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Abstract. efective faults in insulator power equipment can affect transmission 
equipment's normal operation and electricity consumption in the service area. 
To reduce or avoid transmission faults caused by defective insulator power 
equipment failures, structural defects of insula-tors need to be detected. In con-
trast, different insulator defects have significant differences in style and size. 
The defective parts in the UAV scenario have problems such as blurring, obscu-
ration, and environmental factors, which lead to challenging insulator power 
equipment defect detection. Therefore, we propose a model specifically for de-
tecting insulator defects in power equipment - GSNA-YOLOv7. We added 
GSConv to improve the New-Neck module to better balance the inference 
speed of the model with the detection accuracy of defective targets of power 
equipment, reduce the redundant information of the model, and better achieve 
the effect of real-time detection; improve the DownNAM module, introduce the 
attention mechanism, apply the weight sparsity penalty, stabilize the perfor-
mance and computational efficiency, and make the model pay more attention to 
the defective small target information. The SFID insulator dataset and Vis-
drone2021 UAV dataset are trained and validated. The experimental results are 
analyzed, concluding that GSNA-YOLOv7 has a better detection effect for 
power equipment defect detection in the UAV shooting scenario and is more 
adaptable to detecting small targets in insulator fault defect datasets. The meth-
od is better than many existing insulator defect detections. The method outper-
forms numerous current insulator defect detection methods, with mAP im-
proved by 0. 9% and 0.6% and parameter volume reduced by 0.2G, compared 
with the base model YOLOv7. 

Keywords: Defect detection; insulator defects; small target detection; attention 
mechanism; power equipment 
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1 Introduction  

Insulators in power equipment generally exist outdoors, making the equipment suffer 
from environmental influences such as temperature rain, which leads to problems 
such as electrical deflagration and material aging, producing defects such as self-
detonation, contamination, and insulator cracks. The staff cannot go through the data 
of the aggregated insulator power equipment to discover the defects of the power 
equipment insulators in the first place, which will cause severe accidents and substan-
tial economic losses, so the defect detection of insulators on transmission lines is 
critical. Defect detection is a special sub-problem and an essential process in the de-
fect management of power equipment. Among the defect detection data sets, visually 
similar normal and abnormal samples exist that are only slightly different. Although 
traditional anomaly detection methods are well suited for data with high intraclass 
variance, they cannot capture subtle differences. We address this problem by identify-
ing image features extracted in convolutional neural networks using network detec-
tion. With the growth in the use of insulator power equipment, the application of im-
age recognition techniques with deep learning in insulator defect recognition has be-
come one of the important research directions for defect detection. In industrial pro-
duction, the quality of products is constantly monitored and improved. Therefore, 
there is a need to detect minor defects using insulators reliably and to take out defects 
in images individually for identification to achieve classification and detection of 
various types of defects [7][14]. 

To cope with the above problems related to defect detection, we propose a one-
stage attention mechanism-based lightweight real-time defect detection network, 
GSNA-YOLOv7. In which we design a New-Neck novel lightweight structure, we 
replace the original convolution with GSConv 17, which preserves the original con-
nection as much as possible, in terms of the model's insulator defect detection accura-
cy and inference speed are balanced to ensure real-time detection of the insulator 
defect part. Moreover, we add the NAMAttention 18 attention mechanism in the mul-
ti-scale fusion stage to improve the detection of insulator power equipment defects by 
improving the global information interaction of feature information, reconstructing 
the overall components of the network, and reducing redundant information, thus 
improving the problem of defect ambiguity, occlusion, and environmental factors that 
affect the detection of insulator power equipment defects in power equipment. 

In summary, the contributions made in this paper are as follows. 

 We designed a lightweight attentional real-time defect detection model, improving 
insulator defect detection's effectiveness and accuracy. 

 We designed a lightweight New-Neck structure that reduces the computational cost 
and improves the inference speed of the network by replacing the original convolu-
tion module and adding deep convolution and dense convolution to generate fea-
ture information without model compression. 

 We designed the attention pooling module to increase the global feature interaction 
fusion in the multi-scale fusion stage by adding the global information interaction 
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attention mechanism to enhance the model's attention to insulator defect sites and 
address the influence of environmental factors on defect detection. 

 Tested on the SFID insulator dataset and the UAV Visdrone2021 dataset, our mod-
el reduces the model computation by 0.2G, achieves an FPS of 165, and improves 
the mAP values by 0.9% and 0.6%, respectively, compared to the YOLOv7 26 
model. 

