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Abstract. The shadow price of undesirable outputs is a useful measurement to 
assess the performance of environmental regulations. This paper makes a non-
parametric estimation of the carbon shadow price (CSP) in China at the regional 
level during 2007-2020. By applying the non-oriented slack-based measurement 
data envelopment analysis (SBM-DEA) model, as well as Bootstrap-DEA meth-
ods, this paper presents that there was a stable increasing trend of CSP since the 
establishment of pilot carbon emissions trading markets after 2011. This paper 
also reveals that the carbon emissions trading market in China is not yet fully 
efficient, and the operation modes of the carbon emissions trading market in 
China could be further improved. Policy implications are also needed for the im-
provement of the carbon emissions trading market. 
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1 Introduction 

Carbon trading is thought to be one of the most cost-effective ways to mitigate carbon 
emissions issues[1]. The carbon emissions trading market provides marketization 
means for green environmental projects and opens up a new channel for financing these 
projects[2]. In October 2011, the National Development and Reform Commission 
(NDRC) announced to establish seven administrative areas to build up pilot carbon 
shadow price carbon emissions trading markets including Beijing, Shanghai, Hubei, 
Guangdong, Shenzhen, Tianjin, Chongqing and Fujian. The establishment of carbon 
emissions trading markets witnesses the practice of using market mechanisms to help 
control carbon emissions reduction. 

The shadow price reflects the price at which resources are optimally utilized, also 
known as the optimal plan price[3]. [4] also defines the shadow price as the increase in 
social welfare caused by the marginal increment of goods or production factors. The 
carbon shadow price (CSP) is also regarded as the opportunity cost of emissions reduc-
tion in terms of economic output loss, which is regarded as a comprehensive measuring 
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indicator for making sound decisions related to carbon trading[5]. When considering 
the carbon emissions trading markets, participants with lower CSP will have the ad-
vantage of obtaining additional net income to meet the certain carbon allowance [6]. 
So, it is important to investigate the relationship between the real CSP and the carbon 
trading price of carbon emission trading markets in different regions.  

By incorporating the slack of input excesses and output deficits as the slack varia-
bles, and estimating the dual linear program of the SBM model, we can get the shadow 
price of carbon emissions, which solves the clack problem and improve the accuracy 
of results compared with traditional models [7]. After that, scholars have extended it to 
evaluate the environmental efficiency and shadow price of pollution at different levels. 
For example, [8] studied the CSP of 285 cities in China using the dual model of SBM-
DEA. [9] adopt the modified dynamic SBM model to evaluate China’s carbon emis-
sions efficiency from 2007 to 2017. 

However, according to [10], the traditional DEA model like the SBM model is vul-
nerable to extreme values and may face a deviation problem, especially in the case of 
small samples. The Bootstrap-DEA method is essentially a nonparametric Monte Carlo 
simulation method that takes a numerical simulation of the original sample data and 
conducts DEA calculation with data uncertainty eliminated[11]. Utilizing the bootstrap 
method could provide large-sample of evaluation results and correct the biased esti-
mates[12]. On this basis, this paper will further calculate the CSP based on the Boot-
strap-DEA method to modify the CSP gained from the statistical results. We also com-
pare the estimated CSP with carbon trading prices in seven pilot carbon emissions trad-
ing markets obtained from the Reset database in China for the years 2013-2020, in order 
to find the difference between the theoretical carbon price and realistic carbon price 
trading in the market. Results reveal that the carbon emissions trading market in China 
could be further improved, and government intervention and governance should be 
strengthened to stimulate the vitality of carbon emissions trading activities to help re-
alize the theoretical equilibrium price. 

2 Methods  

2.1 SBM model 

Based on[13], we adopt a dual model of non-parametric linear programming form based 
on a non-oriented slack-based measurement data envelopment analysis (SBM-DEA) 
model in the estimating of the carbon shadow price (CSP).  

Suppose there are J decision-making units (DMUs). Let n, m, and r denote the input 
factor, desirable and undesirable output, with each having N inputs, M desirable out-
puts, and R undesirable output, respectively. The non-parametric linear programming 
is defined as follows: 
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 s. t.

