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Abstract. Cognitive diagnosis plays an important role in intelligent educational
scenarios as a method that can reveal students’ knowledge mastery. Existing cog-
nitive diagnostic methods are mainly applicable to objective questions in core
subject areas (e.g., mathematics); however, in the field of programming, where
the questions are subjective, no research has been conducted to apply cognitive
diagnostics to analyze and assess the impact of students’ subjective answers on
students’ knowledge acquisition. Therefore,we explored how to design a cognitive
diagnostic approach that can be applied in the programming domain. In this paper,
we design a neural network-based cognitive diagnostic model, PECDM, where
our approach not only exploits the interactions between the student factor and the
exercise factor, but also includes the student answer source code and the difficulty
of the exercise among the diagnostic factors, further considering that the student’s
knowledge mastery can be captured from the student’s subjective answers (source
code), and finally uses multiple fully connected layers to interactions are mod-
eled, resulting inmore accurate and interpretable diagnostics.We conduct relevant
experiments on the codeforces dataset, and the experimental results show that the
accuracy of our designed PECDM model is about 95%, which is better in terms
of accuracy, rationality, and interpretability when compared with other cognitive
diagnostic models.
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1 Introduction

As a result of the rapid expansion of artificial intelligence, several areas and fields have
undergone new developments and modifications. Traditional assessments in the field
of education are predominantly manual, time-consuming, and subjective [1]. Cognitive
diagnosis has emerged in this case.

As cognitive diagnostic technologies continue to evolve and innovate,more andmore
intelligent tools and platforms are being developed. These tools and platforms not only
help professionals such as teachers to quickly and accurately assess and diagnose, but
also provide personalized and customized learning and treatment programs for students.
For example, in the field of smart education, various smart learning platforms and appli-
cations have been widely used, such as Coursera and Khan Academy. These platforms
and applications not only provide a large number of online courses and educational
resources, but also can automatically generate course contents and exercise questions
suitable for students’ learning according to their learning situations.
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Fig. 1. Shows an illustration of a cognitive diagnostic. By selecting which tasks to complete,
students receive grades. The degree to which each knowledge topic was mastered by the students
was assessed using the cognitive diagnostic technique.

The goal of cognitive diagnosis in the context of intelligent education is to determine
students’ level of knowledge mastery based on their answer history [8]. Consider Fig. 1
as an illustration, after a series of exercises and based on the correct or incorrect status of
the exercises, the student’s knowledge mastery level is obtained through the process of
cognitive diagnosis. In practice, these diagnostic evaluations are crucial and serve as the
foundation for providing students with exercise recommendations and individualized
instruction [9].

Many experts have conducted extensive research in the field of cognitive diagnosis,
such as item response theory (IRT) [2] and its multidimensional extension (MIRT) [3],
the noisy gate model (DINA) [4] and its variants, which are classic cognitive diagnosis
models in educational psychology. Despite the fact that these models have produced
some outcomes, their interaction functions are manually created, and most of them are
solved through parameter estimation, where they are linear combinations of student
features and exercise features [10]. These might not be adequate to capture the nuanced
dynamics of how students interact with activities in intelligent education. As a result,
numerous researchers areworking hard to increase the precision of cognitive diagnostics.
To address this issue, many researchers have designed neural network-based cognitive
diagnosis frameworks, such as the Neural Cognitive Diagnosis Model (NeuralCDM) [5]
to incorporate more contextual data and preexisting linkages between knowledge areas,
or to better respond to the complex interaction between students and activities [6].

In contrast, we have found that traditional cognitive diagnosis methods are mainly
used for core subjects (such as mathematics) and mainly analyze objective questions.
However, in programming exercises that are mostly subjective, we have found that using
traditional cognitive diagnosis methods will have significant limitations, such as poor
diagnostic effectiveness and insufficient use of information. Programming exercise is a
special type of subjective question, and the student’s answer (source code) contains rich
information. When students write source code, it can be considered as the process of
using multiple knowledge points to solve problems, including programming languages,
algorithms, and data structures. Therefore, if traditional cognitive diagnosis is directly
applied to programming exercises, it is equivalent to simply diagnosing it as an objective
question, ignoring the information contained in the subjective answers of programming
exercises.

