
Generic Vulnerability Analysis Based
on Large-Scale Automotive Software

Chenya Bian(B), Yuqiao Ning, Qingyang Wu, Longhai Yu, and Yang Chen

CATARC Intelligent and Connected Technology Co., Ltd., Tianjin, China
{bianchenya,ningyuqiao,wuqingyang,yulonghai,

chenyang2022}@catarc.ac.cn

Abstract. With the continuous development of the intelligent connected vehicle,
the scale of automotive software system structure is expanding, and the possi-
bility of security vulnerability is increasing. To improve the low adaptability of
traditional vulnerability scanning tools in the ICV system environment and the
inaccurate vulnerability results, this paper proposes a vulnerability scanning tech-
nology for large-scale ICV software programs. By extracting the software pro-
gram, performing feature extraction and component analysis, and matching the
vulnerability information of the open source vulnerability database, the technol-
ogy achieves more accurate identification and judgment of the components and
vulnerability information in the automotive software program, and can meet the
vulnerability scanning requirements of various automotive software programs.

Keywords: Intelligent Connected Vehicle · Automotive Software · Vulnerability
Scan · Software Composition Analysis

1 Introduction

The development and popularization of the ICV (Intelligent Connected Vehicle), not
only brings convenience to people’s production and life but also poses a great challenge
to automobile information security. The ICV is a complex intelligent computing system
with a large number of structural modules, including many electronic devices such as
IVI, T-BOX, Gateway, etc. Each structural module may introduce various vulnerabilities
to the vehicle system.

Vulnerability Scanning technology is a security detection behavior based on a vul-
nerability database to detect the security vulnerability of the designated remote or local
system and discover exploitable vulnerabilities by identification, scanning, analysis,
and other means. [1]. The application scenarios and features of some of the vulnerability
scanning tools widely used in the IT field are shown in Table 1 [2]. However, traditional
vulnerability scanning tools are only suitable for vulnerability detection of traditional IT
architecture systems. If we use the tools directly in automotive vulnerability scanning,
false positives and false negatives of vulnerability results will increase, and there will
be a precipitous decrease in the accuracy of vulnerability analysis.

© The Author(s) 2023
D. Kumar et al. (Eds.): IEIT 2023, AHSSEH 10, pp. 43–56, 2023.
https://doi.org/10.2991/978-94-6463-230-9_7

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-230-9_7&domain=pdf
https://doi.org/10.2991/978-94-6463-230-9_7


44 C. Bian et al.

Table 1. Traditional vulnerability scan tools

Tools Scanned Objects Scanning Features

AppScan Web Crawl and scan all URLs of the website to automate testing
for web vulnerabilities.

Nessus Host Use client/server mode. The server side performs security
scanning checks on the specified network environment, the
client side uses the configuration management server [3].

MobSF APP Perform static, dynamic, and malware analysis for Android,
iOS, and Windows mobile applications.

The common feature of many modular electronic devices in ICV is the existence
of a large number of software programs. Software programs are large in file size,
have many components, and introduce third-party components, which inevitably create
vulnerabilities.

In addition, the in-vehicle network and radio that provide internal and external com-
munication for the vehicle are also integrated into the software, with similar vulnerability
risks [4]. Therefore, it is particularly important to design vulnerability scanning tools
for the software programs of each module of the entire ICV to meet the vulnerability
scanning needs of large-scale automotive software. It is also important to ensure that the
time dimension is acceptable to the business and security teams.

In this paper, a vulnerability scanning technology for large-scale automotive soft-
ware is proposed. The feature of the software program is extracted with its components
analyzed. The vulnerability information of the open source vulnerability database is
matched, thus getting the vulnerabilities in the software program. Based on this technol-
ogy, we implemented a software system to conduct vulnerability scanning experiments
on five different types of automotive software to verify the accuracy of the technology
for scanning automotive software vulnerabilities.

2 Technical Solutions

2.1 Vulnerability Scanning System Processes

The vulnerability scanning technology proposed in this paper focuses on the automotive
software program, analyzes the components of the software program by decompressing,
unpacking, and feature extraction, and then matches the vulnerability information to get
the vulnerabilities in the software. The vulnerability scanning process of the automotive
software program is shown in Fig. 1.

