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Abstract. It is difficult for autonomous mobile robots to rely on a single position-
ing method to obtain accurate pose information in complex indoor environments,
so the real-time pose of the robot is generally obtained throughmulti-source fusion
positioning during navigation. However, in the fusion localization algorithm based
on AUKF (Adaptive Unscented Kalman Filtering), the Sage-Husa noise filter,
which updates the white noise covariance of the random variable and the observed
variable, is easy to cause the random variable system white noise covariance to
lose non-negativity or the observed variable system to lose non-negativity. The
white noise covariance loses its positive definiteness, which causes the divergence
of the AUKF filtering algorithm and reduces the fusion accuracy. In order to solve
the above problems, an improved AUKF algorithm is proposed that incorporates
the covariance correction factor Roth, thereby improving the positive definiteness
of the algorithm variance as well as the positioning accuracy of the fusion algo-
rithm. Experimental results show that the improved AUKF algorithm achieves an
average positioning accuracy of 95.23% in the x-axis direction, 94.06% in the y-
axis direction, and 97.13% in the heading angle of the robot navigation coordinate
system. It meets the requirements for accurate pose perception for autonomous
mobile robot navigation in indoor environments.

Keywords: Autonomous Movement · Fusion Localization · Adaptive Unscented
Kalman Filtering · Robot Navigation

1 Introduction

With the rapid development of China’s economy and continuous urbanization, there
is a growing need for autonomous mobile robot systems that are designed for mobile
infrastructure management in cities, including electricity, communications, gas, water
supply and drainage, etc. These systems are characterized by a variety of sensors, such
as radar, ultrasound, laser, and image, to sense the surrounding environment and enable
autonomous navigation [1, 2]. In recent years, the research on visual SLAM (Simultane-
ous Localization and Mapping) technology focuses on obtaining the visual features of
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objects from the environment for localization [3, 4], Environmental memory [5, 6], 3D
environment reconstruction [7], Semantic segmentation and environmental understand-
ing [8, 9]. This research empowers the higher autonomy of robots. The current research
hotspot is based on laser and visual SLAM technology for positioning methods. How-
ever, this method may result in significant errors or even navigation failure when there
is a fire and a large amount of smoke in the room, making it unsuitable for active fire-
fighting robots. The traditional track deduction technology based on an optical encoder
has a cumulative error. Inertial Navigation System (INS) based on the inertial navigation
measurement technology has noise interference, which affects positioning stability and
accuracy. Ultra-Wideband (UWB) positioning technology is blocked and prone to Non-
Line of Sight (NLOS) disturbances, which can cause large positioning instantaneous
errors. These limitations inherent in a single-sensor positioning technology necessitate
the adoption of amulti-sensor positioning information fusionmethod. This approach can
effectively solve the disadvantages of single-sensor technology for indoor positioning,
improve the accuracy of robot positioning, and increase the feasibility of accurate robot
positioning in the presence of dense smoke.

The mainstream fusion positioning methods for robots include the Kalman Filter
(KF) fusion positioning method, the Extended Kalman Filter (EKF) fusion positioning
method, and the Untraced Kalman Filter (UKF) fusion positioning method [10]. KF
[11] uses the linear system state equation to optimally estimate the current state of the
system through input and output measurement data. However, traditional KF algorithms
can only be applied to linear systems. With the proposal of EKF [12], the application
of traditional KF has been extended to nonlinear systems. EKF is a first-order Taylor
series expansion of a nonlinear system in which the higher-order term is ignored during
the linearization of its first derivative, thereby transforming it into a linear problem.
However, EKF also has two problems: linearization error and calculation of the more
complex Jacobianmatrix. To address these issues, based onUKF, Arasaratnam et al. [13]
proposed the Cubature Kalman filter (CKF), which is based on numerical integration.
It can outperform EFK and UKE when handling nonlinear states and measurement
equations and give better nonlinear approximation performance and stability. Moreover,
CKF is a simpler and faster alternative to particle filtering.

In order to improve the positioning accuracy of firefighting robots in indoor environ-
ments, this paper proposes a method based on track deduction, IMU and UWB system
measurement data.

2 Multi-source Fusion Localization Method Based on Improved
AUKF Algorithm

The localization data obtained in the absence of Adaptive Unscented Kalman Filtering
(AUKF) exhibits nonlinear characteristics. In practical test environments, non-Gaussian
data distribution can almost fit a Gaussian distribution. The existing data indicate that the
pose 1 informationobtainedby encoder trackdeduction contains cumulative errors,while
the pose 2 information obtained by INS and gyroscope equipment contains instantaneous
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errors with relatively small cumulative errors. Since the error of pose 1 information
approximately follows the Gaussian distribution, the AUKF algorithm [14] can optimize
the information collected by pose 1 and pose 2, thereby reducing cumulative and instan-
taneous errors. Filtering can be employed to obtain a more accurate estimated position,
ultimately enabling high-precision positioning for robots in indoor environments.