Therefore, to address the above issues, we propose a cognitive diagnostic model
for the field of program design (PECDM). The PECDM model incorporates student
responses to program design exercises and the difficulty level of the exercises into tra-
ditional cognitive diagnostic factors, allowing for the capture of rich information from
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Fig. 2. Description of PECDM Model Diagnosis Process

student subjective answers in source code to improve diagnostic accuracy and adapt
cognitive diagnosis to the field of program design. Ourmain contributions are as follows:

• In order to accurately and effectively apply cognitive diagnosis to the programming
domain, we propose a cognitive diagnosis model applicable to the programming
domain.

• We crawled the information of more than 100 students doing questions, 7152
programming exercises, and 37 types of knowledge from the codeforces website,
pre-processed the data, and organized them into a dataset.

• Wepropose the PECDMmodelwith the overall structure shown in Fig. 2.Ourmodel’s
precision, adaptability, and interpretability are validated by comparing it to other
models using a custom-created dataset.

The remaining sections of the paper are organized as follows. Section 2 explains the
development and historical context of cognitive diagnostics, followed by a relevant task
specification in Sect. 3, the composition of our model in Sect. 4, experimental results in
Sect. 5, and conclusions in Sect. 6.

2 Related Work

Programming. Programming is the process of programming on a computer to achieve
some predetermined function. With the rapid development of the Internet, programming
is not only becomingmore andmore popular, but also becoming one of the essential skills
for people in the digital economy. Programming skills have brought a lot of convenience
to people’s daily work and life, providing more job opportunities not only for computer
professionals but also for non-computer professionals. Nowadays, there is a growing
demand for learning programming andmore andmore people are learning programming.
Tomeet the needs of students, more andmore programming learningwebsites are widely
used, such as Codeforces, LeetCode and other websites that provide a large number of
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programming exercises to help students improve their programming skills. However, the
difficulty of learning programming is that students not only need to master the correct
syntax structure, but also need to apply relevant algorithms and knowledge points to
solve problems according to practical needs. Therefore, programming learning requires
a lot of effort and time, but with continuous learning, one can gradually master this
important skill and play an important role in various fields.

Cognitive Diagnosis. Currently, in the context of intelligent education, researchers
have proposed many cognitive diagnosis models. IRT [2] and DINA [4] are the most
fundamental and traditional approaches for cognitive diagnostics. IRT mainly uses a
one-dimensional continuous latent feature to describe students and exercises, such as
students’ latent potential, exercise difficulty, and exercise discrimination, and then pre-
dicts the probability that students will correctly answer exercises through a normal
distribution logistic function [6]. In order to reflect students’ abilities in multiple dimen-
sions, Multidimensional item response theory was proposed by Reckase et al. (MIRT)
[3]. DINA not only considers students’ ability levels but also considers their mastery
of different attributes. In the DINA model, each item has several attributes, and stu-
dents may or may not have mastery of each attribute. The model introduces an attribute
matrix that describes which attributes each item is related to. If a student masters all the
attributes related to an item, he can answer the item correctly. In this way, the DINA
model can identify students’ mastery of different attributes and use it for diagnostic
classification. In recent years, a number of researchers have created cognitive diagnosis
models based on neural networks, continually seeking to enhance their precision and
interpretability. NeuralCDM, for instance, employs a MIRT-inspired shadow layer and
two fully connected layers to replicate the interaction between students and activities.
The connection-driven cognitive diagnostic RCD [11] models the prior structural rela-
tionship between students’ exercise interaction and knowledge points using a relation
graph with multiple layers. CDGK [12] transforms knowledge concepts into a graph
and only considers the leaf nodes of the knowledge concept tree to collect knowledge
concepts and decrease the dimensions of the model.