2 Related Work 

2.1 Target Detection 

In computer vision, good progress has been made in target detection. The model 
based on a single-stage strategy directly regresses the classification and localization of 
targets, which initially reaches the requirements of real-time compatibility, etc. 

One-stage detectors can be designed based on anchoring.YOLOv3 27, SSD [28], 
and RetinaNet 33 place anchor boxes densely on the feature map and then predict 
object classes and anchor box offsets.VFNet 29 and RepPoints 30 are anchorless de-
tectors that indicate critical points, such as corner or center points, to form enclosing 
boxes. Compared with single-stage networks, two-stage methods such as Faster 
RCNN 4, Cascade R-CNN 31, R-FCN [16], and Dynamic RCNN 32, first generate 
region suggestions to distinguish foreground from background, and thus inference is 
slower. However, the improved design improves the detection performance and 
makes it more suitable for high-precision scenes. The R-CNN [1] model abandons the 
traditional violence detection method by finding the marquee regions of the input 
feature picture for the target to be detected, extracting the feature vectors, fine-tuning 
the boxes, and then determining the class of the candidate regions by the classifier. 
The Fast R-CNN [3] model does not need to refine the characteristics of each partici-
pating region separately. FasterR-CNN adds a region generation network to the Fast 
R-CNN model, improving the overall computational inference speed and the accuracy 
of detecting targets. The end-to-end YOLO and single-point multi-frame detector 
models represent the regression-based single-stage detection model.YOLO detects 
target objects faster than classical models of the same period and only needs to input 
images into the neural network to complete detection through a single stage. The SSD 
model incorporates the above models' regression plus candidate region mechanism 
and uses multi-scale feature maps for detection and convolution. For detection, set up 
a priori boxes in three steps. The disadvantage is that it requires artificial adjustment 
of the parameters of the box, the recall rate for small targets to be detected could be 
more effective, and there needs to be more feature extraction. Through the improve-
ment and development of YOLO, its network performance is gradually applicable to 
most of the target detection, and it can also complete the identification and detection 
of the target to be detected well, completing the two-way improvement of real-time 
and accuracy. 
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2.2 Power Equipment Defect Detection 

The defect detection of power equipment has been integrated into deep learning 
methods in recent years by using convolutional neural networks to identify different 
types of defects in power equipment. The YOLO algorithm has a faster inference 
speed and recognition speed compared to other baseline network models of the same 
period, which can better reflect the real-time requirements of defect detection in pow-
er equipment, and the network also has a better effect on defect detection accuracy. 
yolov1 of 23 is to input the originally captured image directly into the YOLO network 
and output the information of the frame directly. In YOLOv2 5, new features such as 
batch normalization, high-resolution classifier, anchor box convolution, dimensional 
clustering, and Dark-net-19 network are added. yolov3 [27] uses a fully convolutional 
network by dividing image regions, predicting the probability of bounding boxes, and 
then predicting the probability of each region. The main innovations of YOLOv4 24 
are mosaic data enhancement, self-adversarial training, and normalization across 
small batches. However, the computational volume of the model and the inference 
speed required are not up to real-time, making CNNs unavailable for use in industrial 
environments such as power systems. To alleviate this problem, many lightweight 
networks have been proposed. PP-YOLOE 15 is a lightweight network structure to 
improve the first stage of YOLO proposed by Baidu in 2022. SqueezeNet 8 proposes 
a new Fire module.MobileNet 192021 series of networks have model compression 
with deeply separable convolution. An inexpensive operation was introduced in 
GhostNet 6, which has fewer parameters while obtaining the same number of feature 
mappings. 

The detection performance of YOLOv7 26 is higher than any other known classical 
target detector, and it improves both the inference speed of the model network and the 
detection accuracy of the target features.YOLOv7 improves the different connections 
of the branching streams through model compression, which improves the detection 
performance of the defective targets to be detected in power equipment without in-
creasing the inference speed, network depth, and computational complexity. The de-
tection performance of the defect targets detected in power equipment is greatly im-
proved by real-time detection. By using the YOLOv7 base model, major and minor 
defects in power equipment can be better detected, and real-time detection can be 
better achieved. 

