
An Improved Method for Test Case Prioritization in

Continuous Integration based on Reinforcement

Learning

Yanan Han*,1, Gang Chen1, Bin Han2

1School of Information Management and Engineering, Shanghai University of Finance and

Economics, No. 777 Guoding Road, Yangpu District, Shanghai, 200433
2School of Materials Science and Engineering, China University of Petroleum (East China),

No. 66 Changjiang West Road, Huangdao District, Qingdao City, Shandong Province, 266580

*Correspongding uthor.Email:hanyanan@163.sufe.edu.cn

Abstract. The iterative update of software leads to frequent continuous integra-

tion, so the testing in the continuous integration environment should also be fast

and accurate. Reinforcement learning is often used in the research of continuous

integration testing because of its sequential strategy and good robustness. Some

existing methods use reinforcement learning to solve test case prioritization prob-

lem, which provides a good idea, but the experimental defect detection rates are

relatively low. Therefore, based on the existing reinforcement learning frame-

work, this article proposes a reward mechanism to provide additional rewards for

newly emerging test cases in each integration cycle. Through experiments on

three industrial datasets, it has been proven that this mechanism improves the

defect detection rate, the recall rate of failed test cases, and the efficiency of test

feedback in the testing process.

Keywords: test case prioritization, continuous integration, reinforcement learn-

ing, additional rewards for new test cases

1 Introduction

With the development of computer and software, Devops has become the main mode

of current software development, and one of the key links is continuous integration

(CI). Continuous integration refers to the process that developers continuously integrate

new code into existing systems, and compile, test, and release it [1]. For large systems,

continuous integration is usually performed once or more a day. Therefore, testing in

the continuous integration environment is carried out in the case of very limited time

resources, which requires the testing framework to be as fast and efficient as possible

[2]. The strict requirement for timeliness is the biggest difference between the continu-

ous integration test environment and the traditional software test environment, which

also means that the traditional test optimization methods may not be directly migrated

to the continuous integration environment [3].

© The Author(s) 2024
A. Rauf et al. (eds.), Proceedings of the 3rd International Conference on Management Science and Software
Engineering (ICMSSE 2023), Atlantis Highlights in Engineering 20,
https://doi.org/10.2991/978-94-6463-262-0_99

https://doi.org/10.2991/978-94-6463-262-0_99
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-262-0_99&domain=pdf

In each cycle of continuous integration, a test case set will be generated according

to the current system, and a part of the test case set will be run to detect whether the

system has defects. There are many ways to conduct test optimization, such as Test

Case Selection (TCS) [4], Test Case Prioritization (TCP) [5], Test Suite Minimization

(TSM) [6], etc. Test case selection selects a part of the test cases according to some

standards, and test case prioritization sorts them according to the properties of the test

cases so that some cases can be executed first, while test suite minimization remove

some redundant or expired test cases. Because the time intervals between continuous

integration cycles are short, it is unrealistic to run all the test cases in the test case set

[7]. We will focus on test case prioritization so that those important test cases can be

tested preferentially and the testing time can be fully utilized. Test case prioritization is

often related to code. Many methods consider code coverage [8], defect detection rate

[9], requirement correlation [10], test case similarity [11], test history [12] and other

information when ranking test cases [13]. In recent years, machine-learning-based and

search-based test case sorting methods have become mainstream [14], however, the

data used for training in most methods still needs to be extracted from system code. For

continuous integration testing, if the source code needs to be analyzed every cycle, it is

difficult to form a lightweight framework even with incremental analysis [15]. There-

fore, in order to achieve intelligent data analysis suitable for continuous integration

testing, the data used to train should meet the intuitive and accessible nature, such as

historical execution information, and a sorting model that can simulate the continuous

integration environment and process test case information is needed.

There has been a lot of research on test case prioritization in continuous integration

environment. Lima et al. [16] improves COLEMAN, a learning-based sorting method,

and puts forward two strategies to deal with variables, which makes COLEMAN prac-

ticable for highly-configurable software in continuous integration; Rosenbauer et al.

[17] proposed and optimized a test case ranking model based on Learning Classification

System (LCS), and demonstrated through experiments that it performs better than net-

work-based models; Xiao et al. [18] proposed a sorting method based on Long Short-

Term Memory Network (LSTM) and applied it to embedded software, which improved

its fault detection rate in the continuous integration environment; Ali et al. [19] pro-

posed a clustering method that clusters and sorts test cases based on their historical

failure frequency and coverage criteria, achieving a defect detection rate of over 90%.

The test case prioritization in continuous integration environment is essentially a

sequential decision-making process [20]. Selecting the test cases that are most likely to

discover defects in each integration cycle and executing them preferentially coincide

with the idea of reinforcement learning. Reinforcement learning [21] is a branch of

machine learning that involves the continuous interaction and learning between the

agent and the environment. Several important elements are state, action, and reward.

The agent takes an action based on the current state and feedback from the previous

environment, changes the state of the environment, and receives reward of the action

from the environment. Therefore, reward will gradually guide the agent to make more

correct choices. Because test cases that previously detected defects are highly likely to

still detect defects in subsequent cycles [22], the mechanism of reinforcement learning

An Improved Method for Test Case Prioritization 959

to provide reward feedback to the agent can actually help the agent to "remember"

which test cases are more likely to detect defects.

