
Implementation and Application of GUI
Model-Driven Low-Code Platform in Energy

Industry

Jun Zhu, Xinyang Pan(B), Zhihua Zhong, Wenbin Mao, and Likui He

Shanghai Shine Energy Information Technology Development Co., Ltd., Shanghai, China
panxy@shineenergy.com

Abstract. Nowadays, with the rapid development of science and technology, the
business requirements of the internal digital platform of enterprises are becoming
more andmore diverse, so it needs to provide more andmore functional points. As
the complexity of functions increases, the operation and maintenance costs of the
platform increase and the productivity of enterprises decreases. If an enterprise
uses a low-code platform for development, it will be able to solve or alleviate
these problems to a large extent, including reducing the development cost of the
enterprise and improving productivity by lowering the technical threshold for
development. Compared with traditional code development, the low-code plat-
form supports rapid development and one-click deployment of applications, and
combines model-driven and generative programming in design concepts.

Keywords: GUI development · LCDP · rapid development · automation · code
generation

1 Introduction

As an important super-large energy enterprise in China, State Grid proposes to adhere
to one industry as the mainstay in information construction and digital transformation,
speed up the upgrading of power grid to energy Internet, and ensure to basically build
an international leading energy Internet enterprise with China characteristics by 2025.
It has become an important link to promote the digitalization of power grid produc-
tion and strengthen the digital management and control of power grid planning, con-
struction, dispatching, operation and maintenance. In terms of technical research, it has
also increased the research efforts of new technologies such as power chips, artificial
intelligence, blockchain and electric Beidou.

For digital transformation, enterprises often have two ways to transform: traditional
code development and low-code platform development. For most enterprises, the tra-
ditional code development method will still be used to develop digital platforms, but
there are some disadvantages in using this method. Although using low-code platform
to develop can not provide a perfect solution, it can still solve many problems of existing
methods to a great extent.

© The Author(s) 2023
D. Kumar et al. (Eds.): IEIT 2023, AHSSEH 10, pp. 296–313, 2023.
https://doi.org/10.2991/978-94-6463-230-9_36

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-230-9_36&domain=pdf
https://doi.org/10.2991/978-94-6463-230-9_36


Implementation and Application of GUI Model 297

Low-code platform was first mentioned in Forrester Research in 2014 [1]. Up to
now, it has attracted the attention of many large software companies and developed their
own software applications based on it as a conceptual model, and the discussion on it
has become more and more enthusiastic [2]. Although the rise of low-code platform is
relatively late, it doesn’t mean that the low-code platform originated only recently. In
fact, we are no strangers to the “low-code” platform, which may have originated from
1990 to 2000. As early as 2000, there were related documents about Generative Pro-
gramming [3], inwhich how to assemble reusable components for pipeline programming
was expounded. Nowadays, the usage rate of low-code platform is gradually increasing
around the world, but most audiences keep a wait-and-see attitude towards it, and users
generally think that its ease of use still has room for improvement [4]. On the whole, the
market of low code platform is on the rise [5].

This design will focus on the development method of low-code platform, which
is a cloud service platform that supports the development and deployment of software
applications with little or no code, and debugs its Graphical-User-Interface (GUI) and
other graphical elements [6]. The core of low-code platform development lies in rapid
applicationdevelopment, automatic applicationdeployment and execution, and theuseof
model-driven design principles. Low-code platform lowers the user’s use threshold with
its low learning cost, thus improving the overall production efficiency of the platform,
and also reducing the cost of personnel training for enterprises [7]. Its highly automated
characteristics also ensure the stability of development and application, and enterprises
will not need to spend too much money on the operation and deployment of the platform
[8].

This paper will implement a low-code platform design for GUI and other graphic
elements. The services it supports include GUI generation, development and automatic
deployment, etc. The platform will follow the principle of WYSIWYG (What-You-See-
Is-What-You-Get). By abstracting the information and data sources of the graphical
interface into static data, and using the platform’s parser to convert the data into the
graphical interface, the platform can change the interface by editing the static data, and
finally build a complete low-code platform for GUI.