First of all, add the software file to be scanned into the scanning system and deter-
mine the different component types of software files by software component analysis. If
the components cannot be determined, the system will re-run the software component
analysis for the files that failed in one software component analysis. In this way, a more
fine-grained component analysis can be performed using the results of the previous com-
ponent analysis. If the software component is not determined after N cycles of analysis,



Generic Vulnerability Analysis 45

Fig. 1. ICV software vulnerability scanning process

the component database may not have the feature data of the corresponding component
entered into it. N is the number of cycle analyses, which can be adjusted by the actual
scanning situation. It is necessary to add component samples and feature data to the
component database by analyzing component features manually. After identifying the
software components, the vulnerabilities are matched by category, name, version, and
other information. Then, the vulnerability scan results are output.

The vulnerability scanning technology proposed in this paper has twomain contribu-
tions: (1) Construction of a software feature database. (2) software component analysis.
The following describes the vulnerability scanning technology for automotive software
programs by detailing the process of building a software feature database and the process
of software component analysis for ICV.

2.2 Constructing the Feature Database

Themost important part of the process of building a feature database is sample collection
and feature extraction [5]. In this paper, the proposed software vulnerability scanning
technology for ICV uses five databases, including the software database, the develop-
ment platform information database, the code segment history database, the component
database, and the vulnerability database. Among them, the development platform infor-
mation database uses open source data because the development platform information



46 C. Bian et al.

store the popular and common development platform compilation options and compila-
tion features. The application development software platforms used in the ICV and IT
domains are generally the same [6]. Using leading information databases will improve
the accuracy of vulnerability scanning.

The software database stores the software data of each device in the automobile. The
ICV generally consists of the modules shown in Fig. 2.

Through historical project accumulation and cooperation with auto enterprises and
equipment manufacturers, our team has gradually built a database covering the full
architecture modules of ICV. The software data now contain the full-stack software of
IVI, TBOX, RSU, OBU, BMS, etc. from dozens of car brands. Under the premise of
complying with laws and regulations and protecting enterprise data assets, we use the
data to help the development of security for ICV.

The code segment history database stores the code segments in software files, in
various languages. The code files are split into code fragments by features such as
global variables, function names, ad source code file names to form a code segment
history database applicable to the field of ICV [7].

The component database holds the components referenced in the ICV software, also
known as third-party components. They are usually.so and.ko files under various file
paths. The component database currently in use contains traditional IT system compo-
nents. Our team is currently accumulating data on the automotive software and gradually
adding ICV specific components. The features of the designed component database are
shown in Table 2.

The PackageManager is a tool that allows users to install, delete, upgrade, configure,
and manage packages on the operating system. Examples include apt-get, pip, Pacman,
etc. In the field of ICV, the Package Manager of some modules is probably a private tool
and the installation standard developed and used by the auto enterprise, which needs to
be improved continuously [8].

The vulnerability information database stores traditional ITvulnerability information
and proprietary vulnerability information of the ICV field. The system identifies the
components used in the ICV software through component analysis and then matches
them with the component vulnerability information in the vulnerability database to

Fig. 2. Common modules of ICV



Generic Vulnerability Analysis 47

Table 2. Characteristics table of component data

No. Features Descriptions

1 Database name Component names

2 Suppliers The company that published the component

3 Programming Languages Programming languages used in the source phase of the
database

4 Package Manager Name of the package manager that manages the
component

5 Versions information Component version information

6 Date of publication Publication date of components

7 Licenses License information of components

8 Architecture The CPU platform architecture on which the component
runs

9 Attached file A detailed description of the components

determine the software vulnerability [9]. The main features in the vulnerability database
are shown in table 3.

In this paper, the ICV software vulnerability scanning technology is compatible with
existing vulnerabilities in the IT field. On the basis of traditional IT vulnerabilities, the
software and vulnerability data of the ICV field are continuously added. The current
threats in the ICV field are shown in Fig. 3.

Analogous to the IoT ‘Cloud-Sea-Fog’ architecture [10], this paper divides the secu-
rity threats of ICV into four levels. During the construction of a database, data including
software, components, patches, and vulnerabilities are added to improve the coverage
and accuracy of vulnerability scanning technology.

Fig. 3. Threats in the ICV field



48 C. Bian et al.

Table 3. FEATURE table of Vulnerability dataBASE

No. Features Descriptions

1 Vulnerability identification Public number of vulnerabilities, e.g. CVE

2 Description of the vulnerability Description of the vulnerability

3 Range of components affected by the
vulnerability

Components Information attributed to this
vulnerability

4 Database name Component names

5 Version Versions of components with vulnerabilities

6 Date of publication Publication date of components

7 Links to patches Locations where vulnerability patches are
available

2.3 Analysis of the Software Components

The system matches the software components by software component analysis using
the constructed data sets such as the software database and component database [11].
The technical flow of software component analysis presented in this paper is shown in
Fig. 4.

