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Abstract. In recent years, pre-training models (PLMs) have made impressive
progress, and prompt learning has made few-shot learning achievable. However,
traditional prompt learning methods often require manual template design, or
performance may be unstable due to the limited data in few-shot tasks. To address
these issues, we propose a few-shot text classification method based on multi-
task learning. We first unify the multi-task into an extractive question-answering
(EQA) format, then train the prompt using task data in the unified format. The
prompt cists of modular prompts and a router that indicates their functionality.
We then initonsialize the downstream training parameters using the router of a
pre-training task similar to the downstream task and employ contrastive learning
to improve EQA efficiency.
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1 Introduction

Recently, the emergence of pre-trained languagemodels, such as GPT [1] and BERT [2],
has dramatically improved the ability of natural language processing to handle down-
stream tasks. The traditional way to adapt general-purpose PLMs to specific downstream
tasks is to fine-tune them by updating all parameters. Therefore, it is necessary to store
a modified copy of the full-scale model parameters for each downstream task [3]. So it
will be costly when applying the model to downstream tasks [4, 5].

Prompt tuning is a method for adapting PLMs to downstream tasks, consisting of
two key engineering techniques: prompt and answer engineering [6]. Prompt engineering
works by adding prompts to the input sequence and feeding the new input to the PLM
in the pretraining task. In this way, the model will output at the relevant position of the
prompt according to the existing knowledge [7] to complete the downstream task. For
instance, a common prompt-tuning approach for text classification is to concatenate an
input with the prompt “I felt [MASK]” and ask the PLMs to replace it with “happy” or
“sad”. Discrete prompt tuning, however, has limitations due to PLMs being continuous
from an optimization perspective [8]. To overcome this, continuous and deep prompt
tuning have been proposed [9], but have their own challenges, such as the weakening
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influence of input prompts in intermediate layers and unstable training with additional
parameters [10]. Answer engineering involves mapping model-predicted answers to
labels, traditionally achieved through manual design. This method requires significant
designer input and impacts efficiency [6].

To solve the above problems, we propose a novel deep prompt method to tackle
the challenges of downstream tasks with limited data for pre-trained language models.
Our method consists of three steps: First, we convert multi-task data into EQA tasks,
using all labels as part of the EQA input, which simplifies the construction of the answer
project. Second, we use multi-task learning to train deep prompts and employ Sun
et al.’s router method to train different router parameters for different tasks in the router
structure. This ensures that the training results of multi-task data can quickly adapt to
downstream classification tasks, and we can use the routing parameters of a task similar
to the downstream task to form the initial prompt when the downstream task starts. In
the third step, we leverage contrastive learning to penalize the wrong label output in the
few-shot setting, thus enhancing the EQA task’s performance.

2 Related Work

2.1 Multi-task Learning

Pre-trained language models are data-driven models that require a large number of
labeled training samples, which is usually expensive for NLP tasks that require lan-
guage knowledge from annotators. To further improve model performance, address
data scarcity, and facilitate cost-effective machine learning, researchers have adopted
multi-task learning (MTL) for NLP tasks [12]. For example, Liu et al. used an adver-
sarial multi-task learning framework on text classification tasks to alleviate the mutual
interference between shared and private latent feature spaces [13]; Vu et al. proposed
a migration learning method based on soft prompt, large-scale empirical studies con-
ducted on 26 NLP tasks and significantly improve the performance of prompt tuning in
many downstream tasks [14].

2.2 Prompt Engineering

Prompt engineering is a crucial technique that transforms the input forms of downstream
tasks into pre-training tasks, bridging the gap between them and PLMs. Prompt engineer-
ing can be broadly classified into two types: discrete and continuous. In discrete prompt
engineering, prompt templates are manually designed and used directly or for prompt
mining to construct new prompts. For instance, the LM-BFF method employs the T5
model to automatically generate prompts [15]. Conversely, continuous prompt engineer-
ing is utilized for PLMs without human intervention, where the continuous prompt can
be entirely replaced by trainable embeddings. To address the prompt template depen-
dence on prompts in discrete prompt engineering, P-tuning replaces certain text tags
with trainable embeddings [8]. In contrast, P-tuning v2 utilizes continuous embeddings
as prompts for each layer of input sequences in PLMs to overcome the problem of the
lack of generality across scales and tasks in continuous prompts [9].
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3 Methodology

In this section, we first introduce a method for converting different tasks to the format
of the EQA task, then introduce a method for prompt construction, and finally introduce
contrastive learning strategies applied to classification tasks. The frame-work of the
model is shown in Fig. 1.