2 Design the Overall Architecture

The project saves the interface data by transforming the front-end GUI interface into
persistent static abstract data, and uses the corresponding parser to complete the reverse
transformation from static abstract data to GUI interface in the actual rendering stage
to generate the GUI interface of the corresponding application. The specific research
contents are as follows:

(1) Design the visualization scheme of interface data, and realize the transformation of
interface data into GUI interface.

(2) Design the visualization scheme ofGUI component style data, realize the visual style
configuration of a single component in the interface, and design the transformation
specification between configuration data and style.

(3) Design the binding scheme between interface and data, realize the visual configura-
tion of data displayed in the interface, and realize the layout and generation of visual
interface combined with data model.



298 J. Zhu et al.

(4) Design the visualization scheme of jump logic, realize the automatic data generation
of jump logic, and realize the data visualization of jump logic among all interfaces
of the application platform.

The system framework of this paper is divided into six steps: user-defined datamodel,
user-defined atomic service, user-defined composite service, visual interface layout,
interface data binding and multi-interface integration, as shown in Fig. 1. Among them,
custom atomic service and custom composite service are the platform support contents,
which will not be explained in this paper.

In the user-defined data model stage, after the user changes the data model, the
database will update the table structure of the data model synchronously, and if the data
model is newly generated, the corresponding CRUD service will be generated for it. If
the associated data model is set, the corresponding associated database in the database
is updated. The data of user-defined data model will be able to be integrated into the
interface in the form of data source in the interface data binding stage.

In the visual interface layout stage, users will visually layout the DOM structure and
CSS data of the interface by dragging and dropping, which will be synchronous in the
design stage and after the final launch, and will conform to the principle of “what you
see is what you get”.

In the data binding stage of the interface, users can choose to integrate dynamic
data and static data into the interface. Dynamic data can be bound to data sources in the
platform, including data model data sources, jump data sources and other data sources
that exist in the running stage of the platform. The data model data source in the data
source is obtained through the database, so the data in the platform can be integrated
into the interface for use.

Fig. 1. GUI model-driven low-code platform system frame diagram



Implementation and Application of GUI Model 299

In the stage of multi-interface integration, users can choose to set the jump logic
for interfaces, and realize the jump between interfaces in the actual operation stage by
binding the data source carried during the jump.

Functional requirements: After consulting relevant literature, according to the busi-
ness scenario of low-code platform design driven by GUI model, we analyzed the func-
tional requirements of the platform, and obtained the use case diagram as shown in
Fig. 2. We will explain the functional requirements of the platform in detail based on
the use case diagram.

For the low-code platform, in addition to the basic services of adding, deleting and
modifying data, it also needs to support users to use other types of services, so the
platform should support user-defined generation services. After analysis, it is concluded
that the platform’s requirements for custom services include the development of atomic
services and the development of generated atomic services. This part is the technical
support of this design, which is not within the scope of this design, so it will not be
explained in detail.

We then analyze the use cases of data service developers and GUI developers, and
conclude that the main functional requirements of the platform involved in this paper
are management data model, visual interface layout, interface data binding and multi-
interface integration. Data service developers can manage the data models used in the
platform, generate data models, and then manage the relationships between the models.
GUI developers can visually lay out the interface by dragging and dropping components,
and can selectively modify the style of the interface. Users can bind the data in the
interface, which can be static or dynamic. Dynamic data supports the predefined data
model data, atomic service data and composite service data in the display platform.
Users can also choose whether to set jump logic for this interface.

Fig. 2. Use Case Diagram of Data Service Developers and GUI Developers



300 J. Zhu et al.

3 Design Scheme

This chapter will describe the whole process of interface generation, including the con-
crete realization process of four steps: user-defined data model, visual interface layout,
interface data binding and multi-interface integration. The service layer in the middle is
the platform support content, so it will not be described:

(1) User-defined data model: users can define data models. After publishing the data
models, the system database will generate corresponding data tables, and can also
manage the relationship between data models.

(2) Visual interface layout: Layout the components in the interface by dragging and
dropping, or freely set the style of the components. After the interface is published,
the systemwill generate an interfacewith the corresponding style,which is consistent
with the design interface and conforms to the principle of “what you see is what you
get”.

