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Abstract. The egg industry is a significant contributor to the economy and
requires a stable egg price for its sustainable growth. Accurate egg price pre-
diction is crucial to monitor the market, provide reference for decision-making,
and achieve earlywarning. This study presents a novel egg price forecastingmodel
that combines the seasonal-trend decomposition based on loess (STL), temporal
convolutional network (TCN), gated recurrent unit (GRU), and random forest (RF)
methods to capture the nonlinear, seasonal, and cyclical characteristics of egg price
series. The egg price series is decomposed into trend, seasonal, and residual com-
ponents using the STL method. Select the model with the best prediction results
for the single decomposition component. So these components are then predicted
using the TCN, GRU, and RF models, respectively. The predicted values are then
aggregated to form the final forecast. The empirical results demonstrate that the
proposed hybrid model achieves the best performance, and compared to the best
predicted single model, MSE, RMSE, MAE andMAPE were reduced by 66.35%,
41.94%, 30.08% and 29.81% respectively, and R2 was improved by 3.48%. This
study provides a promising alternative approach for egg price forecasting, and the
results have implications for the development of price forecasting techniques for
other agricultural products.

Keywords: egg price forecasting · seasonal-trend decomposition procedure
based on loess · temporal convolutional network · gated recurrent unit insert ·
random forest

1 Introduction

The consumption of eggs constitutes a vital component in the daily protein intake of indi-
viduals, thereby contributing to the enhancement of the dietary patterns of the general
populace. The availability of eggs at reasonable prices is crucial for safe-guarding the
economic interests of both egg producers and operators, as well as satisfying the dietary
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requirements of the public. Hence, the capability to forecast changes in egg prices accu-
rately and in a timely manner is imperative for the sustained and robust growth of the
egg market.

The fluctuation of egg prices has been well documented and exhibits cyclical, sea-
sonal, and irregular volatility [1]. The underlying factors that drive these fluctuations
include the growth in consumer demand, the increase in production costs, and the over-
all rise in price levels. Seasonal fluctuations, on the other hand, stem from the dynamic
interplay between supply and demand, while irregular fluctuations result from the con-
vergent effects of external factors such as pandemics, political actions, trade dynamics,
and natural disasters [2].

The existing forecasting models can be classified into three categories: statistical
models, machine learning (ML) models, and hybrid models. Statistical models were
early adopters of predictive models. Such as autoregressive comprehensivemoving aver-
age (ARIMA), but they are limited in their ability to forecast price data with complex
characteristics. Of these categories, ML techniques have been reported to demonstrate
successful outcomes, particularly in areas such as derivatives pricing, risk management,
and market prediction [3]. In recent years, and as an important branch of machine learn-
ing, the deep learning (DL) has emerged as a promising tool for predictions, owing to
its efficacy in various fields. When compared to traditional methods, DL is capable of
capturing the nonlinear relationships present in price data with greater accuracy. A sin-
gle model is often appropriate for data with a single characteristic, such as data series
with typical linear, exponential, or periodic pat-terns. However, it may struggle to handle
multiple characteristics contained in price series. Studies have shown that hybrid predic-
tion approaches can improve fore-casting performance by addressing the limitations of
single models, reducing un-certainty, and enhancing generalization capabilities simul-
taneously. In general, machine learning models generally predict better than statistical
models, and hybrid models predict better than single machine learning models.

Various regression methods are used as traditional statistical methods. Models such
as ARIMA. Yifan Zhang and Meihua Fan [4] forecast the egg prices in 500 County
Markets in China using ARIMA. The predicted result is compared to the true value with
a MAPE of 4.38%. Using time series analysis, Du Xiya [5] developed a time series
model based on egg prices and predicted their egg prices for the next four months, and
the results showed that the better-fitting ARIMA (2, 2, 2) model was able to predict
the monthly average price trend of eggs better. Studies on agricultural price forecasting
using statistical methods can handle general linear problems but have the disadvantage
that the performance is not stable for non-linear price series.