3.1 Unified EQA Format

Few-shot learning usually suffers from limited training data, making it essential to unify
the formats of pre-training anddownstream tasks viamulti-task learning to reduce the gap
between them. Previous approaches, such as Gu et al.’s, assume that different tasks only
vary in label selection, and address task unification via multiple-choice classification
[16]. Conversely, NS et al. and Sun et al. propose unifying all tasks into EQA tasks, by
appending labels to the text and adding questions to create a new EQA task [17, 19].

Single-sentence classification tasks often involve numerous classification results,
making them ideal for unification into an EQA task format. Our approach divides all
tasks into four types: natural language inference (NLI), text classification (TC), extrac-
tive question-answering (EQA), and multiple choice question-answering (MCQA). The
uniform example format is shown in Table 1.

Fig. 1. Model framework

Table 1. Example templates to formulate non-QA tasks into the EQA format

Dataset Task Template

Dianping TC 打分: <s>的评价是?选项:非常差,较差,一般,较好,非常好

AFQMC NLI 意思判别: <s1>与<s2>的意思是?选项:矛盾,相似

DogWhistle MCQA 近义词选择:与词语<s>最相近的词是?选项: <A1>, <A2> …



Pre-training Extractive Question-Answer Prompts 321

3.2 Prompt Construction

Tomakemulti-task learning adaptable to different downstream tasks, we expand a single
prompt into a set of modular prompts according to the method of Sun et al. [11] and
set the weight parameters of modular prompts for each pre-training task, and the final
prompt will be composed by modular prompts and weight parameters.

Specifically, for prompts at each layer l, a set of modular prompts
{
pl1, . . . , p

l
k

}
and

weight parameters w = {
wl
1, . . . ,w

l
k

} ∈ {0, 1} will be predefined, and this parameter
composed by weight parameters is called Router. For each task, the final prompt is the
weighted mean of this set of modular prompts and weight parameters.

P(l) = 1

K

∑K

k
wl
kp

l
k (1)

During multi-task learning, the modular prompt and weight parameters will be
updated. For downstream tasks, we directly select the set of routing parameters sim-
ilar to the downstream tasks in multi-task learning, use this set of parameters as the
downstream training initial parameter, and then prompt tuning it.

3.3 Contrastive Learning Strategies

A sentence can easily be misclassified for single-sentence classification due to some
words. For example, For the sentence: “武汉-他乡遇故知”, PLM may predict the clas-
sification of “旅游” from the word “他乡”. It is also possible to mistakenly classify it
as a “文化” or “故事” category from the poem “他乡遇故知”.

Inspired by contrastive learning [18], we can distinguish between positive and nega-
tive predictions, alleviating this problem of confusion. Specifically, we first select k + 1
classes from all possible classes, suppose as Z = z′1, z′2, . . ., z′k+1, the possible predicted
results may contain the correct answer zcor , then we will take the remaining k answers
as negative answers z′i; if the result does not contain the correct answer, then we select
the top k predicted answers as the negative answer z′i . For each predicted answer, we
have:

zi = Topij,k:j≤k

(
P(j)
start × P(k)

end

)
(2)

where Pstart and Pend represent the probability of each word as the starting position
and ending position of the answer, respectively. Then, for each training sample, the
contrastive loss function can be described as:

LSCL = 1

K

∑K

i=1
max

(
0, δ − zcor + z′i

)
(3)

where δ ∈ [0,1] is a margin hyperparameter, zcor represents the probability of the correct
answer in the predicted answer, and zi′ represents the probability of a negative answer
in the predicted answer. The final total loss function looks like this:

L = LMLM + λLSCL + γ ‖�‖ (4)

where LMLM denotes the training objective of token-level MLM. � denotes the model
parameters. λ, γ ∈ [0, 1] are the balancing hyper-parameter and the regularization
hyper-parameter, respectively.
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4 Experiments

4.1 Datasets

Multi-task Learning Datasets. As mentioned above, we divide all tasks into 4 types,
namely NLI, TC, EQA, and MCQA. We pre-train on 33 Chinese NLP tasks of various
types, domains, and sizeswith deepmodular prompts, and the information on the datasets
is shown in Table 2. In multi-task learning, training datasets for different tasks may have
different sizes and distributions, which may cause some tasks to be underestimated
or overestimated during training, thus affecting the model’s performance on the entire
task set. We randomly select the task ID and obtain a small batch of data from the
corresponding data set so that the model can perform balanced learning among different
tasks to alleviate the data imbalance problem.