When fusing the AUKF algorithm, the pose 1 information obtained by the gyroscope
at time t is first set to U(t)T = U(t)T = (xe, ye, θe), the predicted quantity. The difference
between the current location information and the previous location information is set
to �U(t)T. The status information pose 2 obtained from the UWB + IMU at time t
is denoted by Z(t)T = (x_u, y_u, θ_u) as an observational measure. The error of pose
1 and pose 2 is set to W(m) and V(m), and the noise variances are set to Q and R,
respectively. The predicted error of the estimated position (fusion position) information
X(m) in each n × �t time is P. Among the above parameters, U(t), Z(t), W(t), V(t), Q,
R, and P are all three-dimensional matrices, and Kg(t) is the gain matrix of the filter. In
the AUKF algorithm positioning information fusion, the state values of pose 1 and pose
2 are used as the predictor array and the observed data, respectively. To implement the
AUKF algorithm, the following steps should be carried out:

Step 1: Initialization

x̂0 = E[X0] (1)

P0 = E
[(
x0 − x̂0

)(
x0 − x̂0

)T ]
(2)

where x̂0 is the expected mean of the initial state x0, and P0 is the expected covariance
matrix of the initial state estimation error.

Step 2: Calculate the Sigma Points

Xk−1 = [
x̂k−1 x̂k−1 ± √

(n + λ)Pk−1
]

(3)

The sigma point set X(k-1) can be defined as follows:
⎧⎪⎨
⎪⎩

X0,k−1 = x̂k−1

Xi,k−1 = x̂k−1 + (√
(n + λ)Pk−1

)
i, i = 1, 2, · · · , n

Xi,k−1 = x̂k−1 − (√
(n + λ)Pk−1

)
i−n, i = n + 1, · · · , 2n

(4)

where the composite scaling parameter λ is defined as λ = α2 (n + κ)−n. The 3-
dimensional array is considered as the state vector, so n, the dimension of the state
vector, is set to 3. α represents a positive parameter that controls the spread of the sigma
point and is set to 1. k as the secondary scaling parameter is set to 3−n = 0.

Step 3. Status step prediction

Xk|k−1 = f(Xk−1) (5)

x̂k|k−1 =
2n∑
i=0

W (m)
i Xi,k|k−1 (6)
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Pk|k−1 =
2n∑
i=0

W (c)
i

[
Xi,k|k−1 − x̂k|k−1

][
Xi,k|k−1 − x̂k|k−1

]T + Qk (7)

Here, Xk|k−1 refers to the linear state vector of the state transfer function at k,W
(m)
i the

average weight, andW (c)
i the covariance weight. So, the piecewise expression is defined

as follows:
⎧⎪⎨
⎪⎩

W (m)
0 = λ

n+λ

W (c)
0 = λ

n+λ
+ (

1 − α2 + β
)

W (m)
i = W (c)

i = 1
2(n+λ)

, i = 1, 2, · · · , 2n

(8)

where β is a non-negative parameter that combines partial prior distribution data. In this
article, β is generally set to 2, which is optimal for a normal distribution

Step 4. Status update remediation

Zk|k−1 = h
(
Xk|k−1

)
(9)

ẑk|k−1 =
2n∑
i=0

W (m)
i Zi,k|k−1 (10)

where ẑk|k−1 is the measurement vector of the function at k;

Pzz,k|k−1 =
2n∑
i=0

W (c)
i

[
Zi,k|k−1 − ẑk|k−1

][
Zi,k|k−1 − ẑk|k−1

]T + (R + Roth) (11)

Pxz,k|k−1 =
2n∑
i=0

W (c)
i

[
Xi,k|k−1 − x̂k|k−1

]∗[
Zi,k|k−1 − ẑk|k−1

]T (12)

where Pzz,k|k−1 is the expected measurement error covariance matrix, and Pxz,k|k−1 is
the expected measurement error mutual variance matrix. In traditional AUKF, the Sage-
Husa noise filter updates the white noise covariance of random variables and observation
variable systems. However, if the absolute value of the non-zero element in the deriva-
tion exceeds a specific threshold or the self-covariance element is negative, the white
noise covariance of the random variable system can lose non-negativity or that of the
observation variable system can lose positive certainty. These issues can cause theAUKF
filter to diverge and result in decreased accuracy [15]. In order to overcome the above
problems, this paper introduces the difference between the observed estimated mean and
the predicted estimated mean as a follow-up correction coefficient into the measurement
error covariance matrix. This approach helps prevent the white noise covariance from
becoming indeterminate and improve the accuracy of the algorithm fitting [16].

