, which remains haze portion and color deviation at the
junction of the sky and objects. In view of too many comparison methods are employed,
paper demonstrates the evaluation metrics for DehazeNet and AOD-Net merely. EPDN
[17] employs GAN framework and utilizes image translation for images processing,
which shows an average increase of 16% in all metrics, but visual contrast reduced and
the images towards darker. GCANet [18] has color deviation in dehazed images and
FFA-Net remains extensive haze on the whole image. DMPHN [19] is mainly utilized
for non-homogeneous haze images, which brings 6% and 15% improvement on PSNR
and LPIPS compared with the first three methods, but SSIM has reduced, meanwhile,
DMPHN gets haze residues at the junction of objects with predominant haze has been
removed. MSBDN adopts the U-net [20] and appends the SOS module enhancement
strategy into decoder for haze removal. Table 1 shows that MSBDN’s dehazing records
are higher than the previous algorithm in two metrics, but there is low image cleanliness,
residual haze and color deviation.

The dehazed results generated by our algorithm in Table 1, we observe the model
with same size connection gets result closer to GT images due to the preservation of
the image color information and more visually faithful to the ground-truth. Although
SSDC-GAN improves PSNR by 0.15% only, it improves by 38% on LPIPS compare
to the second algorithm on O-HAZE, which means that we have reduced the feature
difference between real and generated samples in the images.

Fig. 3. Comparison of the different methods on O-HAZE dataset (From left to right are Hazy,
DCP, EPDN, GCANet, FFA-Net, DMPHN, MSBDN, Our model, GT).
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Table 1. Quantitative comparisons with different methods on public datasets O-HAZE.

Methods\Metric PSNR SSIM LPIPS Runtime

DCP 15.9665 0.6496 0.384 28.68

DehazeNet 15.5421 0.6938 0.328 16.46

AOD-Net 15.6184 0.6374 0.363 3.98

EPDN 18.3350 0.7405 0.301 3.02

GCANet 18.5462 0.7456 0.292 5.84

DMPHN 19.7813 0.7171 0.273 1.34

FFA-Net 18.8655 0.7492 0.316 6.77

MSBDN 20.0987 0.7465 0.254 1.64

SSDC-GAN 20.1304 0.7387 0.184 4.47

GT + ∞ 1.00 0.00 ×

Fig. 4. Comparison of the different methods on I-HAZE dataset (From left to right are Hazy,
DCP, AOD-Net, EPDN, FFA-Net, DMPHN, FFA-Net, Our model, GT).

For I-HAZE, Fig. 4 and Table 2 demonstrate SSDC-GAN achieves the effect closest
to GT in subjective perception, and the highest index result in metrics. During training
processing, the original size dataset images cannot run on the device since excessive
memory requirements, and our lightweight model is capable of handling larger size
images and achieving superior performance.

3.4 Ablation Experiments

To demonstrate the effectiveness and superiority of the connection principle, we conduct
experiments under minor quantity of training epochs to evade other factors’ affecting.
Experimental results compare the performance of the two connected structures: (a)Hazy;
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Table 2. Quantitative comparisons with different methods on public datasets I-HAZE.

Methods\Metric PSNR↑ SSIM↑ LPIPS↓
DCP 14.5188 0.7088 0.3044

AOD-Net 16.4720 0.7982 0.2818

EPDN 15.4007 0.7367 0.2956

GCANet 13.5035 0.6727 0.3032

DMPHN 16.4720 0.7642 0.3478

FFA-Net 16.8792 0.8124 0.2678

SSDC-GAN 18.5607 0.8371 0.2318

GT +∞ 1.00 0.00

(b) Ordinary connectionmodel training for 1000 epochs; (c) Same size dense connection
model training for 1000 epochs; (d) Ground truth.

The results, analyzed through the whole information (Fig. 5, Table 3) and the details
(Fig. 6), demonstrate that the network dehazing effect after employing the same size
dense connection bring improvement of 0.88% PSNR and 5.76% LPIPS increase in
numerical metrics, which is more consistent with the physical model, visually.

We tested multiple methods to remove haze from images and analyzed their effect on
object details such as color and contours. Some methods (Fig. 7), like AOD and EPDN,
made the overall color of the image appear more obscure and confused edge information
in the background. DCP and DehazeNet were not effective for multi-detail images or
eliminating residual haze. GCANet and FFA-Net did not completely remove haze at
edges and junctions of objects. DMPHN enhanced contrast but resulted in limited color
distortion. Our method produced visually more faithful images with sharper textures and

Fig. 5. Processed images through different connection structures.

Table 3. Quantitative comparisons with different methods on public datasets.

Situation(b) Situation(c) Situation(d)

PSNR 22.64 22.84 ∞
SSIM 0.77 0.77 1

LPIPS 0.312 0.295 0.000
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Fig. 6. The effect of connection method on image color saturation and object information
recovery.

(a)Hazy              (b)DCP               (c)AOD          (d)DehazeNet           (e)EPDN

(f)GCANet         (g)FFA-Net      (h) DMPHN      (i)Our model       (j)Ground Truth

Fig. 7. Various dehazing method for complex background hazy images and object details. AOD
is generally dark, DehazeNet and DCP are similar. There are no red check boxes in the above
images.

better color fidelity, although some haze remained on branches due to a small number
of iterations.

4 Conclusion

In this paper, we propose a dense connectionmethod that transfers the image information
from the encoder to the decoder to preserve the object details and color information of
the dehazed images. Simultaneously, a depth discriminator is employed to balance the
complexity between the generator and the discriminator, so as to maintain the steadiness
in the training and restrain the mode collapse and vanishing gradient.

Various state-of-the-art methods recently have been employed for comparison, and
SSDC-GAN performs superior results compare to other approaches. To prove the supe-
riority of the connection principle, we conduct a ablation experiment and demonstrate
the two networks differ in their ability to recover image information under small amount
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training epochs. Nevertheless, SSDC-GAN preserves unnecessary information at times.
In the follow-upwork, effectual attentionmechanismwill be applied to focus on retaining
fundamental image information and eliminating unnecessary information.
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