Machine learning and deep learning based algorithms are new approaches to solving
time series forecasting problems. These methods have been found to pro-duce more
accurate results than traditional regression models. In recent years, learning models have
been increasingly used to predict prices as price volatility in agricultural commodities
has increased. Gao Yang and Ansebo [6] introduced a back-propagation neural network
model into their study of egg price forecasting, which proved to have a lower forecast
error than futures prices,with aminimummean absolute percentage error value of 7.90%.
The general regression neural network [7] and grey models [8] have also been applied to
egg price forecasting, but a survey of the literature shows that grey models are suitable
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for exponential series and less suitable for egg price forecasting. The long short-term
memory (LSTM) model is the most used model in the field of price prediction. For
example, Liu Xue [9] and Wisdom Yan [10], applied the LSTM to egg price prediction,
and the results showed that the LSTM prediction effect is better than ARIMA and SVR.

While a single model can predict prices, much of the literature shows that hybrid
models aremore advantageous in their predictions [11].Manyhybridmodels first decom-
pose the original sequence, which encompasses multivariate features, into a few distinct
components that are more regular and easier to predict [12]. These components are then
subject to time series analysis techniques or machine learning methods for forecasting
separately. The resulting forecasts are then aggregated to achieve a more comprehensive
forecast. The STL-based hybrid models have demonstrated promising potential as an
alternative. The STL decompositionmethod breaks down the original price series into its
trend, seasonal, and residual terms, which represent various typical characteristics that
are more straightforward to predict. The trend term encompasses cyclical fluctuations
and the potential growth rate, while the residual term encompasses irregular fluctuations.

Given these characteristics, egg price series present as typical nonlinear and nonsta-
tionary time series that pose a challenge for prediction. Given that the primary drivers
of egg prices, including consumer behavior, supply and demand, disease, and policy,
are difficult to quantify and predict, this study adopts the use of historical egg prices as
the sole basis for prediction. This approach is premised on the under-standing that all of
these factors are reflected in past egg prices and can be used to inform predictions.

The above survey shows that, in general, hybrid models predict best, then single
machine learning models, and finally statistical models. So this study presents a novel
STL-TCN-GRU-RF hybrid model for forecasting egg prices. The following are the
main contributions of this research: 1) A new method for estimating short-term egg
prices is developed. The training series is decomposed using the STL into its cyclical-
trend, seasonal, and residual components, which are then used for forecasting. 2) In this
paper, we select the model with the best prediction for each component separately by
comparing the experiments to achieve the best prediction results. Thus, the cyclical-
trend component, residual component, and seasonal component are predicted using the
TCN, GRU and RF models, respectively. The resulting forecasts are then aggregated to
produce the final egg price forecasts.

2 Materials and Methods

2.1 Seasonal-Trend Decomposition Procedure Based on Loess

The seasonal-Trend decomposition procedure based on Loess was introduced by Cleve-
land R as a time series filtering method [13]. This method aims to decompose a time
series into three additive components: the trend, seasonal, and residual terms. The STL
is considered to be more robust compared to traditional methods, such as the Hodrick-
Prescott filter and X-12-ARIMA, in handling outliers in processed time series. The STL
decomposes a given egg price series, represented by Yt, where t= 1, 2,…,n denotes time,
into trend Tt, seasonal St, and residual Rt components: Yt = St + Tt + Rt. The residual
component is commonly used to represent irregular fluctuations. The STL methodology
comprises of two iterative procedures, referred to as the inner loop and the outer loop.
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The inner loop performs the seasonal smoothing and trend smoothing, which result in
the updating of the seasonal component and the trend component respectively, in a single
iteration. The inner loop consists of six distinct steps as follows:

Step 1: Detrending. In the (k + 1)th iteration of the inner loop, the original series Yt

is detrended using the estimated trend component T(k)
t from the kth pass, resulting in the

detrended series Ydetrend
t = Yt - Y

(k)
t ;

Step 2: Seasonal Smoothing. The detrended series Ydetrend
t is smoothed using a Loess

smoother to obtain a preliminary seasonal component S̃
(k + 1)
t ;