Downstream Datasets. For the downstream task datasets, we choose 4 classic Chinese
classification datasets: Tnews, CSLDCP, EPRSTMT, and IFLYTEK. The details of the
data are shown in Table 3. Because the category of EPRSTMT is sentiment analysis of
2 classifications, except for the EQA format of EPRSTMT, which is “<S>的情感是?
选项: +标签”, the other tasks EQA format is “主题识别: <S>的主题是?选项: +标
签”.

Table 2. Multi-task Learning Datasets

Task Datasets Size

NLI AFQMC, Paws, CMNLI, BQ, CHIP-STS, KUAKE-QQR, XNLI,
NLPCC-DBQA, Finance-zhidao, Liantong-zhidao, Law-zhidao,
Nonghang-zhidao,
Touzi-zhidao, Baoxian-zhidao, Dianxin-zhidao, OCNLI

1.98M

TC CHIP-CTC, FinRe, Fudan-TC, KUAKE-QIC, NLPCC-TC, Amazon,
DianPing, DMSC, Online-Shopping, SanWen, THUCNNews

7.96M

QA DuReader-Checklist, DuReader-Robust, CMRC-2018 24K

MCQA CCPM, DogWhistle 237K

Table 3. Downstream Datasets

Name Type #Class Test Size

Tnews ShortTextClassify 15 2010

EPRSTMT ShortTextClassify 2 610

CSLDCP LongTextClassify 19 1784

IFLYTEK LongTextClassify 22 1749



Pre-training Extractive Question-Answer Prompts 323

4.2 Experiment Settings

We follow the successful experiment of Sun et al. [11], for multi-task learning, the length
of the modular prompt is set to 8, the number of training epochs is set to 2 million times,
and the model is trained with a fixed random seed of 42.

In the Downstream Training stage, we utilized the router parameters of the NLPCC-
TC task as the initial parameters for the EPRSTMT data set, and for the other three tasks,
we opted for the router parameters of Fudan-TC. We ran 1000 rounds of training with
random seeds of 4/42/100 for testing. Additionally, we employed contrastive learning
for downstream tasks, except for the EPRSTMT dataset. For negative labels, we selected
five labels other than the correct label.

For few-shot learning, we perform 1/4/8/16-shot experiments. In the K-shot exper-
iment, we sample K instances of each class from the original training set to form the
training set for few-shot learning, and obtain the validation set in the same way. We save
the best performing checkpoint on the validation set for testing. In all experiments, we
use the accuracy rate as the test metric.

4.3 Backbones and Baselines

We choose Chinese_pretrain_mrc_roberta_wwm_ext_large as our backbone model,
which is a retraining model of Roberta-wwm-large based on large-scale MRC data.
Because our method converts all tasks into EQA format for pre-training, so we choose
this model. We consider (1) Model Tuning, which fine-tunes all parameters of the PTM;
(2) PET, through the manual construction of prompt templates, to perform discrete
prompt tuning on all parameters of the model [20], (3) P-Tuning, by using continuous
prompt embedding as a template, and a small amount of natural language prompts are
added as anchor characters to improve the effect, and prompts are tuned for all param-
eters of the model; and (4) P-Tuning V2, which integrates and adjusts soft prompts at
each layer of PTMs, freeze the parameters of the PTMsmodel, and only perform prompt
tuning for the newly added soft prompt as our baselines.