3 Problem Statement

3.1 Definition of Cognitive Diagnosis

The learning system can consist of a series of students, exercise records and knowledge
points, each exercise is marked with the relevant knowledge point, and students can pick
which ones they want to complete. Assume that the learning system has N students, M
exercises, and K knowledge points., which can be denoted as S= {s1, s2, s3……, sN}, E
= {e1, e2, e3……, eM } andK= {k1, k2, k3……, kk}.Where each student has an exercise
record, i.e., a response log R, represented as a tuple (s, e, r, c) with s belonging to S, e
to E, and r to {0, 1} representing the score of students on exercise e. r = 1 means that
student s answered exercise e correctly and r= 0 means that he did not answer correctly.
c represents the source code of the student’s response on exercise e. And there is also
the Q matrix, Q = {Qij}M×K represents the Q-matrix, it shows how the practice and the
knowledge point are related. Qij = 1 represents the exercise ei contains the knowledge
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point kj, otherwise Qij = 0. The problem is defined as given the student’s response log
R and Q matrix, our goal is to uncover the student’s knowledge mastery through the
student performance prediction process.

3.2 Components Need for the System

Several considerations that should be taken into account when using the cognitive
diagnosis approach for programming are introduced in this section.

Exercise Records. The exercise records of students in the learning system contain
important information. By analyzing these records, we can determine the students’ level
of mastery of the knowledge and predict their accuracy in answering questions.

Knowledge Composition. Referring to the Q-matrix, which explains how exercises
and knowledge points relate to one another.

Knowledge Difficulty and Exercise Discriminability. Knowledge difficulty hdiff and
exercise discriminability hdisc are extended from the IRT model and DINA model. hdiff

Represents the difficulty of the knowledge point, while hdisc indicates the exercise’s
capacity to identify between students with various levels of expertise.

Exercise Difficulty. The difficulty value corresponding to the programming exercises.

Exercise Code. The code submitted by students contains semantic and syntactic infor-
mation, which reflects their mastery of programming languages and related algorithmic
knowledge points. Therefore, we can extract the students’ level of knowledge from the
code.

4 The Proposed PECDM Framework

Figure 2 shows the overall framework of PECDM. Specifically, the input layer prepares
the information needed for cognitive diagnosis, such as student exercise logs and the Q
matrix. In the embedding layer, according to the data provided by the input layer, relevant
embedding vectors are created, mapping students, exercises, and knowledge points to
a hidden space, obtaining some embedding representations. The layer of the neural
network, the cognitive diagnosis factors from the embedding layer are first combined
and then undergo non-linear transformations through the fully connected layer. The final
output layer is used to predict students’ exercise performance.

4.1 The Input Layer

In this layer, we use the information of student practice logs (information of student exer-
cises and scores generated during practice) and the Qmatrix of exercises and knowledge
points. During training, the student and exercise sets are read, and each element is
converted into a one-hot vector, xs ∈ {0, 1}1×N , xe ∈ {0, 1}1×M .
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4.2 The Vector Embedding Layer

This layer’s primary function is to create matching embedding vectors for use in the
following neural network layer depending on the data provided by the input layer. To
acquire the corresponding initialized embedding vectors, we multiply the one-hot vec-
tors of the students, exercises, and knowledge points with trainable matrices after first
encoding them into a hidden space, as shown in Eq. 1.

Vi = σ(xSi × A)

hdiffj = σ(xej × B)

hdiscj = σ(xej × C)

ediffj = σ(xej × D)

Qj = xej × Q (1)

Which A ∈ RN×K , B ∈ RM×K , C ∈ RM×1, and D ∈ RM×1 are trainable matrices
and Q is a pre-defined Q matrix. The vector Vi ∈ (0, 1)1×K represents the mastery level
of knowledge, hdiffj ∈ (0, 1)1×K represents the difficulty of each knowledge point in

exercise ej, hdiscj ∈ (0, 1) represents the ability of exercise ej to differentiate between

students of different skill levels, and ediffj ∈ (0, 1) represents the difficulty value of

exercise ej ,Qj ∈ {0, 1}1×k represents the relationship between exercise ej and knowledge
points. The σ function here represents the activation function, and the sigmoid function
is used in this case.