(3) Interface data binding: In the design stage, users can bind the data used by com-
ponents. After publishing the interface, the system will automatically obtain the
required data for all components.

(4) Multi-interface integration: In the design stage, users can manage the jump logic
of components, including data transmission in the jump process. After the interface
is published, the system will automatically transmit the corresponding data when
the interface jumps, thus realizing the integration among multiple interfaces in the
platform.

3.1 Custom Data Model

In order to manage the data model used in the low-code platform, we designed a user-
defined data model for the platform, which allows users to generate data tables by
defining the attributes and basic information of the data model. After publishing the data
model, the system will generate the corresponding data table in the database.

1) Data structure

The data model in the platform is managed by application, and the data structure of the
user-defined data model is shown in Fig. 3.

TheDataInfo class will store all the relevant information of the datamodel, including
its name, attributes, project, attribute association and publishing status. All data mod-
els stored in the database have their own projects, and the Project class will save all
relevant information of the project, including the User id and user name of the creator,
corresponding to the data in the User class. For the attribute information in DataInfo, we
designed a Property class to store his attribute name, type and whether null is allowed or
not. Attribute types support five common types: char, int, double, bool and string. The
association information between data models is saved by Relation class, and the infor-
mation to be saved includes association attribute names and association types, including
one-to-one and many-to-many associations.



Implementation and Application of GUI Model 301

Fig. 3. Data Structure of Custom Data Model

2) Database connection

In order to automatically generate data tables through data models, we need to create
a connection with the database. After the user confirms to publish the data model, the
system will establish a link with the database, and generate a script according to the data
of the data model, including all attribute information and associated information. After
the script is generated, you can create a data table corresponding to the data model data
in the database by running the script on the database connection.

The association information between data models is stored in the Relation class,
and when creating a data table, if the corresponding data model has an association, the
corresponding data table will be generated according to all the associations stored in it.
The data table will store the id of the original table and the id of the associated table.

Because the data tables are automatically generated, themanagement of the structure
of the data table itself needs to be realized by running SQL scripts, and the management
of the data in the data table also needs to be realized by running corresponding SQL
scripts. Compared with the traditional code development, all data tables generated by
the platform need to be directly linked to the database, instead of using the existing API
directly.

For the data in the data table, the platform will automatically generate data services
based on Restful semantics, and these services are realized by running corresponding
SQL scripts generated according to the data of the data model. Figure 4 shows the differ-
ence between the service layer of the platform’s custom data model and the traditional
architecture design.

From the original development of Controller, Service, Repository classes for all
data models, it has evolved into a corresponding class that only needs to be designed



302 J. Zhu et al.

Fig. 4. Comparison of Service Layer Architecture of Custom Data Model

to manage all data models. Because the platform needs to connect directly with the
database, we no longer use the Repository layer, but use a SQLHelper class to process
data requests, including changing the structure of data tables, data services and all other
database-related operations.

3) Presentation layer

In the presentation layer of the customized data model, users can view the attribute
information and associated information of the data model. The published data model
can view the specific data stored in the data table in the database at this time. In addition,
the platform also provides the function of querying a single data model by using query
statements. Users can add query statements for all the attributes of the data model.
Finally, the platform will summarize all the query statements, generate corresponding
SQL scripts, and return the query results after running.

3.2 Visual Interface Layout

Considering the ease of use of the platform, we need to make the use process of the
platform as friendly as possible, so in the visual interface layout stage, we hope that
users can browse the actually generated interface in real time when editing the interface.
Therefore, we put forward that the layout of visual interface should follow the principle
of “what you see is what you get”. In order to simplify the user’s design operation, we
choose drag anddrop as themain operationmethod to edit the interface layout. For editing
the style of interface elements, we allow users to edit the CSS data of corresponding
components directly in the detailed panel, thus realizing the custom editing of the style.

1) Interface data model structure

In the process of using the low-code platform, we will store the data model and interface
information on a project basis, so the first step users need to do when using the low-code
platform is to create the project. After consulting the relevant literature, the interface



Implementation and Application of GUI Model 303

Fig. 5. Data Structure of Interface Model

model data structure as shown in Fig. 5 is obtained. It should be noted that this diagram
is only a subset of the whole architecture class diagram, and the classes related to this
part of the function are screened out here in order to focus on the visual interface layout.

