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Abstract. Neuromorphic computing based on spiking neural networks (SNNs) is
a promising alternative in the field of intelligent computing, especially when tradi-
tional VonNeumann architectures is facing several choke point.Memristors, as the
fourth-generation fundamental circuit element, play a crucial role in neuromorphic
computing systems and are commonly employed as neural and synaptic devices.
Due to their spike-based operation, memristive spiking neural networks (MSNNs)
are considered to be superior and biologically plausible compared to alternative
systems in terms of effectiveness. Here, the spike-timing-dependent plasticity
(STDP) learning characteristic is reaped from our manufactured equipment. Uti-
lizingmemristor-based leaky integrate-and-fire (LIF) neurons and synapses, unsu-
pervised learning of spiking neural networks with 784× 324× 324 architectures
are constructed.
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1 Introduction

With the explosive growth of today’s data, traditional Von Neumann architecture is fac-
ing increasing difficulties in performance and power efficiency because of the separation
of memory and computing units [1, 2]. In order to avoid or alleviate these problems,
researchers have done much work to find new architectures. The investigations on brain-
inspired SNN have been increasing sharply with high parallelism and higher efficiency
[3, 4], which is inspired by the efficient human brain. The operational mechanism of the
human brain has served as a significant inspiration for numerous researchers, prompt-
ing their focus on spike-timing-dependent plasticity (STDP) learning rules that exhibit
greater biological plausibility [5]. The investigation of artificial synapses and neurons is
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crucial for the advancement of hardware implementation in neuromorphic systems rely-
ing on spiking neural networks (SNNs) [6, 7]. Memristor, as an emerging two-terminal
device, is regarded as promising building blocks to realize artificial synapses and neu-
rons, so it can be used to build hardware neural networks [8–10]. These systems utilize
memristors as synaptic elements for the storage of synaptic weights and to achieve mul-
tiplication and addition operations through physical mechanisms, renowned for their
energy-efficient characteristics.

We have successfully realized both artificial synapses and leaky integrate-and-fire
(LIF) neurons stem from Ag/TiO2/Pt memristor without the need for auxiliary circuits,
utilizing the same memristor through specific electrical operations. Additionally, the
spike-timing-dependent plasticity (STDP) learning rule has been implemented. We have
also designed an LIF model that is applicable for Spiking Neural Networks (SNNs)
with a network scale of 784 × 324 × 324 in a three-layer configuration. In the MNIST
database test, the recognition rate can reach at 90.2%.

2 The LIF Neuron Model

Figure 1 presents our memristor-based LIF neuron, which accumulates inputs from
various pre-neurons through memristor synapses to enable the functionality of a spiking
neural network. The mathematical representation of the LIF neuron is described by the
following differential equation:

τ
dv

dt
= RI(t) − E (1)

wherein, τ = 9.41ms, E = 0.43mv (experimental data).

Fig. 1. Schematic illustration of neuromorphic system.
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3 The STDP Characteristics

Regarding the synaptic weight adjustment rule in SNNs, STDP operates that change of
synaptic weight is decided by the arrival time of presynaptic and postsynaptic spikes in
working procedure. The memristor used in this study consisted of a top electrode (Ag)
and a bottom electrode (Pt), which served to simulate the presynaptic and postsynaptic
connections of the neurons, respectively. The memristor’s conductivity was modulated
by varying the pulse intervals applied between the top and bottom electrodes. Figure 2(a)
illustrates the schematic diagram of a biological synapse and the structure of the synap-
tic device. To investigate its functionality, the pulse sequence depicted in Fig. 2(b) was
simultaneously applied to both the top and bottom electrodes of the device. The imple-
mentation of STDP learning rule used in the proposed MSNN is shown in Fig. 2(c).
Taking the interval between the presynaptic pulse and the postsynaptic pulse as �t. The
change in synaptic weight (�w) is determined by the variation in conductance, which
can be described using the exponential Eq. (2) as proposed:

Δw =
⎧
⎨

⎩

W+e
(− |Δt|

τ1
)
, if Δt > 0

W−e
(− |Δt|

τ2
)
, if Δt < 0

(2)

wherein, W+ = 138.62 and W− = 103.46 represent the initial weight, τ1 = 64.1ms
and τ2 = 29.2ms are the membrane time constant (experimental data).

Fig. 2. (a) Schematic diagram of biological and memristive synapse. (b) Pulse shapes of the
experimental for STDP implementation. (c) The implementation of STDP learning rule
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4 Pattern Recognition in Spiking Neural Networks

Figure 3 illustrates the architecture of a fully-connected spiking neural network, which
comprises an input layer, an excitatory layer, and a lateral inhibition layer. The 784 input
layer units, consisting of 28× 28 LIF neurons, representing the pixels of each character
image in MNIST. Additionally, they are connected to the 324 excitatory layer neurons
through 28 × 28 × 324 memristive synapses. The lateral inhibition layer is adopted to
availably impede all neurons in the excitatory layer from learning similar patterns.

During the unsupervised learning phase, the MNIST training database is fed into
the network, where the input layer’s LIF neurons follow the leaky-integrate-and-fire
mechanism and generate spikes accordingly. The initial weights in the network are
randomly distributed. Subsequently, the weight update is triggered by the initial spike
from the presynaptic spike trains and the postsynaptic spike, and adjusted based on the
observed spike-timing-dependent plasticity (STDP) learning rule illustrated in Fig. 2(c).
The excitatory neurons are categorized based on their highest average response to digit
classes in the training set after the learning process. The pattern recognition accuracy,
as depicted in Fig. 4, reached around 90.2% with a network size of 784 × 324 × 324.
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Fig. 3. Schematic layout of the fully-connected Spiking neural networks

Fig. 4. The recognition accuracy of 90.2%
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5 Conclusion

In conclusion, an Ag/TiO2/Pt memristor was fabricated as an artificial synaptic and LIF
neuron component for neuromorphic computing. By calibrating the STDP of artificial
synapses and implementing LIF models for artificial neurons, we have successfully
simulated the leakage, spatiotemporal integration, and discharge functions observed in
biological neurons. The successful demonstration ofMNIST digit recognition in a three-
layer network has an encouraging recognition accuracy. The memristors, serving as the
fundamental unit for neuromorphic computing, exhibit promising capabilities that are
the focus of our work.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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