The vector cij represents the proficiency of the knowledge points demonstrated by
student si in solving problem j. The code2vec technique is mainly used to represent the
student’s practice code, which contains rich information that can be effectively utilized in
the subsequent neural network layer to enhance the diagnostic effect. First, the student’s
practice code is converted into an AST syntax tree, and different paths are extracted.
The embedding representations are obtained for each token and path of the code snippet,
which are the starting token xs, path pj, and ending token xe. Then, a comprehensive
vector is obtained by combining the starting and ending tokenswith the path, followed by
a fully connected layer to merge the various parts of the previous comprehensive vector.
Since different contexts have different semantics and structures, their importance should
also be different. Therefore, the corresponding attention αi is calculated for each context,
and the final overall vector v is obtained by weighted sum. Then, the related knowledge
points are constructed as a label matrix, and the proficiency vector of the knowledge
points is obtained by passing through a fully connected layer and a softmax function,
representing the student’s mastery level in the corresponding knowledge points.

ci = embedding(< xs, pj, xe >) (2)

c
′
i = tanh(w · ci) (3)
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αi = exp(c
′
i · α)

∑n
j=1exp(c

′
i · α)

(4)

v =
∑n

i=1
αi · c′

i (5)

4.3 The Neural Network Layer

Inspired by the NCDM model, we use some interpretable diagnostic factors obtained
from the vector embedding layer connected to predict students’ practice performance
through the student practice interaction function. The details are as follows:

xij = Qe
j ◦

(
Vi + cij − hdiffj × ediffj

)
× hdiscj (6)

The fully connected layer is then designed as follows:

fij = ϕ
(
ω × xij + b

)
(7)

Here, fij represents the probability that student si answers question j correctly, and ϕ is
a non-linear interactive function. ω and b are trainable parameters. The neural network
layer uses two fully connected layers and one output layer. A technique is utilized to
constrain that each in the layer is positive in order to satisfy themonotonicity assumption.

4.4 The Prediction Layer

A student’s final knowledge proficiency vector Vi, can be found by estimating how well
theywould execute an exercise. The loss function is defined as the cross-entropy between
the true score yij and the predicted scorey

′
ij, defined as follows:

loss = −
∑

i

∑

j
(yijlogy

′
ij + (1 − yijlog(1 − y

′
ij))) (8)

5 Experiments

Tovalidate the efficacy and interpretability of the proposedmodel, comparative testswere
done using a number of baseline models. This section begins with a brief introduction
to the dataset, followed by an analysis and discussion of the experimental outcomes.

5.1 Overview of Datasets

From Codeforces, we crawled the practice records of over 100 students and 7152 pro-
gramming exercises encompassing 37 knowledge points for our research. To guarantee
that each student has sufficient data for diagnosis, we chose students with at least 15
workout recordings. In addition, we divided the data into three distinct sets: 70% for
training, 10% for validation, and 20% for testing. The training set was used to train
the model, the validation set was used to assess the quality of the model and update
parameters, and the test set was used to evaluate the model.



160 Y. Huang and K. Wang

5.2 Baselines

We compared the PECDM model on the same data set with the following baseline
models:

• Item Response Theory (IRT)
• Multidimensional Item Response Theory (MIRT)
• Deterministic Input Noise and Gate Model (DINA)
• Neural Cognitive Diagnosis Model (NCDM)

5.3 Experimental Results

Analysis ofPredictionAccuracy. It is challenging to do a direct assessment because the
findings of cognitive diagnostic take the shape of a vector,where each element denotes the
student’s mastery of a particular knowledge point. We test our model by predicting how
well students will perform on issues they haven’t seen before because the outcomes of
cognitive diagnostic are typically positively connected with the likelihood that students
would properly answer exercises. In predictive accuracy analysis, a variety of metrics
can be used to assess the performance of cognitive diagnostic models. Commonly used
metrics include accuracy, recall, F1 score, AUC, and RMSE. We selected two metrics,
accuracy and AUC, for performance evaluation.