(1) Layout class

Starting from the interface, the Layout class stores abstract data of an interface, and
an interface should have basic information such as its project id, detailed description,
release status, etc. at Front Page indicates whether the interface should appear on the
home page. In addition to these basic information, the Layout class also needs to save
the DOM structure of the interface and its corresponding style. In order to systematically
manage theDOMstructure of an interface, we stipulate that the Layout class corresponds
to the pages in the DOM structure, while the Container class saved in the Layout class
corresponds to the block elements in HTML.

(2) Container class

The Container class can be regarded as an abstract class of block elements. Because
this design uses the React+ Antd framework, the Type types in the Container class and
GuiComponent class correspond to the interface elements in the Antd framework. After
analyzing the functional requirements of interface elements in the interface, we found
that the main functions of block elements in the use of the interface are to display data
and input data, so we designed two common Container types, Layout and Form. The
former will be responsible for displaying data, while the latter will be responsible for
collecting user input data.

(3) GuiComponent class

GuiComponent class can be regarded as all other elements embedded in block elements
in the interface. GuiComponent class can only exist in Container class, which is also
in line with the nesting relationship between them during actual rendering. Considering
that different elements of HTML havemany common attributes, and all HTML elements
can apply CSS, we design the GuiComponent class as a general abstract class of HTML
elements. StaticProperties will correspond to the attribute information of the element,



304 J. Zhu et al.

while styleProperties will correspond to the style information of the component, and
displayName will represent its name displayed in the editor.

On the basis of GuiComponent class, we design unique classes for different elements
to describe their corresponding features and functions. At present, we have designed five
abstract classes of representative elements, all of which inherit from GuiComponent
class:

(a) Button: the corresponding button element, because it usually executes its bound
callback function after clicking, obviously it is not ideal to use the button element
to display data, so it should only exist in a Container of Form type. For the callback
function called by the button element, we can analyze two types of callback functions
according to the platform requirements. The first is to call the service in the platform,
and its abstract data is stored in the api attribute, and its type is Api class. This class
is a general class of API that can be called inside the platform. Because this part is
related to data binding of the interface, we will describe it in detail later. Secondly,
it is also possible to call a function that jumps to other interfaces. The abstract data
of this behavior is saved in the jumpingLayout property, and its corresponding class
is JumpingLayout class, which stores the id of the target interface to be jumped to
and the data source information it needs to carry when jumping. Considering that
API calls and interface jumps often occur at the same time in actual use scenarios,
they are allowed to exist at the same time in the Button class.

(b) Input: corresponding to the input box elements. Like Button, it should only exist in
the Container class of type Form.

(c) Table: corresponding to table elements. After summing up, we found that the data
displayed by it is the data obtained from the application at runtime. This data has
many possible sources, and we abstract it as a DataSource class, and its principle
will be explained in the section of interface data binding. The use requirements of
table elements are often accompanied by certain operations on the display data, such
as allowing users to click buttons to view the detailed data of the display data or
other operations. To support this behavior, we have saved the buttons attribute in the
Table class to provide these operations. All data in a table element should support
the same operation. For example, each column of data in a dataset should have its
corresponding view button, but the buttons themselves should be responsible for the
same behavior and style, and the only difference is that the corresponding data are
different. Therefore, for these operations, we can save their abstract information in
table elements, and because these operations generally exist in the form of buttons,
we save multiple button elements in table elements. These Button elements are
completely consistent with the running logic of the button class, that is, they also
support API calls and interface jump calls of applications, which is also in line with
the usage scenarios of table elements. Considering that when displaying data, users
may not want to show all the attributes of the data model, we provide the showFields
attribute to save the data that users want to show.

(d) Text: corresponding text element.
(e) Title: corresponding title element.



Implementation and Application of GUI Model 305

2) Interface editor

Obviously, the ordinary form filling and editing methods can not meet the high usability
requirements of visual interface layout. To this end, we need to design an editor to edit the
interface. Figure 6 shows the GUI model-driven interface editor of low-code platform.