Step 3: Low-Pass Filtering of Smoothed Seasonality. The preliminary seasonal

component S̃
(k + 1)
t is further processed with a low-pass filter and a subsequent Loess

smoother, to obtain a residual trend component T̃
(k + 1)
t ;

Step 4: Detrending of Smoothed Seasonality. The seasonal component S(k + 1)
t is

obtained as the difference between the low-pass filtered values and the preliminary

seasonal component, that is S(k + 1)
t = S̃

(k + 1)
t − T̃

(k + 1)
t ;

Step 5: Deseasonalizing. The original series Yt is reduced by the seasonal component
S(k + 1)
t to obtain the deseasonalized series Ydeseason

t = Yt - S
(k + 1)
t ;

Step 6: Trend Smoothing. The deseasonalized series Ydeseason
t is smoothed using a

Loess smoother to obtain the trend component T(k + 1)
t .

Upon the completion of the inner loop, the decomposition of the egg price time series
into seasonal component St, trend component Tt, and residual component Rt via (1) in
the outer loop.

R(k+1)
t = Yt − S(k+1)

t − T(k+1)
t (1)

2.2 Temporal Convolutional Network

The trend component of the egg price series represents long-term cyclical variation in
a non-linear and non-smooth time series. Temporal convolutional networks [14] are
a modified convolutional structure that can adapt to the temporal nature of temporal
data, and can provide a field of view for temporal modelling, consisting of causally
dilated convolutions and residual blocks that can change the perceptual field by changing
hyperparameters. With the advantages of a simple structure and support for parallel
computing, it has more applications in load and wind prediction and anomaly detection,
and has been shown to outperform LSTM in a variety of applications [15].

The causal convolution operates by predicting the value at time step t + 1 based
on historical data up until time step t [16]. For instance, in the scenario where an input
sequence X = {x0, x1,…,xT} is to be forecasted, resulting in an output sequence Y =
{y0, y1,…,yT}, the causal convolution is represented by the following:

yt =
∑k

i = 1
(wi · xt - k + i) + b (2)

where w = w1, w2, …,wk is the convolution kernel, b is the bias term. To prevent the
effects of gradient explosion and overfitting, TCN uses a dilation convolution approach.
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Dilated convolution utilizes interval sampling at the input, as depicted in Fig. 1(a),
enabling the size of the effective window to grow exponentially with the increasing
number of layers. As a result, the size of the receptive field, represented by RFL, can be
expressed as follows:

RFL= 1+( k - 1 ) ·
∑L - 1

i = 0
di (3)

where k is the filter size, L is the layer of the convolution. The dilation factors of the
ith layer convolution, denoted as di. The dilated convolution operation, denoted as F, on
element s of a sequence is formally defined as follows:

F(s)=(X * df )(s) =
∑k - 1

i = 0
f(i) · Xs - d·i (4)

The input time series is represented by the vector X. The convolution operation is
denoted by the symbol *. The convolution kernel is represented by the function f: 0,
1,…,k − 1. The term s - d · i accounts for the temporal direction of the past. Figure 1(a)
shows the structure of the causal dilated convolution with the dilation factor d = 1, 2, 4
and the convolution kernel size k = 3.

The utilization of a residual connection addresses the issue of gradient instability
[17]. The residual block in TCN consists of two modules, each comprising of causal
dilated convolution, weight normalization, an activation function, and dropout. The over-
all structure of this configuration is presented in Fig. 1(b). Furthermore, an auxiliary
1 × 1 convolution is employed to ensure that elements of equal shape are summed in
order to resolve the problem of differences in dimensionality between the original input
and the output of the convolution layer. The output of the convolution layer is then
summed with the original input, which is subsequently transformed by the activation
function G before being outputted. This computation process is depicted in (5):

y = G(x + f(x)) (5)

Fig. 1. The structural elements in the TCN: (a) are dilated causal convolutions, and (b) are residual
blocks.
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2.3 Gated Recurrent Unit

GRU is a variant of LSTM with a distinct structure for its hidden layer cell [18]. As
discussed in the literature, the hidden layer cell of GRU consists of two gates, the reset
gate r and the update gate z. Unlike LSTM, GRU eliminates the cell state and output
gates and instead merges the input and forget gates of LSTM into a single update gate.
This results in a simplification of the LSTM model structure and a reduction in network
complexity as the information is directly transmitted through the hidden layer state ht.
The structure of the GRU hidden layer cell is illustrated in Fig. 2.