⎩
⎪
⎨

⎪
⎧ ∑ 𝜆 𝑥 𝑠 𝑥 , 𝑛 1,2, ⋯ 𝑁;

∑ 𝜆 𝑥 𝑠 𝑥 , 𝑚 1,2, ⋯ 𝑀;

∑ 𝜆 𝑐𝑎 𝑠 𝑐𝑎 , 𝑟 1,2, ⋯ 𝑅;

∑ 𝜆 1 , 𝑠 , 𝑠 , 𝑠 , 𝜆 0, 𝑗 1,2, ⋯ 𝐽,

 (1) 

where 𝜌 ∗ denotes the efficiency score of 𝐷𝑀𝑈 , and ρ ∈ 0,1 . 𝑠 , 𝑠 , and 𝑠  repre-
sent the slacks of potential in input, desirable outputs, and undesirable outputs; 𝑥 , 
𝑦 , and 𝑐𝑎  are the actual inputs, desirable and undesirable outputs for the 𝐷𝑀𝑈 , 
respectively. The 𝐶𝑂  emissions inefficient 𝐷𝑀𝑈  has the full efficiency of 𝐶𝑂  emis-
sions under the condition that 𝑠 , 𝑠 , 𝑠 0, and 𝜌 ∗ 1, which can be improved by 
reducing undesirable outputs 𝑠 . 𝜆  are the intensive vectors, where 𝜆 0 indicates a 
constant return to scale production. 

By adopting the Charnes-Cooper transformation, we can obtain the dual liner pro-
gramming as follows: 

max 𝑍 𝑢 𝑦 𝑢 𝑥 𝑢 𝑐𝑎  

 s. t.

⎩
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𝑢 ,

  (2) 

where Z is the virtual profit. 𝑢 , 𝑢 , and 𝑢  are the dual variables of desirable output, 
inputs, and undesirable output. Assume that the market price of desirable output to 1, 
and then the shadow price of 𝐶𝑂  emissions 𝑝  is: 

 𝑝 𝑝 .  (3) 

2.2 Bootstrap-DEA model 

The Bootstrap-DEA method could obtain the bias-corrected results of carbon shadow 
price through repeated sampling. Following [12, 14], the calculation process of the 
Bootstrap-DEA method based on the SBM model is as follows: 

1. Adapting the SBM model with the original data set 𝑅 𝑥 , 𝑦 , 𝑐𝑎  to calculate the 

initial value of CSP 𝑝 , where  
2. Conducting bootstrap method to obtain repeated samples𝛽 . 
3. Obtain the adjusted new data set 𝑅∗ 𝑥∗ , 𝑦∗ , 𝑐𝑎∗ : 

 𝑅∗ 𝑅 . (4) 
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4. Repeat the above process N times to get the bias-corrected value of CSP 𝑝
∗
. 

5. Finally, we could get the estimated value of CSP by the equation: 

 𝑝 2𝑝 ∑ 𝑝
∗

, (5) 

where 𝑛 1,2, ⋯ 𝑁 represents the 𝑛 times random sampling of the bootstrap method, 
and we set N as 1000 in this study. 

3 Data and Results 

3.1 Data collection 

The panel data set includes 30 provinces and municipalities in China from 2007 to 2020, 
which excludes Hong Kong, Macau, Taiwan and Tibet for data availability and com-
parability. According to[15], we collect 5 types of data in China at the regional level, 
including labour force (𝐿), capital stock (𝐾), and energy consumption (𝐸) as inputs, and 
regard real gross domestic product (𝐺𝐷𝑃) as desirable output. 𝐶𝑂  emissions (𝐶) are 
selected as undesirable output to calculate the shadow price. To be specific, the number 
of industrial employees is adopted to illustrate the labour force (𝐿), which is obtained 
from the China Statistical Yearbook and statistical yearbooks of each region. Referring 
to [16], we adopt the perpetual inventory method to calculate the capital stock. Data on 
energy consumption are collected from the China Energy Statistical Yearbook and are 
converted into tons of standard coal equivalent (TCE). Real GDP data are also acquired 
from China Statistical Yearbook and are deflated by price indices to constant 2000 
prices. Data on 𝐶𝑂  emissions (𝐶) are calculated by the formula provided by the 2006 
Intergovernmental Panel on Climate Change (IPCC) guidelines[17]. 

The total number of observations is 420, and all monetary variables are transformed 
into actual variables based on the year 2000 considering purchasing power parity of 
RMB. The summary statistics of indices are shown in Table 1. 

Table 1. describes the statistics of all the raw data mentioned above. (Source: Processed Data) 

Indices Unit Mean St.dev. Min. Max. 