Table 1 summarizes the predictive performance of the evaluation metrics, including
accuracy and AUC. The best outcome is shown in the table’s boldface. it can be seen
from the table that our model outperforms the NCDM model by about 17% and 12% in
terms of improvement in prediction, which significantly indicates the effectiveness of
our model.

Ablation Experiments. As our cognitive diagnosis model incorporates factors such
as exercise difficulty and student practice code, to understand their impact on model
performance, we conducted related experiments, and Table 2 shows the results. The
table clearly shows that each optimization reduces model accuracy when it is removed,
showing that each factor is appropriate.

Interpretability Analysis. The likelihood that a student would successfully complete
an activity depends, intuitively, on how well they understand a certain knowledge idea.
For a certain knowledge point k, for instance, if student a has a higher level of mastery
than student b, it means that student an is more likely to respond correctly to exercise

Table 1. Shows the outcomes of experiments on real datasets to predict student grades.

Method Accuracy AUC

DINA 0.634 0.714

IRT 0.739 0.821

MIRT 0.837 0.922

NCDM 0.776 0.859

PECDM 0.949 0.983
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Table 2. Results of an ablative experiment. The components we eliminated for our trials are
shown by the horizontal lines in the first column. P is the exercise code, while E is the exercise
difficulty.

Method Accuracy AUC

PECDM 0.781 0.875

PECDM 0.942 0.970

PECDM 0.949 0.983

questions containing knowledge point k. As a measurement of model interpretability,
consistency (DOA) is used. The following equation represents DOA(k) for knowledge
point k:

DOA(k) = 1

Z

N∑

a=1

N∑

b=1

δ(Fs
ak ,F

s
bk)

M∑

j=1

Ijk
∧

J (j, a, b)
∧

δ(raj, rbj)

Ijk
∧

J (j, a, b)
(9)

whereZ = ∑N
a=1

∑N
b=1 δ(Fs

ak ,F
s
bk),F

s
ak indicates student’s level of expertise for knowl-

edge topic k. If x > y, then δ(x, y) = 1, otherwise δ(x, y) = 0. If exercise j contains
knowledge concept k, then Ijk = 1, otherwise Ijk = 0. If both student a and student
b have practiced exercise j, then J (j, a, b) = 1, otherwise J (j, a, b) = 0. raj shows
student’s performance on exercise j.

We compared the PECDM model with DINA and NCDM because there isn’t a
clear correlation between the exercises and knowledge points in conventional cognitive
diagnostic models like IRT, MIRT, and PMF. The PECDM model is superior to the
other baselines in terms of interpretability, according to the findings displayed in Fig. 3.
Additionally, we notice that the DOA value of NCDM is lower than that of PECDM,
demonstrating the greater explanatory power of our model.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

DINA NeuralCDM PCDM

Fig. 3. Shows the interpretability of DOA results.
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Fig. 4. Representation of students’ application of knowledge points in code representation.

Case Study. In order to demonstrate that the level of student mastery of relevant knowl-
edge points can be extracted from subjective answers to exercise codes, we selected two
examples. As shown in Fig. 4, the bar chart at the top represents the student’s code
proficiency, and it can be seen from the code that the student used the corresponding
knowledge points and answered the question correctly. The two bars corresponding to
the math and greedy knowledge points in the histogram are significantly higher, indicat-
ing a certain degree of interpretability. In another case, considering the brute force and
execution knowledge points, the student answered the question incorrectly, and there
was no obvious use of the relevant knowledge points or incorrect usage in the code. The
corresponding knowledge points were found to be relatively low compared to others
in the histogram. Both of these cases illustrate to some extent that the level of student
application of relevant knowledge points can be captured from their code.

6 Conclusion

This research presents a novel programming-specific cognitive diagnosis paradigmbased
on neural networks. In particular, the model incorporates the source code of student
answers to exercises and the difficulty of the tasks, so exploiting the subjective informa-
tion provided by students and enhancing the diagnostic efficacy. Experiment results on
real-world datasets demonstrate that our model is more precise and understandable. In
addition, a sensitivity analysis was performed to validate the added parameters.
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