The calculation of the moment t for the forward computation in GRU is defined as
follows:

zt=σ(Wz · [ht - 1, xt] + bz) (6)

rt=σ(Wr · [ht - 1, xt] + br) (7)

ĥt = σ(Wh · [rt · ht−1, xt] + bh) (8)

ht = (1 - zt) · ht - 1 + zt · ĥt (9)

yt = σ(Wo · ht + bo) (10)

where zt represents the state of the update gate at time t, rt represents the state of the
reset gate at time t, ĥt represents the candidate hidden layer state at time t, ht represents
the hidden layer state at time t, xt represents the input vector for the GRU unit at time t,
yt represents the output of the GRU unit at time t, and Wz, bz, Wr, br, Wh, bh, Wo, bo
correspond to the weight matrices and coefficient vectors for the update gate, reset gate,
candidate hidden layer, and output layer respectively.

Fig. 2. Gated recurrent unit cell.
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In (7), the value of rt is determined by the sigmoidal activation function, producing
a range of values between 0 and 1. The reset gate rt plays a crucial role in the calculation
of the candidate hidden layer state ĥt in (8). When rt approaches 1, more weight is given
to retaining information from the previous hidden layer ht - 1 in ĥt, and conversely, as
rt approaches 0, ĥt is more likely to ignore ht - 1. This reset mechanism allows GRU to
discard irrelevant information from previous moments and produce a more appropriate
candidate hidden layer state. The update gate zt in (9) controls the balance between
retaining information from ht - 1 and incorporating information from ĥt in the output ht.
Finally, the output of the GRU unit yt is calculated through (10).

2.4 Random Forest

The residual from STL decomposition is the residual left after removing trend and
seasonality components, which captures the irregular fluctuations in egg prices resulting
fromexternal factors such as epidemics, policies, and disasters.As a supervised ensemble
learning algorithm, RF is used to tackle high-dimensional classification and regression
problems in variables [19]. RF operates by randomly selecting attributes to buildmultiple
decision trees. Each tree is trained through bootstrapped sampling, meaning that a subset
of the training data is randomly sampled with replacement to construct each tree. By
utilizing a random subset of the attributes at each node in the decision tree, RF can avoid
overfitting and improve generalization performance. In addition, the prediction results
of all trees are aggregated by averaging to produce the final prediction of the RF model.
Figure 3 presents the schematic illustration of RF.

During the training phase of the random forest algorithm, bootstrapping is utilized
to create multiple sub-training datasets from the residual component. These sub-training
datasets are then employed to trainmultiple decision trees in succession. In the prediction
phase, the individual predictions generated by the decision trees are consolidated by
taking the average, yielding the final prediction of the residual component.

2.5 Overall Process of the Proposed Hybrid Model

Based on the identified nonlinear, seasonal and cyclical characteristics of egg prices, this
study proposes a hybrid model, which combines the STL, TCN, GRU and RF methods.
The proposed model starts by decomposing the egg price series into three components,
namely the trend component, seasonal component, and residual component, using the
STLmodel. Subsequently, the TCNmodel is employed to forecast the trend component,
the GRU model is used to forecast the seasonal component, and the RF method is
used to forecast the residual component. The final egg price prediction is obtained by
aggregating the predictions made for each of the three components. The overall process
of the proposed model is depicted in Fig. 4.
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Fig. 3. Structure of RF.

Fig. 4. Structure of the proposed hybrid model.