2.3 Multi-scale feature fusion 

In the past, target detection development and multi-scale fusion were particularly 
good ways to improve model performance. The feature maps in the lower feature 
layers in the network model have stronger semantic information, lower resolution, and 
very poor attention to target feature details compared to the lower feature layers; the 
opposite is true for the higher layers. According to this problem, multi-scale fusion 
methods follow. The image pyramid model is the original method of multi-scale fu-
sion, which creates different scales of slabs by convolution, with the disadvantage that 
it cannot satisfy real-time and that the inference speed and computational complexity 
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are too large. On this basis, ASPP [9][13] performs extended convolution operations 
at different rates on the input feature map, consistent with the ordinary pooling layer, 
to extract as many features as possible. Based on ASPP, RFBNet 10 adds different 
sizes of convolution to enhance the network model's scale variability and learn fea-
tures. FPN networks are fused by connecting different feature layer branches and are 
not computationally intensive.PANet 25 adds a bottom-up modular structure to the 
network structure of FPNs, which further improves the characteristics of FPNs and 
enriches the information for feature fusion. And AF-FPN [22] adds Adaptive Atten-
tion Module (AAM) and Feature Enhancement Module (FEM) to the traditional fea-
ture pyramid network. In 2020, the DRFPN [34] of CAS designed a new parameter-
free feature pyramid network from an attentional perspective. This dual refinement 
feature pyramid network consists of two modules: the spatial refinement block (SRB) 
and the channel refinement block (CRB). The SRB is based on the context between 
adjacent levels. The CRB learns an adaptive channel merging method based on an 
attention mechanism.  

In this paper, by adding the NAMAttention 18 mechanism to the neck structure, 
adding weighting factors from both channel and space dimensions, focusing on con-
textual information while increasing the weighting ratio of small target information 
for different feature layers, and combining feature fusion, the network's detection of 
small target defect features present in power equipment is greatly improved. 

3 Methods 

3.1 GSNA-YOLOv7 Network Structure 

In this section, to solve the problem of small target defects in the insulator power 
equipment structure, we design the insulator defect detection model GSNA-YOLOv7, 
as shown in Figure 1, through the original input power equipment defect feature map, 
after the backbone network uses a multi-branch stacking module, four feature layers 
in the stack will again be a convolutional normalized activation function to feature 
integration, for the initial The New-Neck structure, as shown in Figure 2, first extracts 
multi-scale features in one direction by replacing part of the original convolution, and 
fuses them; the DownNAM module adds a feature global information attention mech-
anism to input the fused multi-scale features into the detection head for classification 
and regression operations. The New-Neck structure, shown in Fig. 2, utilizes GSConv 
to replace part of the original convolution and generates two new feature layers after 
two fusions so that the model better meets the requirements of real-time electronic 
equipment defect detection while maintaining the target detection accuracy of the 
electrical equipment; the DownNAM module is a modified PAFPN multi-scale pyra-
mid fusion in Neck structure, fusing two feature maps of different scales Ni and Fi+1 
to get a new Ni+1 feature map, and its structure is shown in Figure 3. In Part II and 
Part III of this section, we will offer comprehensive insights into the GSConv and 
DownNAM modules. 
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Fig. 1. GSNA-YOLOv7 model structure diagram.It includes the YOLOv7 baseline model, the 
New-Neck structure, and the DownNAM module. 

 

Fig. 2. New-neck detail diagram. First extracts multi-scale features Ci (i=0, 1, 2) in one direc-
tion, replaces part of the original convolution using GSConv, and the new feature layer ob-
tained after the up-sampling operation is fused with the Ci+1 feature layer of the extracted 

features of the backbone network in a fusion operation, and outputs a new feature layer, Fi+1, 
through a multilayer convolution, and after two fusions to generate two new feature layer. 
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Fig. 3. Detailed diagram of the process of adding YOLOv7multi-scale features fusion by 
DownNAM module. Ni indicates the shallow feature map generated by the top-down path of 
the PAFPN structure, Fi+1 indicates the deep feature map generated by the bottom-up path of 
the PAFPN structure, and Ni+1 indicates the new feature map after multi-scale feature fusion. 

 

Fig. 4. Detail diagram of GSConv. The DWConv (deep convolution) [11] further reduces the 
computational cost and the parameter size of the large core, which facilitates the network to run 
on mobile devices. The original channel is fused with the channel after deep convolution. The 
new channel is fused with the feature map obtained from standard convolution (SC) and DSC 

by using shuffle so that the output of a dense convolution is fused into the deep separate convo-
lution and finally output. 