Firstly, input the ICV software file into the software component analysis system,
and the system decompresses the software file. After decompression, according to the
file type, the system classifies the executable files into one category and other scripts,
configurations, and documents into another category. The system classifies the files with
the path of lib and the files with the suffix with.so and.ko feature as dynamic link library
files according to the file path and part of the suffix information. The system also filters
out the program files in scripts, configurations, and documents by the keywords of the
programming language and categorizes them as application source code.

Then the system decompresses the software data by recursion into three types of
data: dynamic link library, binary file, and application source code. Different types of
data are analyzed by different processes to obtain software component information [12].
Among them, the dynamic link library class data, which mainly relies on the develop-
ment platform information database, improve the matching accuracy of dynamic link
libraries through dependency locking and dependency inference. For the software com-
ponent analysis of the binary file class, the system splits the file to form fragments by
symbolic information such as static variables, global variables, function names, assem-
bly instruction categories, numbers, jump relationships, and other information. Then the
software components are determined by means of code fragment HASHmatching, code
fragment list structure BOM analysis, code fragment summary analysis, etc. For the
application source code class, the system determines the software component composi-
tion by the syntax tree and lexical tree comparison, and then by the code segment HASH
matching. In the process of feature matching of three data classes, we use the M-gram
statistical algorithm with sliding window M, which is used to improve the accuracy of
data matching.



Generic Vulnerability Analysis 49

Fig. 4. Component analysis of ICV software components

Feature database construction and software component analysis are the main inno-
vation points of this paper. This paper improves the security capability in the field of
ICV and reduces the security cost of the industry through research on the vulnerability
scanning technology of ICV.

2.4 Technical Characteristics

The vulnerability scanning technology for ICV studied in this paper is designed to meet
the generality and adaptability of vulnerability scanning technology in the field of ICV.
The technology can be adapted to scan source code of different languages, including
but not limited to C/C + +, Java, Python, Shell, etc. For scanning compressed and
executable file formats, including but not limited to tar, tar.gz, jar, bin, deb, dylib, apk,
ko, etc. The vulnerability data sources of this system include open source vulnerability
databases such as CVE. It helps the security development of the ICV industry and
protects the development of ICV through comprehensive feature data, combined with
high-precision component matching algorithms.



50 C. Bian et al.

Fig. 5. Functional design of the automotive software vulnerability scanning system

3 System Design

3.1 System Architecture

This paper builds a terminal scanning system, the automotive software vulnerability
scanning system, based on vulnerability scanning technology for ICV software, which
realizes the scanning and analysis functions for generic vulnerabilities of large-scale
automotive software. The system is designed with a 3-tier B/S architecture: the presen-
tation layer realizes the functional interaction between the user and the system; the logic
layer implements business logic through a call engine and interface to support system
services; the data layer is used to store vulnerability data, component data, project data,
and user data, and process the data after receiving the request [13].

3.2 Functional Design

The system proposed in this paper has two functional modules, including a component
management module and a vulnerability management module. Each module contains
related sub-functions, as shown in Fig. 5.

The functions of the automobile software vulnerability scanning system achieved
in this paper include calling relevant functions through the command terminal mode to
scan the vulnerabilities of automotive software programs. Security managers can use
this system to track the running progress of vulnerability scanning projects and the
results of component vulnerability analysis in real time. At the same time, according to
the scan results of different versions of the same software program, security managers
can also obtain the changing trend of the security problems of the software program
of the automobile component in the development process [14], which can help project
managers to control the overall security quality of the project.

4 Experimental Design and Analysis of Results

4.1 Experimental Environment

In this experiment, we upload the automotive software files to the cloud server for
vulnerability scanning. The experimental environment of this system adopts the system
environment of the server, as shown in Table 4.

The parameters are described as follows: TP (true positive), the number of com-
ponents or vulnerabilities identified that exist; FP (false positive), the number of com-
ponents or vulnerabilities identified but not exist; FN (false negative), the number of
components or vulnerabilities not identified but exist.



Generic Vulnerability Analysis 51

Table 4. Experimental environment

Composition Parameters

CPU 16 cores, 64 bits

RAM 64GB

SSD 1TB

Operating systems CentOS6.7

4.2 Evaluation Indicators

In order to judge the quality of the scanning results of the system for the automobile
software program, this paper uses the precision and recall rates to judge the quality of
the component scanning results and vulnerability scanning results [15]. The calculation
formulas are as follows.

Precision = TP

TP + FP
(1)

Recall = TP

TP + FN
(2)

The parameters are described as follows: TP (true positive), the number of com-
ponents or vulnerabilities identified that exist; FP (false positive), the number of com-
ponents or vulnerabilities identified but not exist; FN (false negative), the number of
components or vulnerabilities not identified but exist.