3 Experimental Results and Comparative Analysis

3.1 Data Source and Preprocessing

The experimental data for the study were obtained from daily average egg prices in
China as recorded by Big Data for Agriculture and Rural Areas [20]. The data collected
covered the time period from 1st January to 31st December 2022. Missing values in the
data were estimated using the ARIMA model, yielding a total of 365 data points. The
relevant statistical indices of the dataset are presented in Table 1 and are expressed in
units of RMB/500g. As evidenced by Table 1, the egg price data exhibit high frequency
fluctuations, with prices ranging from a high of 12.22 RMB/kg to a low of 7.46 RMB/kg,
a fluctuation of 64%. This highlights the importance of accurate forecasting of egg prices
in this context.
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Table 1. Description of dataset

Data Sample size Maximum Minimum Mean Standard deviation

Egg price 365 6.11 3.73 4.895 0.611

The generation of data samples was carried out using the sliding window technique.
The samples were then split into two groups with 70% selected for training and 30% for
testing through a series of experiments.

To enhance the convergence efficiency of the network, the sample data under-
went Min-Max normalization, which transforms the data to the range [0,1] through
the application of the following formula:

x′ = x − xmin

xmax − xmin
(11)

where: x represents the original sample value, xmin represents the minimum value of the
sample, and xmax represents the maximum value of the sample. The normalised value is
represented by x

′
. To derive the actual predicted value and facilitate comparison with the

actual set, the normalised output, x
′
, can be transformed back to x using the following

formula:

x = x′(xmax − xmin) + xmin (12)

3.2 Parameter Setting

All experiments were conducted using Python 3.8. The STL method was implemented
through the STL functions of the statsmodels library. The selected competitive models
such as SVR and RF were developed using the scikit-learn library. The TCN, GRU etc.
were implemented on the TensorFlow backend using the Keras package.

The final parameter settings for the STL-TCN-GRU-RF model in this study are
presented in Table 2. The default parameters were used for the STL method, with the
exception of the period. The other parameters of the GRU are the same as those of the
TCN.

3.3 Performance Criteria

In order to assess the forecasting efficacy of the STL-TCN-GRU-RF model, a suite of
performance evaluation metrics was chosen. These metrics included mean square error
(MSE), root mean square error (RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), and coefficient of determination (R2). A lower value for
MSE, RMSE, MAE, and MAPE indicate a higher prediction accuracy, while a closer
value of R2 to 1 signifies a better model fit. The formulas for these metrics are as follows:

MSE = 1

n

∑n

i=1
(ŷi − yi)

2 (13)
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Table 2. Parameter setting

Model Parameter Value

STL Period 7

TCN Window size 12

Kernel size 2

Filter numbers 12

Dilation factor [1,2,4,8]

Optimizer Adam

Learning rate 0.001

Loss Mae

Metrics Accuracy

Batch size 4

Epochs 100

GRU Layers 2

Units 64

RF N_estimators 100

Max_depth 10

Min_samples_split 2

Min_samples_leaf 2

RMSE =
√
1

n

∑n

i=1
(ŷi − yi)2 (14)

MAE = 1

n

∑n

i=1

∣∣ŷi − yi
∣∣ (15)

MAPE = 1

n

∑n

1

∣∣∣∣
ŷi − yi
yi

∣∣∣∣ × 100% (16)

R2 = 1 −
1
n

∑n
i=1(ŷi − yi)2

1
n

∑n
i=1(y − yi)2

(17)

where n represents the total number of samples, ŷi is denoted as the predicted value of
the ith sample, yi is represented as the actual value of the i

th sample, and y stands for the
mean of the n samples.

3.4 Predictions of Egg Price Series

The proposed hybrid model was compared with several commonly utilized models for
time series prediction, including single and combined models. Additionally, the predic-
tion performance of the trend, season, and residual components were also compared
with their respective counterparts.
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1) Predictions of Trend Components.

The egg price time series is decomposed using the seasonal-Trend decomposition of
time series method, and the trend component constitutes a significant portion of the egg
price series, while the seasonal component exhibits periodic behavior. Conversely, the
residual component does not present any discernible pattern.