We divide it into seven regions:

(1) Page header:AreaAprovides the function of editing part of the overall information of
the interface, including modifying the name of the interface, whether it is displayed
on the homepage or not, and publishing status. The button of submittingmodification
will synchronize the editing information of the current interface to the server.

(2) Component panel: Area B provides the function of adding a Container class or a
GuiComponent class, and the user only needs to drag the corresponding icon to area
C to generate a new corresponding class to the interface.

(3) Canvas: Area C is a real-time preview of the interface, which has the same layout
as the actual online interface, and will be rendered in equal proportion when the
interface is online, thus achieving the effect of “what you see is what you get”.

(4) InputPropertiespanel: D area is used to manage the data that this interface must carry
when jumping from other interfaces.

(5) The API Propertiespanel: E area will be used to manage API data that needs to be
called in advance when the interface is running.

(6) Heritage Panel: Area F will be used to show the element architecture of the interface,
including all the existing Containers in the interface and all the GuiComponents it
contains.Byclicking the correspondinggraphic elements, theComponentProperties-
Panel can focus on the corresponding container class or GUI component class.

(7) Component Properties panel: The G area will be used to edit the related information
of the component. In addition to clicking the graphic elements in HierchyPanel,
the user can also directly click the graphic elements in the Canvas to focus on the
corresponding elements.

Fig. 6. GUI model-driven interface editor



306 J. Zhu et al.

3) Rendering method of interface layout

After determining the main operation method of using dragging interface elements as
visual interface layout, we need to determine the actual scheme and save the obtained
location information in the database. We also need to ensure that the interface follows
the principle of “what you see is what you get”, so we also need to determine how to
make the canvas and the online interface render the same interface when facing the same
data.

(1) Element drag and drop

The principle of dragging an element is to mark the draggable attribute of the element
in ComponentPanel as true, and bind the setData function of DataTransfer object for the
onDragStart event of the selected element, and bind the type of the selected element to
the setData function.

At the same time, bind the getData function of theDataTransfer object for the onDrop
event of the target element. After the target element successfully obtains the type data
of the generated element from the getData function, the corresponding abstract class is
generated for it.

(2) DOM structure is synchronized with CSS data

To ensure that the platform follows the principle of “what you see is what you get”, we
need to ensure that the Canvas area and the final online interface have the same DOM
structure and CSS data.

The data used by the Canvas area and the final online interface are the same when
rendering the interface, so to keep their DOM structure consistent with CSS data, it is
only necessary to adapt their renderers. The renderer of Canvas area should use Canvas
as the root of DOM structure, while the interface renderer needs to use the root element
of the page as the root of DOM structure, and other things should use the same rendering
logic.

On the basis of the same DOM structure, it is only necessary to keep the CSS data
synchronized to ensure the same interface style, and the renderer only needs to apply
the corresponding CSS data to the elements when rendering.

It should be noted that for the CSS data of the componentsmentioned earlier, because
theCSSdata relative to theCanvas area is stored in the database, ifwewant to synchronize
someCSS datawith absolute values, such as CSS data savedwith px, we need tomultiply
the original data with the size ratio of Canvas and interface to get the correct display
result.

3.3 Interface Data Binding

In this section, we will explain in detail how to specify the data used by the components
in the interface. After analyzing the usage scenarios of the platform, we found that users
will need to bind predefined static data and dynamic data that can only be obtained
at runtime. For static data, users can edit it directly in ComponentPropertiesPanel. For
dynamic data, we need to sort out all the dynamic data that the platform can obtain, and
analyze their sources and acquisition methods.



Implementation and Application of GUI Model 307

1) Platform service call binding

By analyzing the usage scenarios of the platform, we can find that the final online
interface obviously needs to integrate the data in the platform, and conversely, we also
need to provide a display interface and an editing interface for the data model inside the
platform. And we can abstract the behavior of this service call into data, so as to get the
class diagram as shown in Fig. 7.