4.3 Experimental Results

In this paper, the experiments and results analysis are carried out from two aspects of
component identification and vulnerability identification.

4.3.1 Component Identification Experiments.

In order to verify the component identification capability of this system for the software
program of ICV, we uploaded the software files of each of the five experimental objects
to this system for testing and analysis. The testing results were summarized as shown in
Table 5.

The OBU scanning experiment is taken as an example to show the analysis results
of some of the vulnerability-containing components after the software was scanned,
as shown in Table 6. Taking the vulnerability component busybox in the table as an
example, the component contains a full shell, a DHCP client-server, and some small
utilities. These utilities are packaged into a single executable file. Version 1.24.1 may
contain vulnerabilities that result in denial of service (DoS), information leakage, and
remote code execution (RCE).



52 C. Bian et al.

Table 5. Component identification results

Software
types

System
Versions

software
sizes (MB)

Number of
software
files

Testing
time
(min)

Identified
components

Vulnerable
components

APP / 136 5631 5 44 1

TBOX Linux
3.18.44

85.3 1407 13 19 15

IVI Linux
4.14.117

329 974 37 34 2

OBU Linux
4.1.44

196 4525 68 56 40

RSU Linux
4.9.11

76.6 4929 32 24 18

Table 6. OBU component scan results (partial)

Components Versions Depth Latest
version

Number of Vulnerabilities
(Ultra-high/high/medium/low
risk)

Licenses

linux:linux_kemel 4.1.44 1 2.6.24:rc1 61 / 417 / 548 / 40 GNU
General
Public
License
v3.0 or later

gnu:glibc 2.4 1 1.09 15 / 29 / 41 / 4 GNU
Library
General
Public
License v2
or later

busybox: busybox 1.24.1 1 1.33.2 3 / 13 / 2 / 0 GNU
General
Public
License
v2.0 only

isc: bind 8 1 9.17.4 2 / 6 / 7 / 0 Mozilla
Public
License2.0

openssl_project:
openssl

1.0.20 1 3.0.0-beta1 1 / 3 / 8 / 3 OpenSSL
License



Generic Vulnerability Analysis 53

Table 7. Results of component identification experiments

Software True positive
component
(TP)

Component
False Positives
(FP)

Component
False Negative
(FN)

Component
accuracy rate

Component
Recall Rate

APP 22 4 18 84% 55%

TBOX 10 2 7 83% 59%

IVI 18 4 12 81% 60%

OBU 28 8 20 78% 58%

RSU 13 4 7 76% 65%

Fig. 6. Component identification accuracy and recall rates

In order to calculate the accuracy of the software program component identification
of the system, we will check and verify component identification after getting the results
of scanning. The statistical results are shown in Table 7, and the precision and recall
rates are shown in Fig. 6.

The experimental results prove that the system can successfully identify components
and component details in the software program. The accuracy of component identifica-
tion is high and stable at more than 75%, and the recall rate is maintained at more than
55%.

4.3.2 Vulnerability Identification Experiments.

In order to verify the vulnerability identification ability of the system for the software
program of ICV, the software files of five experimental objects were uploaded to the
system for testing and analysis, and the testing results were summarized, as shown in
Table 8.



54 C. Bian et al.

Table 8. Vulnerability identification results

Software
types

Total number
of
vulnerabilities

Ultra High
Risk
Vulnerabilities

High-risk
vulnerabilities

Medium Risk
Vulnerabilities

Low Risk
Vulnerabilities

APP 6 1 2 2 1

TBOX 380 57 132 175 16

IVI 13 1 1 7 4

OBU 1676 131 671 809 65

RSU 195 33 79 70 13

Table 9. The accuracy rate of vulnerability identification

Software
types

True positive
for CVE

False positive
for CVE

CVE false
negative

CVE
accuracy
rate

CVE recall
rate

APP 4 1 1 80% 80%

TBOX 320 38 22 89% 93%

IVI 9 2 2 82% 82%

OBU 1421 131 124 92% 92%

RSU 154 28 13 85% 92%

In order to calculate the accuracy of the system for software program vulnerability
identification, the system checks and verifies the vulnerability identification after getting
the scan results. The statistical results are shown in Table 9, and the precision and recall
rates are shown in Fig. 7.

The experiment proves that this system can successfully identify the known vulner-
abilities of components in the software programs. Since the system reports the vulnera-
bilities only when the components and version coexist, the accuracy of the vulnerability
identification is high, and the precision and recall rates are steadily maintained at more
than 80%.