3.2 New-neck structure 

The original conv is replaced by GSConv 17 in YOLOv7 26. The GSConv is intro-
duced into YOLOv7 to get the new-Neck structure to complete the defect detection of 
insulator power equipment in real-time and to keep the model detection effect stable. 
The model's accuracy in detecting the target is guaranteed with decreased computa-
tional complexity and inference speed. GSConv exists as part of the gradient flow 
branch of the original convolution; if GSConv replaces the original convolution in 
both the backbone network and the neck layer of the model, the depth of the network 
will be significantly increased, which will cause an increase in the resistance of data 
transmission, thus making the speed of inference much higher. When the different 
feature layers' output from the backbone network is passed to the neck layer, the con-
volutional size has reached its maximum and does not need to be changed. Therefore, 
we chose to use GSConv only in the neck layer. At this stage, it is good to use 
GSConv to process the connected feature maps: no compression of model blocks is 
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needed, and the amount of redundant information repetition is meager while having a 
better effect on the channel dimension learning to generate the weights part. This is 
shown in Figure 4. The addition of the shuffle module will allow the feature infor-
mation generated by the dense convolution operation to be present at all different 
locations caused by the depth-separated convolution, which makes the output of the 
dense convolution operation as similar as possible to that of the normal convolution 
calculation and reduces the inference speed and computational cost of the model. It 
makes the defect detection of power equipment a real-time effect, increases the infer-
ence speed of the model, and reduces the complexity of the model. 

 

Fig. 5. Detail diagram of the DownNAM module. By adding the NAMAttention attention 
mechanism to the DownC module in the multi-scale fusion stage of YOLOv7, the scaling factor 
can show the degree of feature information in different channel dimensions and also illustrate 

the strength of the information representation target between channels. 

3.3 DownNAM module 

In the multi-scale feature fusion stage of YOLOv7, small target feature information is 
easily missing during transmission, and the model needs to pay more attention to 
small target features.The NAMAttention 18 attention mechanism, through the connec-
tion of channel information and spatial information between different submodules, 
enhances the information interaction between different dimensions in both ways. 
Therefore, we improve the DownNAM module, as shown in Figure 5, where we in-
troduce this new module for hetero-dimensional interactions in the multi-scale fusion 
of the Neck structure of YOLOv7, where the global scheduling mechanism reduces 
the data information approximately. The global network information interaction is 
enhanced to improve the performance of the network model for detecting target de-
fects in power equipment. The method can suppress insignificant weights and im-
prove the detection effect. As shown in Figure 6. Adding light penalty weights bal-
ances the similarity degree and the detection performance in both directions. As 
shown in Equation (1), to calculate the weights of channel attention, which is used to 
represent the final output characteristics, γ is the scaling factor of each channel; to 
calculate the weights of spatial attention, a homogeneous normalization layer is added 
to calculate the pixel-by-pixel of each feature map in the spatial dimension, as shown 
in Equation (2). 

 M sigmoid W BN F  (1) 
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Where Mc is network output features, γ represents the scaling factor of each chan-
nel. 

 M sigmoid W BN F  (2) 

Where Ms represents network output features, W represents network weights; λ 
represents the scaling factor. 

There is no redundant amount of information computation, such as full connectivi-
ty, etc., the characterization of defective features of devices that do not need to be 
detected is reduced by the addition of regularization terms, and the scaling in BN is 
directly used in the calculation of attention weights, which are missing in other atten-
tion methods. The scaling factor is the variance in BN; the larger the variance, the 
more the channel changes; therefore, the information in that channel will be more 
prosperous and critical. The NAMAttention attention mechanism is added to the mul-
ti-scale fusion module of YOLOv7 to focus on small and medium target information 
of electrical equipment defects in the feature layer with fewer parameters, thus ena-
bling the network to learn critical information better. 

 

Fig. 6. Details of the two submodules Spatial and Channel. γ and λ in the two submodules are 
scaling factors, respectively. The scaling factor of the BN layer is added to the spatial dimen-
sion to handle pixel normalization, to indicate the importance of weights, and thus to measure 
the importance of spatial features; the weight contribution factor is added to enhance the effect 

of attention. 
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4 Experiments 

4.1 Experimental dataset 

We use the insulator SFID dataset to evaluate our network. The insulator SFID da-
taset has 13,000 insulator training images and more than 2,700 insulator validation 
images, containing two classes of insulators and their defective components, on 
whose training and validation sets we obtained detection results. At the same time, we 
trained and tested the detection of our model for the UAV scenario using the UAV 
public dataset Visdrone2021, which contains UAV Ten categories of UAVs, 6471 
training images, and 548 validation images captured. 