The trend component prediction was evaluated by comparing the TCN with several
commonly used single models. The statistical results of the trend series predictions are
presented in Table 3.

From the Table 3, TCN emerges as the most effective model, followed by BP and
SVR. A comparison between TCN and the second-best model reveals a significant
improvement, with an average reduction of 48.58% in MSE, 28.1% in RMSE, 25.51%
inMAE, and 25.34% inMAPE. The coefficients of determination for TCN exceed 0.99,
indicating a high level of accuracy in its predictions and a strong fit between the predicted
trend values and the true values. As a result, TCN is selected as the model for predicting
trend components.

2) Predictions of Seasonal Components.

The prediction results for the seasonal component of egg prices are presented in
Table 4. It should be noted that the MAPE metric is not included in this table as the
seasonal component tends to fluctuate around 0, making this metric inapplicable.

As evident from Table 4, GRU emerged as the most effective model in predicting
the seasonal components, followed by BP and SVR. In comparison to the second-best
model, GRU demonstrated a reduction in average MSE, RMSE, and MAE by 43.59%,
24.72%, and 12% respectively. The coefficients of determination for GRU exceeded

Table 3. Statistical results of the predictions for the trend component

Model MSE RMSE MAE MAPE R2 Rank

TCN 0.0013 0.0358 0.0304 0.5625 0.991 1

BP 0.0025 0.0497 0.0409 0.7534 0.9825 2

SVR 0.0035 0.0588 0.0478 0.8829 0.9756 3

GRU 0.0035 0.0595 0.0503 0.8944 0.9751 4

RF 0.0157 0.1253 0.0842 1.5095 0.8894 5

Adaboost 0.0179 0.1339 0.0935 1.6773 0.8736 6

LightGBM 0.0218 0.1475 0.1086 1.9497 0.8467 7

GBDT 0.0233 0.1527 0.105 1.8828 0.8355 8

XGBoost 0.0286 0.1691 0.1166 2.0956 0.7985 9

RNN 0.0361 0.1901 0.177 3.2344 0.7452 10

Knn 0.0641 0.2533 0.2133 3.9351 0.5478 11

LSTM 0.0831 0.2882 0.2479 4.575 0.4143 12
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Table 4. Statistical results of the predictions for the seasonal component

Model MSE RMSE MAE R2 Rank

GRU 0.0002 0.0149 0.0113 0.9133 1

BP 0.0004 0.0198 0.0128 0.847 2

SVR 0.0004 0.0204 0.0135 0.8369 3

LSTM 0.0005 0.0226 0.0138 0.7993 4

RNN 0.0006 0.0236 0.0147 0.7819 5

TCN 0.0007 0.0257 0.0161 0.7407 6

LightGBM 0.0008 0.0287 0.0184 0.6778 7

Adaboost 0.0008 0.0288 0.0181 0.675 8

GBDT 0.0008 0.0282 0.0185 0.69 9

XGBoost 0.0008 0.0282 0.0185 0.6898 10

RF 0.0009 0.0292 0.0185 0.667 11

Knn 0.0011 0.0334 0.0199 0.5647 12

0.91, indicating a high level of accuracy in the predictions made by GRU for the seasonal
series.

3) Predictions of Remaining Components.

The prediction of the remaining component, which represents the irregular fluctu-
ation, was carried out by comparing RF with several other models. The results of the
prediction were analyzed and tabulated in Table 5. Due to the fluctuation of the remain-
ing component around 0, the MAPE criteria was not considered in this case, similarly
to Table 4.

As evidenced by the results presented in Table 5, the efficacy of the predictionmodels
in predicting the residual component of the egg price series is limited. The RF model
emerged as the most effective, followed by BP and Adaboost. These results suggest
that the ensemble learning class of ML methods is better suited for residual component
prediction. When comparing the RF model with the second-best model, it is noted that
the average MSE, RMSE and MAE of the RF model are reduced by 4.55%, 2.29% and
2.45%, respectively.