The Api class is an abstract class of calling behavior, and its derived classes are Data-
ModelApi, MultiServiceApi and ASServiceApi, which respectively represent Restful
data service call, composite service call and atomic service call to the data model, and
the latter two are not explained here. For the calling behavior, it is characterized by the
possibility of input data and output data, which needs to be determined according to the
specific type of service. For example, the Post service in the data service only has input
data, while the Get service only has output data. Another feature is that when elements
call these services, they need to bind their corresponding elements for these data. For
input data, we need to specify the data sources of all input data in the interface. For the
output data, if necessary, we need to specify where the output data is displayed or used.
The bindingMap attribute of Api class corresponds to the binding relationship of input
data, while the binding relationship of output data is saved in the element that needs the
corresponding data.

For the DataModelApi class, in addition to specifying the basic information needed
for service invocation such as data model id, the platform also provides the binding of
conditional statements, which enables users to bind data query services in the visual
interface layout stage.

Fig. 7. API Class Diagram



308 J. Zhu et al.

TheApi class exists in theLayout class and theButton class, because for the interface,
it is often necessary to call some services in advance before loading, while for the button
component, combined with the use scenario, we find that only the button component
may have the behavior of service calling. In the running stage of the platform, the Api
class saved in the Layout class will be parsed when the interface is loaded, and then the
corresponding service will be called, while the Api class saved in the Button class will
be processed when the click event occurs.

2) Binding of platform data sources

Earlier, we mentioned that there will be input data and output data in the call of services
in the platform, and for input data, the data source of input data should be bound. Before
explaining how each component saves the binding relationship, we need to consider the
saving form of the data source itself.

After summarizing all the data that the platform can get at runtime, we get the data
source class as shown in Fig. 8.

The DataSource class is the base class of all data sources. Field has different usage
methods in different data source types, but it essentially saves data similar to key values
in the corresponding data source. For example, the field in theDataModelApiDataSource
class saves the attribute names of the data model. We have summed up a total of eight
data sources, which are explained in detail below:

(1) inputDataSource: it corresponds to the value of the input attribute in the Layout class,
and this data source represents the data passed to this interface by other interfaces
when they jump to this interface.

(2) ConstantDataSource: it corresponds to the data source when users want to bind
static data. The reason for designing this data source when staticProperties exist in
the GuiComponent class is to ensure the unity of binding relationship.

(3) TableElementDataSource: It corresponds to the situation when the button element
of each data existing in the table element needs to bind the data, and the data source
can only be bound in this situation.

(4) EmbeddedDataSource: it corresponds to the built-in data in the application, including
the basic data of users.

(5) ComponentDataSource: corresponding to the Input data of the component, such as
the user input data obtained by the input class at runtime.

(6) DataModelApiDataSource: corresponding to the data obtained from the preloaded
custom data model defined by the interface.

Fig. 8. Data Source Class Diagram



Implementation and Application of GUI Model 309

(7) Asset API data source: corresponding to the data obtained by the preloaded custom
atomic service defined by the interface.

(8) MultiserviceApiDataSource: corresponding to the data obtained by the preloaded
custom composite service defined by the interface.

After summarizing all the data sources of the platform,we can bind these data sources
to different components of the interface, and there are different binding methods for
different components. For all components except Table class, there may be multiple data
to be bound. For example, suppose a Button class saves an Api class of DataModelApi
class, and its actionType is post, thenweneed tobind aDataSource class for all non-empty
attributes of the corresponding data model, otherwise the service cannot be successfully
called in the actual running stage. Therefore, we designed the property bindingMap for
these components, which is used to save all binding relationships. For the Table class,
because the Table class itself is used to display data, and secondly, when the Table
class displays data, the information about whether to display a certain attribute has
been saved in showFields, so it is possible to directly save its dataSource with a single
data source class attribute. Because the Table class shows a data set, the dataSource to
which it is bound can only be DataModelApiDataSource, ASServiceApiDataSource or
MultiServiceApiDataSource, so we set this restriction in ComponentPropertieSpan.

3.4 Multi-interface Integration

In the previous section, we havementioned how the jump logic is saved as a JumpingLay-
out class in the Button class. In fact, this is the only use case in which the interface jumps
to other interfaces, including the Button class saved in the Table class. For the Button
class in the actual running stage, we bind an interface jump function to the onClick event.
The layoutId in the JumpingLayout class will save the id of the target page, and get the
corresponding layoutclass when visiting the link with the id, and then use the interface
renderer to render the information of the layoutclass into the interface.