4.4 Main Results

The results of the experiment are shown in Table 4. From the results, we can see that
under the setting of few-shot, our method achieves the best results most of the time. Only
under the setting of 16-shot in the CSLDCP data set, the results of PET have achieved
the best results, but it is enough to prove that our method is effective. We can also see
that with the increase of training data, the method of tuning all parameters of the model
is gradually narrowing compared with our method. Compared with the P-Tuning v2
method, it also adopts the method of adding soft prompts at each layer, but the initial
value is random. It can be found that P-Tuning v2 introduces a new gap, so it also proves
that multi-task learning on the added soft prompts before applying them to downstream
tasks can help improve the effect of few-shot.
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Table 4. Classification results

Shot Method Tnews EPRSTMT CSLDCP IFLYTEK

1 FT 25.6 ± 2.3(27.9) 54.2 ± 3.3(57.5) 27.2 ± 1.5(28.7) 23.4 ± 0.4(23.8)

PET 35.1 ± 1.9(37.0) 64.9 ± 1.1(66.0) 31.6 ± 2.0(33.8) 23.8 ± 2.2(26.0)

P-Tuning 36.8 ± 3.1(39.9) 51.4 ± 2.2(53.6) 19.2 ± 2.2(21.4) 33.9 ± 1.2(45.1)

P-Tuning
V2

18.1 ± 2.3(20.4) 51.8 ± 0.7(52.5) 21.3 ± 1.9(23.2) 23.2 ± 0.2(23.4)

PT(Ours) 47.8 ± 1.3(49.1) 67.1 ± 0.2(67.3) 49.2 ± 0.2(49.4) 40.6 ± 1.3(41.9)

4 FT 41.0 ± 2.1(42.1) 57.3 ± 2.8(60.1) 34.8 ± 1.7(46.5) 34.3 ± 2.0(36.3)

PET 45.7 ± 1.1(46.8) 65.1 ± 0.7(65.8) 42.2 ± 1.2(43.4) 41.6 ± 0.8(42.4)

P-Tuning 43.4 ± 1.2(44.6) 51.6 ± 2.2(53.8) 35.3 ± 2.0(37.3) 40.2 ± 1.3(41.5)

P-Tuning
V2

22.8 ± 3.1(25.9) 54.4 ± 2.1(56.5) 30.8 ± 1.1(31.9) 30.2 ± 0.2(20.4)

PT(Ours) 48.1 ± 1.3(49.4) 69.1 ± 2.2(71.3) 49.2 ± 1.2(50.4) 42.0 ± 0.8(42.8)

8 FT 46.9 ± 2.0(48.9) 63.2 ± 2.9(66.1) 46.2 ± 2.1(48.3) -

PET 48.1 ± 2.6(50.7) 66.7 ± 1.2(67.9) 47.7 ± 1.5(49.2) -

P-Tuning 45.6 ± 1.1(46.7) 51.9 ± 1.0 (52.9) 46.3 ± 2.7(49.0) -

P-Tuning
V2

35.1 ± 1.9(37.0) 62.0 ± 2.3(65.3) 41.3 ± 2.2(43.5) -

PT(Ours) 50.4 ± 0.7(51.1) 72.1 ± 3.1(75.2) 50.1 ± 0.6(50.7) -

16 FT 50.3 ± 1.2(51.5) 66.5 ± 2.7(69.2) 51.9 ± 1.2(53.1) -

PET 51.1 ± 1.3(54.4) 72.2 ± 0.3(72.5) 55.2 ± 1.1(56.3) -

P-Tuning 51.8 ± 1.1(52.9) 53.0 ± 1.5(54.5) 53.5 ± 1.0(54.5) -

P-Tuning
V2

46.6 ± 2.2(48.8) 67.7 ± 3.4(71.1) 40.2 ± 2.2(42.4) -

PT(Ours) 52.1 ± 2.1(54.3) 81.2 ± 2.1(83.3) 51.6 ± 1.0(52.6) -

5 Conclusion

In this paper, we propose a method to tackle few-shot text classification by unifying
diverse datasets in an EQA format and employing MTL-based pre-training with tailored
prompt routing initialization. Additionally, we use contrastive learning to narrow the gap
with incorrect answers during downstream tasks. Our approach outperforms baseline
models in the few-shot setting. Nonetheless, our method has certain limitations, such as
high initial training costs (about 192 h in a 3090 environment) and a comparison loss
function that does not account for word similarity. These challenges will guide our future
work.



Pre-training Extractive Question-Answer Prompts 325

References

1. Bubeck S, Chandrasekaran V, Eldan R, et al. Sparks of artificial general intelligence: Early
experiments with gpt-4[J]. arXiv preprint arXiv:2303.12712, 2023.

2. Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for
language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
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which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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