The residual component has a lower prediction accuracy compared to the trend and
seasonal components. This can be attributed to the irregular fluctuations in the residual
component, which are the result of a combination of external factors, such as epidemics,
policies, and disasters, that are challenging to predict.

4) Final Forecast Results.

In order to assess the accuracy of the forecasting performance, a comparison was
conducted between our proposed hybrid model and several other single and hybrid
models. Considering the different data sets used, the methods of the existing literature
were applied to the present data for comparison. Figure 5 displays the original price
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Table 5. Statistical results of the predictions for the remaining component

Model MSE RMSE MAE R2 Rank

RF 0.0015 0.0383 0.0299 0.4867 1

BP 0.0015 0.0392 0.0306 0.4625 2

Adaboost 0.0016 0.0394 0.031 0.4573 3

GRU 0.0016 0.0399 0.0296 0.444 4

LSTM 0.0016 0.0401 0.0318 0.4383 5

LightGBM 0.0017 0.0408 0.0323 0.4193 6

GBDT 0.0017 0.0417 0.0339 0.3939 7

TCN 0.0018 0.0422 0.0319 0.3787 8

RNN 0.0018 0.0426 0.0322 0.3675 9

Knn 0.0019 0.0432 0.0342 0.3487 10

XGBoost 0.0019 0.0437 0.0343 0.3331 11

SVR 0.0022 0.0463 0.0368 0.2499 12

series, as well as the forecasts of the several models. The proposed model can be seen
to fit well. Furthermore, the results of the predictions are presented in Table 6.

As indicated by Table 6, our proposed model demonstrates superiority over its coun-
terparts across each performance metric. Among the single models evaluated, TCN
achieved the best results with the lowest error. The application of the STL method

Fig. 5. Original price series and the predicted results of models.
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Table 6. Statistical results of the predictions for egg price