4.2 Experimental equipment and details 

We perform all experiments on eight NVIDIA A40 GPUs. All models are based on 
the deep learning framework PyTorch 1.10.0. we set the momentum to 0.937, the 
initial learning rate to 0.01, and the weight decay to 0.0005, using a stochastic gradi-
ent descent (SGD) [12] optimizer. The total epoch is set to 300, and the batch size is 
set to 2. The image size in the insulator SFID dataset was resized to 1536 × 1536 and 
the image size in the Visdrone2021 dataset was resized to 640 × 640 for training and 
validation. 

4.3 Evaluation metrics 

We used average precision, average recall, AP50, mAP, APS, APM, APL, and FLOPs 
as evaluation metrics. mAP is a common measure of overall ability for all classes. It is 
simply the average of AP50 for all classes, while AP50 has an IOU threshold of 0.5. 
In addition, to compare with the computational complexity of different networks, time 
complexity (FLOPs) was chosen to represent the inference speed of different models. 

To validate the performance of our GSNA-YOLOv7 for insulator power equipment 
defect detection, we compared the GSNA-YOLOv7 method with many classical state-
of-the-art models, including the one-stage network YOLOv3 27 and the two-stage 
network Faster R-CNN 4. In addition, there are newer YOLOv5 25 and YOLOv7 26 
models. 
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Fig. 7. Visualization of GSNA-YOLOv7 model for power equipment defect detection. The 
large red box indicates the insulator power equipment tested as a whole; the small pink box 

indicates the specific defective part of the insulator tested. 

 

Fig. 8. Visualization of target detection on visdrone2021-val. a.Visualization of the yolov7 
model; b. Visualization of GSNA-YOLOv7 model. 

4.4 Ablation experiments 

We studied the ablation of our designed New-Neck and DownNAM modules on the 
insulator SFID dataset, respectively, and the results from Table 1 can prove the theo-
retical basis of this paper.  

First, we replace the neck structure of the YOLOv7 model with our designed New-
Neck module, which reduces the number of parameters in the overall structure of the 
network and improves its mAP value by 0.2% relative to the YOLOv7 model. In this 
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network design case, its FLOPs and Params are lower than those of the YOLOv7 
model. 

Second, the mAP value is improved by 0.7% due to the addition of the DownNAM 
module with NAMAttention attention mechanism, which gives the model an overall 
better ability to focus on defective sites, while the overall number of parameters of the 
model does not increase much. Finally, our model reduces about 0.2G in inference 
speed and improves about 0.9% in mAP. Compared to the baseline YOLOv7 model, 
our GSNA-YOLOv7 has better performance, computational and storage advantages. 

4.5 Comparative experiments 

To demonstrate the effectiveness of our GSNA-YOLOv7 method, we performed vali-
dation using the insulator power equipment SFID dataset and the UAV Visdrone 2021 
dataset. The comparison with the classical and newer models, shown in Tables 2 and 
3, better illustrates the real-time accuracy of our model in defect detection, highlight-
ing the advantages of our model in power equipment defect detection and its superior-
ity in terms of the number of parameters and inference speed, which is better than the 
newer model. 

First, as shown in Table 2, our model was compared with the classical YOLOv3 27 
single-stage network and the two-stage network Faster R-CNN 4 in the SFID dataset. 
Our GSNA-YOLOv7 achieves an mAP value of 97.25%, higher than YOLOv3, and a 
faster R-CNN, while the FLOPs are only a small percentage higher than the former, 
but the final detection is higher than the former. Compared with most models, GSNA-
YOLOv7 performs better with fewer parameters and lower inference speed. 

Secondly, for the newer models YOLOv5 25, YOLOv7 26, etc., our model GSNA-
YOLOv7 has better advantages in terms of the number of parameters and inference 
speed, while the final mAP values obtained on the insulator SFID dataset are signifi-
cantly improved relative to the other models, being 0.9% higher than those of the 
YOLOv7 model. mAP values for GSNA-YOLOv7 have a higher mAP value than 
YOLOv5 and have a lower inference speed and number of parameters than that of the 
YOLOV5 model. 

As shown in Table 3, our model on the UAV Visdrone2021 dataset can reach bet-
ter detection results when compared with YOLOv3 and Faster R-CNN; it also has a 
0.6% higher mAP value than the YOLOv7 model. As shown in Table 4, it can be seen 
that the GSNA-YOLOv7 model has a lower number of parameters and inference 
speed compared with other models, and the FPS can reach 165, which meets the real-
time requirements of defect detection. 