In Eq. (11), Roth represents the difference between the estimated mean of the obser-
vation and the prediction, which is computed as Roth = (Zpred − Xpred)R. This
parameter affects UKF gain Kk to achieve process update adaptation [17, 18].

Kk = Pxz,k|k−1P
−1
zz,k|k−1 (13)
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x̂k = x̂k|k−1 + Kk
(
zk − ẑk|k−1

)
(14)

Pk = Pk|k−1 − KkPxz,k|k−1K
T
k (15)

where Kk is the filter gain, x̂k the filter estimate and Pk the filter error. It demonstrates
that when there is a random error or abnormal jitter of the robot at k-1, the state vector
estimation x̂k|k−1 will also have a corresponding error, which will be corrected by the
covariance correction factor Roth [19].

P(t−1) is the one-step prediction estimation bias covariance matrix, and P(t|m−1) is
the measurement correction estimation bias covariance matrix. The initial value of P is
set to [1 1 1], and non-zero values are sufficient. The initial values of noise variance
Q and R are experimentally determined with effective values of Q = [0.001,1,1] and
R = [200,200,1]. This decreases the error caused by nonlinear positioning value and
increases the efficiency of the algorithm [20, 21].

The filtering and fusion process outlined above is effective in reducing the impact of
other types of noise on both the accumulated error and the instantaneous error [22]. In
summary, the improvedAUKFalgorithmproposed in this paper can allow the firefighting
robot to obtain stable and high-precision position information during its navigation.

3 Experimental Analysis

Because the AUKF algorithm is prone to lose positive certainty, the filtering effect of
the algorithm diverges and the accuracy decreases [23]. In order to overcome the above
problems, the Roth function is introduced into the measurement error covariance matrix
in this model. This method can mitigate the problem that the covariance cannot be
positively determined and meanwhile it improves the accuracy of the algorithm fitting
[24]. In order to verify the effectiveness of the improved algorithm, the active firefighting
robot starts from the navigation system coordinate point (120,720) and moves along a
rectangular path of 320*480 cm. The navigation trajectory of the tested robot is depicted
in Fig. 1.

In Fig. 1(b), the red trajectory represents the real motion trajectory of the active fire-
fighting robot, the blue one the trajectory based on the traditional AUKF algorithm, and
the pink one the trajectory based on the improved AUKF algorithm. Figure 1 demon-
strates that the fusion effect of the improved algorithm is closer to that of the real
trajectory, with a smaller average error.

During the navigation of autonomous mobile robots, it is crucial to accurately deter-
mine the robot’s current heading angle in addition to its real-time navigation coordinate
position. In this way, accurate control over the autonomous movement of robots can be
realized [25, 26].

This paper investigated the AUKF positioning fusion algorithm and the improved
AUKF positioning fusion algorithm based on the performance test of the trajectory-
deduced pose and UWB + IMU pose obtained by a robot moving in a rectangular
motion in a laboratory setting. The test data corresponding to Fig. 2 is shown in Table 1.
In Fig. 2, subfigures (a), (b), and (c) demonstrate the classical AUKF algorithm based
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Fig. 1. Actual test environment and navigation trajectory of robot

on the compact combination navigation model and the improved AUKF algorithm in the
x-axis, y-axis, and heading angle error curves, respectively.

As shown in Table 1, the improved AUKF algorithm outperforms the traditional
AUKF in three aspects: absolute error of the x-axis, absolute error of the y-axis, and
absolute error of heading angle [27, 28]. Therefore, the fusion positioning based on the
improved AUKF algorithm in this paper can meet requirements for long-distance and
long-term navigation positioning of active firefighting robots. Furthermore, the intro-
duction of a heading angle is the prerequisite for the subsequent path planning of the
robot.
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Fig. 2. Error Analysis of Navigation Position and Attitude Based on Improved AUKF Algorithm
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Table 1. Comparison of absolute positioning error between AUKF algorithm and improved
AUKF algorithm

type AUKF fusion location
algorithm

This paper improves the
AUKF fusion location
algorithm

Absolute error of y-axis (cm)x 25.2304 25.0896

Absolute error of y-axis (cm) 11.2623 10.487

Absolute average error of
heading angle (degrees)

9.14216 7.53287

4 Conclusion

(1) In this paper, the AUKF algorithm is improved by incorporating the covariance
correction factor Roth, which ensures the positivity of the white noise covariance in
the algorithm and improves the accuracy of the algorithm for positioning.

(2) Experimental results demonstrate that the multi-source fusion positioning algorithm
based on the improved AUKF algorithm can enhance the accuracy of the X and Y
axes and the heading angle of the indoor autonomous mobile robot in the navigation
coordinate system, which meets the requirements of rapid navigation for the robot.
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