Model MSE RMSE MAE MAPE R2 Rank

Proposed 0.0025 0.05 0.0414 0.7537 0.9831 1

STL-TCN-RF 0.0028 0.0525 0.0423 0.7731 0.9814 2

STL-TCN 0.0040 0.0633 0.0489 0.8877 0.9729 3

TCN 0.0074 0.0861 0.0592 1.0746 0.95 4

GRU 0.0087 0.0933 0.0698 1.2688 0.9412 5

Attention-TCN 0.009 0.0948 0.0708 1.2844 0.9393 6

BP[7] 0.0092 0.0957 0.0713 1.3035 0.9381 7

SVR 0.01 0.1000 0.0799 1.4592 0.9325 8

CNN-LSTM 0.0104 0.1019 0.0769 1.3950 0.9299 9

RF 0.0272 0.165 0.1191 2.1472 0.8162 10

LightGBM 0.0342 0.1849 0.1407 2.5551 0.7691 11

GBDT 0.0424 0.2058 0.1586 2.8745 0.7141 12

Adaboost 0.0479 0.2189 0.1659 3.0159 0.6765 13

RNN 0.0481 0.2193 0.1998 3.6767 0.6752 14

ARIMA [4] 0.0582 0.2412 0.1885 3.4542 0.6073 15

Knn 0.0779 0.279 0.2257 4.1855 0.4744 16

XGBoost 0.0859 0.2931 0.2102 3.8904 0.4199 17

STL-LSTM [12] 0.0899 0.2998 0.2606 4.8307 0.3932 18

LSTM [11] 0.0978 0.3127 0.2681 4.9818 0.34 19

on TCN (STL-TCN) resulted in a reduction of the MSE, RMSE, MAE, and MAPE
by 45.41%, 26.48%, 17.48% and 17.39% respectively, compared to the single TCN
model. The hybrid model, STL-TCN-RF, which replaced the TCN’s prediction on the
residual components with RF, further reduced the MSE, RMSE, MAE, and MAPE by
31.42%, 17.14%, 13.37%, and 12.91% respectively, compared to the STL-TCN model,
demonstrating the effectiveness of RF in predicting the residual components. Finally,
the addition of the GRU model to the hybrid model, STL-TCN-GRU-RF, resulted in a
further reduction of MSE, RMSE, MAE, and MAPE by 9.54%, 4.69%, 2.2%, and 2.5%
respectively, compared to STL-TCN-RF, indicating the superiority of GRU in predict-
ing the seasonal component. These results demonstrate the good adaptability of TCN
in egg price prediction, and the improvement in prediction accuracy achieved by our
proposed hybrid model, which outperformed previous models. This paper investigates
models with the addition of an attention mechanism (Attention-TCN), but with reduced
prediction accuracy, suggesting that the attention mechanism is not well adapted to the
data forecasting task. The analysis concluded that for the price forecasting task in this
paper, the introduction of the attention mechanism caused the model to assign larger
weights to individual time steps, which interfered with the overall trend of price changes
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Table 7. Prediction accuracy measures of different time-step

Matric Time-step

1 2 3 4 5 6

MSE 0.0019 0.0074 0.0108 0.0131 0.0253 0.0281

RMSE 0.0434 0.0864 0.104 0.1145 0.159 0.1675

MAE 0.0346 0.0645 0.0766 0.0878 0.1194 0.1305

MAPE 0.626 1.1953 1.42 1.6178 2.1852 2.4109

R2 0.9873 0.9496 0.927 0.9115 0.8294 0.8106

over time, resulting in a reduction in the model’s forecasting accuracy. The TCN model
has sufficient capacity to analyse the data, and the attention mechanism introduced does
not take advantage of the processing of long time series data, but increases the training
difficulty of the model, which ultimately reduces the prediction accuracy of the model.

5) Predictions at Different Time Steps.

Table 7 shows the performance measurement of the proposed model when the time-
step is set to L ∈ {1, 2, 3, 4, 5, 6}. The experimental results show that the prediction
error gets larger as the prediction step size increases.

Figure 6 is a scatter diagram of eggs prices predicted by the proposed model for the
next 1–6 days. Figure 6(a)–(f) are scatter diagrams of eggs price forecasts for the next
1 day, 2 days, 3 days, 4 days, 5 days, and 6 days, respectively. As the forecast step size
increases, the points in the scatter plot gradually depart from the center line, indicating
that the difference between the predicted and actual values grows. The similarity coef-
ficient R2 of proposed’s prediction results on the six day is more significant than 0.8, so
the prediction results on the six day can be generally considered to be reliable.

In summary, deep learning models have demonstrated their efficacy in predicting
trend and seasonal components of time series data, while ensemble learning has proven
to be effective in forecasting the residual component. Based on the evaluation of several
models, it was concluded that TCN, GRU, and RF are the best performers in predicting
the trend, seasonal, and residual components, respectively. As such, a hybrid model
combining these algorithms was selected for the purpose of forecasting egg prices. This
hybrid model leverages the strengths of each individual model to provide a more robust
and accurate forecast. Compared to previous work, this improvement is attributed to the
utilization of multiple models in multiple experiments, followed by the selection of the
model with the best predictions for each component and their subsequent combination,
resulting in a reduction in error.
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Fig. 6. Scatterplot of multi-step prediction of proposed model, (a) +1 days, (b) +2 days, (c) +
3 days, (d) +4 days, (e) +5 days, (f) +6 days.

4 Conclusions

This study proposes a novel STL-based hybrid model for forecasting the price of egg in
China. First, the egg-price series is decomposed by STL into three additive components.
Second, the resulting trend, seasonal and remaining components are experimentally
selected for forecasting by the TCN, GRU and RF methods, respectively, and then the
forecasts are aggregated. Finally, the forecasting performances of our models and the
selected counterparts are compared and discussed. The empirical results show that our
method effectively improves the prediction accuracy on the egg price series, and the
proposed hybrid model outperforms the selected competitors. Meanwhile, the results of
this study also provide new ideas and methods for price forecasting techniques for other
agricultural products, which have some application value.
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