We also made a visualization of the effect of detection in the two datasets separate-
ly, as shown in Figures 7 and 8. In Figure 7, we can see that the GSNA-YOLOv7 
model has a good detection effect for insulators and their defective parts with high 
detection confidence; in Figure 8, we made a visualization effect plot comparison 
between GSNA-YOLOv7 model and YOLOv7 model in the UAV Visdrone2021-val 
dataset, a indicates the detection of YOLOv7 model effect and b indicates the detec-
tion effect of GSNA-YOLOv7 model. The comparison of the upper and lower images 
shows that the YOLOv7 model has the phenomenon of missing and wrong detection 
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for the images taken by the UAV scene, and the detection confidence for the target 
object is lower than that of our GSNA-YOLOv7 model. 

Thus, when validated on the insulator power equipment dataset, our approach has a 
fine balance between performance and lightweight. 

Table 1. Comparison results of different modules on the SFID dataset 

Methods FLOPs Size Mean 
Preci-
sion 

Mean 
Recall 

mAP 
[%] 

AP50 
[%] 

YOLOv7 104.7G 1536 99.87 99.75 96.01 99.71 
+New-neck 101.8G 1536 99.89 99.74 96.22 99.79 

+New-
neck+DownNAM 

102.3G 1536 99.98 99.82 96.94 99.89 

Table 2. Comparison results of the effect of each model on the SFID dataset 

Methods Size Mean 
Precision 

Mean 
Recall 

mAP 
[%] 

AP50 
[%] 

YOLOv327 1536×1536 99.67 99.30 93.50 99.50 

Faster R-CNN4 1536×1536 99.10 99.00 90.98 99.19 

YOLOv525 1536×1536 99.81 99.64 95.59 99.63 

YOLOv726 1536×1536 99.87 99.75 96.01 99.71 

GSNA-YOLOv7(ours) 1536×1536 99.98 99.82 96.94 99.89 

Table 3. Comparison of model effects on VisDrone2021-DET-val 

Methods Size APval AP50 AP75 APS APM APL 

YOLOv327 640×640 15.0 27.2 14.6 6.3 21.5 36.1 
Faster-RCNN 

+ResNeXt10110 
640×640 22.6 40.2 23.1 9.6 29.3 40.3 

YOLOv5-X24 640×640 22.6 38.6 21.8 13.9 32.4 42.6 
YOLOV72 640×640 28.4 48.6 28.1 18.2 40.2 51.7 

GSNA-
YOLOv7(ours) 

640×640 29.0 49.3 28.9 19.1 40.9 52.1 

Table 4. Comparison of the operational performance of each target detection model at the same 
level 

Methods #Param. FLOPs FPS 

YOLOv3 59.6M 158.0G 27 
YOLOv5-L 46.5M 109.1G 99 
YOLOv5-X 86.7M 205.7G 83 

YOLOv7 36.9M 104.7G 161 
GSNA-YOLOv7(ours) 34.2M 102.3G 165 
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5 Conclusion 

In this paper, we proposed a lightweight GSNA-YOLOv7 model better to solve the 
problems in insulator power equipment defect detection and be more adaptable to 
real-time detection of insulator defect targets. First, we utilize the E-ELAN structure 
of YOLOv726 to enhance the learning capability of the network by scaling the design 
and fusing new branches while maintaining the original gradient branches to improve 
the model's overall performance. Secondly, the GSConv module is added to the 
YOLOv7model to improve the Neck structure in it to better reduce the computational 
cost of the model from the accuracy and speed direction so that the computational 
complexity of the network is reduced and the performance of the network is ensured; 
by introducing the NAMAttention 18 attention mechanism, compared with the origi-
nal classical attention mechanism, with the deletion of fully connected layer and con-
volution, reduces the computational effort and inference speed, incorporates scaling 
factors in the attention weights, and suppresses unwanted detection target features 
from the inclusion of regular terms, enabling our network to better notice insulator 
defect targets. In many comparison and ablation experiments on the insulator SFID 
dataset and the Visdrone2021 dataset, our model obtains high mAP values compared 
to better classical target detection models. We will continue to upgrade this model 
structure and apply it to other related areas of power equipment detection. In addition, 
we will gradually improve the model's effectiveness in detecting defective targets of 
electrical equipment after many experiments from different electronic equipment 
datasets. 
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        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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