Generic Vulnerability Analysis 55

Fig. 7. Accuracy and recall rate of vulnerability identification

5 Conclusion

This paper designs and implements a vulnerability scanning technology for large-scale
ICV software programs. The technology extracts the automotive software programs and
unpacks them, extracts feature information to construct a feature database, analyzes
the components of the software program files, matches the vulnerability information of
the open source vulnerability database, and obtains the vulnerabilities existing in the
software programs. Based on this technology, a vulnerability scanning terminal system
for large-scale ICV software is implemented.

This paper uses this system to conduct vulnerability scanning experiments on five
different types of automotive software, proving that the vulnerability scanning technol-
ogy proposed in this paper can identify the components and vulnerability information in
automotive software programs accurately. The accuracy of the component identification
of the system reaches more than 75%, and the accuracy of the vulnerability identification
of the system reaches more than 80%, which can better meet the vulnerability scanning
needs of various common automotive system software programs, help securitymanagers
to control the security vulnerabilities of each module of ICV. The information security
needs for ICV will be covered by all components of the automobile.

The next step of this paper is to check and analyze other types of software in auto-
mobiles to further verify the accuracy of the system’s components and vulnerability
identification, and to improve the system’s advancedness and usability by comparing it
with mainstream software scanning tools in the market.

References

1. Wufei Wu, Renfa Li, Guoqi Xie, et al. A Survey of Intrusion Detection for In-Vehicle
Networks. IEEE Transactions on Intelligent Transportation Systems, 2019.

2. I.Oz,H.R.Topcuoglu,O.Tosun.Auser-assisted thread-level vulnerability assessment tool[J].
Concurrency and Computation: Practice and Experience, 2019, 31(13): 23-27.



56 C. Bian et al.

3. K. Kritikos, K. Magoutis, M. Papoutsakis, et al. A survey on vulnerability assessment tools
and databases for cloud-based web applications[J]. Array, 2019, 7(5): 3-4

4. V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal and B.
5. Sikdar, A Survey on IoT Security: Application Areas, Security
6. Threats, and Solution Architectures[J]. IEEE Access, 2019, vol. 7, pp. 82721–82743.
7. B. Elisa, N. Walter, C. Senni. A Framework for Vehicle Penetration Tests[C]. Embedded

Security in Cars, American, 2017
8. Kyong-Tak Cho, Kang G Shin. Error handling of in-vehicle networks makes them vulner-

able. In: Proc of Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, 1044–1055.

9. Tobias Hoppe, Stefan Kiltz, Jana Dittmann. Security threats to automotive CAN net-
works–practical examples and selected short-term countermeasures. In: Proc of International
Conference on Computer Safety, Reliability, and Security. Springer, 2008, 235–248

10. Dan C T L, Kai Q, Wei C. Hardware Attacks and Security Education[C]. IEEE, Computer
Software and Applications Conference. IEEE, 2016:253–257.

11. Zou, Bowei andGao,Mingqiu and Cui, Xiaochuan. Research on Information Security Frame-
work of Intelligent Connected Vehicle[C].Association for Computing Machinery,2017,3:91–
95.

12. X. Shao, C. Dong and L. Dong.Research on Detection and Evaluation Technology of Cyber-
security in Intelligent and Connected Vehicle[C]. 2019 International Conference on Artificial
Intelligence and Advanced Manufacturing (AIAM), 2019, pp. 413-416.

13. Samuel Lv, Sen Nie, Ling Liu. Car Hacking Research: Remote Attack Tesla Motors. Keen
Security Lab of Tencent, 2016.

14. Karl Koscher, Alexei Czeskis, Franziska Roesner, et al. Experimental security analysis of a
modern automobile. In: Proc of 2010 IEEE Symposium on Security and Privacy. IEEE, 2010,
447–462

15. Stephen Checkoway, Damon McCoy, Brian Kantor, et al. Comprehensive experimental anal-
yses of automotive attack surfaces. In: Proc of USENIX Security Symposium, volume 4. San
Francisco, 2011, 447–462

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/

	Generic Vulnerability Analysis Based on Large-Scale Automotive Software
	1 Introduction
	2 Technical Solutions
	2.1 Vulnerability Scanning System Processes
	2.2 Constructing the Feature Database
	2.3 Analysis of the Software Components
	2.4 Technical Characteristics

	3 System Design
	3.1 System Architecture
	3.2 Functional Design

	4 Experimental Design and Analysis of Results
	4.1 Experimental Environment
	4.2 Evaluation Indicators
	4.3 Experimental Results

	5 Conclusion
	References