In this process, we should pay attention to theway of data transmission between inter-
faces when jumping. After considering various implementation schemes, we decided to
let the Layout class save the input data needed when it is used as the target interface
and the binding information of the data needed when it is used as the initial interface.
The input data when the interface jumps is defined in InputPropertiesPanel, where users
can freely edit the relevant information of the input data, which will appear when other
interfaces choose this interface as the target boundary. At this time, users need to bind
the DataSource class for these data to ensure that the jump can be executed correctly at
runtime.

Figure 9 illustrates how the jump logic of the interface is parsed from data into jump
functions in the Layout class. First of all, the JumpingLayout class in interface A has two
properties, layoutId and bindingMap. LayoutId will save the id of the target interface.
In Fig. 9, Interface A will specify Interface B through layoutId.

After interface B is specified, interface Awill access the Input attribute of the Layout
class of interface B, and bindingMap will need to bind a DataSource class as the data
source for each value of Input at this time. After completing this step, interface A has
successfully saved the jump logic as data.



310 J. Zhu et al.

Fig. 9. Jump Binding of Multi-interface Integration

In actual operation, for the component with this JumpingLayout class, it will parse
the bindingMap, and pass the data obtained by processing all the DataSource classes to
the interface B when jumping. When transferring data, the binding relationship between
the data and the Input variable will also be transferred. The reason for this is that all data
in the interface needs to be obtained through the data source, and the transferred data
needs to be saved as the InputDataSource class in the new interface to meet this demand.
Multiple JumpingLayout classes are allowed in the same interface, and we can realize
the integration of multiple interfaces in the platform by saving multiple JumpingLayout
classes.

Verification effect:

In this chapter, a prototype system is established according to the proposed system
framework and the described implementation method, and then a specific example of
enterprise digital transformation is analyzed as experimental data, which is realized
on the prototype system through four steps: user-defined data model, visual interface
layout, interface data binding and multi-interface integration. After that, we compare
the prototype system with other low-code platforms according to these four steps, and
analyze the experimental results of the two, and finally make the effect evaluation of the
prototype system. The evaluation results are as follows:

In order to compare and analyze the effectiveness of GUI model-driven low-code
platform, we compare its advantages and disadvantages with other types of low-code
platforms from four aspects: user-defined data model, visual interface layout, interface
data binding and multi-interface integration. By consulting the related literature [4], we
choose Quickbase low-code platform which belongs to different types fromGUI model-
driven low-code platform for experimental comparison. Their advantages in different
aspects are shown in Table 1:

On the whole, we can draw a conclusion that the low-code platform driven by GUI
model is better thanQuickbase in functionality,which ismainly reflected in three aspects:
visual interface layout, interface data binding and multi-interface integration. However,
the GUI model-driven low-code platform needs to be improved in ease of use. First,



Implementation and Application of GUI Model 311

Table 1. Advantages of Low Code Platform Driven by GUI Model and Quickbase

procedure GUI Model Driven Low Code
Platform

Advantages of QuickBase

Custom data model Meet functional requirements. Meet the functional
requirements and support the
use of visual methods to edit
data models.

Visual interface layout Support the use of component
layout interface as opposed to
HTML, and also point out
editing CSS data.

Support the use of HTML and
JavaScript to edit the interface.

Interface data binding Abstraction of interface data
sources allows users to specify
all possible data sources for
components, which improves
the fluidity of data in the
interface.

Figurating the data source of
components does not have the
concept of data source, but
supports specifying specific
data sources for different
components.

Multi-interface integration Users can set the jump logic of
the interface and specify the
data to be transmitted.

Users can only set the jump
logic of the interface, and
cannot transfer data.

QuickBase can be referenced in the customized datamodel to support visual editing of the
datamodel.We can also refer toQuickbase to support componentswith larger granularity
when designing components, and supporting components with larger granularity and
smaller granularity will further improve the functionality and ease of use of the platform.

4 Conclusion

This paper is based on the scientific research project of Shanghai Xinneng Information
TechnologyDevelopment Co., Ltd. “Research onKey Technologies of Low-codeDevel-
opment Platform Based on Micro-service” (project number: R22-003). The research
content is the design of low-code platform driven by GUI model, which aims to provide
a stable solution that can support rapid deployment, rapid development and save the
human resources and time resources of enterprises in this process.