Labour force 10  persons 2552.74 1635.70 279 7039.00 

Capital stock 10  RMB 52811.05 44897.85 2323.61 239587 

Energy consumption 10  TCE 14060.09 8706.17 1057 41826.80 

GDP 10  RMB 4683.44 3491.48 358.04 16536.89 

𝐶𝑂  emissions 10  tons 40478.09 29245.94 3713.587 155811.90 

3.2 Carbon shadow price results 

The average value of CSP obtained from actual data in China by adopting the SBM 
model and the Bootstrap-DEA model is illustrated in Figure 1 for comparison. It can 
be seen that both of the two methods follow a fluctuating upward trend for the study 
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period, indicating that the environmental performance of China is improving. To be 
specific, the initial CSPs without bias correction tends to be overestimated, and the 
result obtained through the Bootstrap-DEA model are more dispersed. Similar findings 
were in agreement with those of [18] and [6].  

We could also notice there exist three turning points in the results for both two dif-
ferent methods during the whole period. The first turning point is in 2009. The 2008 
financial crisis might have caused the decline of CSP. The second turning point is in 
2012, and CSP had been on a stable increasing trend after this year. This can be at-
tributed to the establishment of pilot carbon emissions trading markets in seven regions 
of China since 2011. The third obvious turning point is in 2019 when the COVID-19 
pandemic could be responsible for the slight decrease of the CSP after this point, but 
the overall trend is still increasing. 

 

Fig. 1. Dynamics of average CSP at the regional level in China (RMB/ton). (Source: Processed 
Data) 

To further identify the characteristics of regional-level disparities, we separate 30 
provinces into eastern, western, northeastern, and central regions (displayed in Figure 
2). It can be seen that the average CSPs for all four regions follow a slightly upward 
trend during 2007-2020, although the absolute values of the CSPs differ. In general, the 
relative variation of CSP via the two methods is the same, and bias-corrected results 
gained from the Bootstrap-DEA method still show an enhanced dispersion compared 
with the original results. However, differences between the four regions still exist. The 
eastern region exhibits the highest CSP in China during the study period than those of 
other regions, as most economically developed provinces are located in this region (i.e., 
Beijing, Shanghai, Guangdong, and Hainan). In comparison, the west and central re-
gions exhibit lower levels and a slow but fluctuant rise of CSP. The northeast region 
has relatively the lowest level of CSP but a significantly faster growth rate. As for the 
bias-corrected CSP by the Bootrap-DEA method, the results of eastern and western 
regions were higher than the original CSP but declined to a certain level for northeastern 
and central regions.  
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Fig. 2. Regional CSPs in China over time (RMB/ton). (Source: Processed Data) 

In view of data availability, we simultaneously compare the results of the dynamic 
average value of CSP, as well as carbon trading prices of the above seven pilot carbon 
emissions trading markets obtained from the Reset database in China for the years 
2013-2020. As can be seen from Figure 3, Beijing, the capital of China, a developed 
city, where its pilot carbon trading price ranked first over other pilot areas. One could 
also notice that the carbon emissions trading price in the Beijing pilot is also the only 
one that exceeds the estimated CSP from 2015 and shows the best development over 
time compared with other pilots. The Shanghai carbon trading pilot also showed a con-
spicuous performance since 2016, as Shanghai is also a developed city and is the finan-
cial centre of China. As the Fujian carbon emissions trading market was established in 
late 2016, its carbon trading price was still at the lowest level compared with other 
pilots. However, the carbon trading price in other pilots is at a relatively low level com-
pared with the estimated CSP., indicating that it is difficult to realize the theoretical 
carbon trading price in the short run.  

 

Fig. 3. Average CSP and carbon emission allowance trading price of experimental regions over 
time (RMB/ton). (Source: Processed Data) 
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4 Conclusions  

This research illustrates the data envelopment analysis (DEA) of the SBM model to 
calculate the carbon shadow price (CSP) in China at the regional level. The Bootstrap-
DEA model is also considered to obtain the bias-corrected results. The findings demon-
strate that China possesses the immense capability for emission reduction, but the car-
bon emissions trading market in China is not yet fully efficient, and the operation modes 
of the carbon emissions trading market in China could be further improved. The envi-
ronmental decision-makers should make some targeted policies based on the character-
istic of companies supporting cleaner production projects in different regions. 

In future research, we will consider more factors influencing the CSP like policy 
systems to get more comprehensive results. More models could also be considered to 
obtain more precise results. 
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