For the concept of low code platform and low code itself, it is almost inevitable that its
follow-upwill attract more scholars to study it. As long as the current development speed
of science and technology is maintained, the data and informatization of enterprises will
continue to be popularized, so it is not difficult to see that the development of low-code
platform as a fast and stable solution is also guaranteed [9]. The design of GUI model-
driven low-code platform proposed in this paper is verified by experiments, and it is
found that there is still room for improvement and perfection.

For the components provided by the interface, besides the basic component imple-
mentation, we can consider providing users with more complex components to lay out



312 J. Zhu et al.

the interface. If we can provide both basic and advanced components at the same time,
we will be able to further improve the functionality of the GUI model-driven low-code
platform.

For the presentation layer of custom data model, we can change the editing mode
from form submission to visual editing, thus further improving the usability of low-code
platform driven by GUI model.

In addition to these two aspects, in the general direction, we can consider the sub-
sequent improvements needed to be compatible with non-universal business scenarios
[10]. At the same time, we also need to pay attention to ensure that the system still
meets the software requirements mentioned earlier when the system is expanded in this
process.

Acknowledgement. The study was supported by the project of Shanghai Shine energy Infor-
mation Technology Development Co., Ltd. Which is named Research on key technologies of
low-code development platform based on microservices in 2022, Grant No. R22-003.

About the Author. Zhu Jun, a senior engineer, has in-depth research in the fields of digital
transformation, big data and artificial intelligence. He has presided over large-scale projects such
as the smart supply chain project group of Shanghai Electric Power Company, the business center
of Shanghai Electric Power Company and the integration of power grid resources.

PanXinyang, who has in-depth research in the field of Internet of Things and digital modeling,
has been responsible for the research and development of large-scale projects such as Lean Man-
agement System for Equipment (Assets) Operation and Maintenance of State Grid Corporation
of China (allocation and dispatching), business center of Shanghai Electric Power Company and
supplier service platform of Shanghai Electric Power Company.

References

1. Vincent P, Iijima K, Driver M, et al. Magic quadrant for enterprise low-code application
platforms [J]. Gartner report, 2019.

2. Al Alamin M A, Malakar S, Uddin G, et al. An Empirical Study of Developer Discussions
on Low-Code Software Development Challenges[C]//2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR). IEEE, 2021: 46-57.

3. Czarnecki K, Eisenecker U W. Generative programming[J]. 2000.
4. Beranic, Tina, Patrik Rek, and Marjan Heričko. “Adoption and usability of low-code/no-code

development tools.“ Central European Conference on Information and Intelligent Systems.
Faculty of Organization and Informatics Varazdin, 2020.

5. Vincent P, Iijima K, Driver M, et al. Magic quadrant for enterprise low-code application
platforms[J]. Gartner report, 2019.

6. Sahay A, Indamutsa A, Di Ruscio D, et al. Supporting the understanding and compari-
son of low-code development platforms[C]//2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE, 2020: 171-178.

7. Frank U, Maier P, Bock A. Low code platforms: promises, concepts and prospects. A
comparative study of ten systems[R]. ICB-Research Report, 2021.

8. Sanchis R, García-Perales Ó, Fraile F, et al. Low-code as enabler of digital transformation in
manufacturing industry[J]. Applied Sciences, 2020, 10(1): 12.



Implementation and Application of GUI Model 313

9. Bock A C, Frank U. Low-Code Platform[J]. Business & Information Systems Engineering,
2021, 63(6): 733-740.

10. Bock A C, Frank U. In search of the essence of low-code: an exploratory study of seven
development platforms[C]//2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C). IEEE, 2021: 57-66.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/

	Implementation and Application of GUI Model-Driven Low-Code Platform in Energy Industry
	1 Introduction
	2 Design the Overall Architecture
	3 Design Scheme
	3.1 Custom Data Model
	3.2 Visual Interface Layout
	3.3 Interface Data Binding
	3.4 Multi-interface Integration

	4 Conclusion
	References