The RETECS framework proposed by Spieker et al. [23] in 2017 is the first frame-

work that applies reinforcement learning to test case prioritization in continuous inte-

gration environment. The process of this framework is shown in Fig. 1. Reinforcement

learning adds a feedback loop to the original continuous integration process, enabling

the agent to continuously improve the sorting strategy and the sorting outcome accord-

ing to the feedbacks. There are three reward mechanisms proposed simultaneously with

this framework: (1) FC (Failure Count) reward, which rewards all test cases in the test

case set, with the reward value being the number of failed test cases in the test sequence;

(2) TF (Test Case Failure) reward, only rewards failed test cases in the test sequence,

with the reward value of 1; (3) time-rank reward, is a reward for test cases in the test

sequence, with reward value determined based on the test result of the test case and its

position in the test sequence. According to Spieker et al.'s experiment, the TF reward

performs the best.

Fig. 1. the Process of RETECS

Afterwards, the framework also underwent many improvements, mainly in terms of

the reward mechanism. He et al. [24] proposed two new reward functions: (1) HFC

(Historical Failure Count) reward, considers the historical failure count of test cases;

(2) APHF (Average Percentage of Historical Failure) reward, takes into account the

execution history of test cases, resulting in higher reward values for test cases with

more recent failures. Thereafter, Wu et al. [25] proposed a reward function based on

time windows, which only uses historical information from the last few cycles. At the

same time, Yang et al. [26] summarized the reward object selection strategy, in addition

to total and partial rewards, they proposed a fuzzy reward strategy, which determines

whether a test case is rewarded based on its historical failure rate. In addition, in the

design of reward functions, there are studies that consider the testing frequency of test

cases [27] and failure location [28]; In terms of the selection of reward objects, there

are also studies that determine whether to reward based on testing frequency [27], as

well as the similarity between test cases [29]. Although the above researches have made

some advancements compared to the initial version, most of these methods only con-

sider the historical execution information of test cases. Different reward mechanisms

are essentially the interception and weighted calculation of historical execution se-

quences, and when allocating rewards, test cases are mostly divided into failed test

cases and passed test cases. Thus, improvements can be made in the following direc-

tions, such as classifying test cases into the new ones and the old ones and assigning

960 Y. Han et al.

different reward values to them [30]; or utilize additional requirement-based infor-

mation to supplement the lack of historical execution information [31].

2 The Improved Method with Additional Rewards for New Test

Cases

2.1 The Structure of Reinforcement Learning for Test Case Prioritization

The test case prioritization model based on reinforcement learning is shown in Fig. 2.

The Environment of reinforcement learning is the continuous integration cycle, and the

Agent of reinforcement learning is the sorting strategy. The State corresponds to

metadata of test cases, such as execution time, execution history, etc.; the Action cor-

responds to assigning priority to test cases; the Reward corresponds to the feedback on

test results. Therefore, the learning process of a certain integration cycle is as follows:

the integration cycle first hands over the data of test cases to the Agent, and the Agent

assigns priority to these test cases based on the information of these cases and the

"knowledge" previously learned from the Environment. The test cases are sorted based

on priority and submitted to the Environment for testing. Then, the Environment re-

wards some test cases and feeds back to the Agent according to the test results. Among

them, which test cases are rewarded and how much reward they should obtain are the

concerns of reward mechanism. The reward mechanism here mainly includes the de-

sign of reward functions and the selection of reward objects.

Fig. 2. the Test Case Prioritization Model based on Reinforcement Learning

When rewarding test cases, most existing reward mechanisms consider the historical

execution information of test cases, but for newly emerging test cases in a cycle, their

historical information is empty and cannot be rewarded. However, in the continuous

integration process, the new test cases in each cycle correspond to the changed code.

The regression testing process not only needs to ensure the normal operation of the

original functions, but also needs to detect whether there are faults in the new functions

[32]. Therefore, it is necessary to give additional rewards to these new test cases. In

previous studies, the two reward functions that performed well are TF reward and

APHF reward. Therefore, this article proposes two reward mechanisms based on these

An Improved Method for Test Case Prioritization 961

two reward mechanisms: TF_NA (TF Reward plus New Test Case Additional Reward),

and APHF_NA (APHF plus New Test Case Additional Reward).

2.2 TF Reward plus New Test Case Additional Reward

The test case sets in continuous integration are defined as follows: the test case set

submitted in the i-th integration cycle is total

iTS ; the failure cases in this set form a

subset ,total fail

iTS ; the test sequence for the i-th integration cycle is iTS , which is ob-

tained by sorting and selecting from total

iTS ; the failure cases in this test sequence form

a subset fail

iTS ; the set of test cases newly appearing in the i-th integration cycle is

new

iTS .

The TF reward only applies to the failed test cases in the test sequence with a reward

value of 1, which does not take into account the importance of new test cases, but new

test cases need to be given reward values to reflect their testing priority. Therefore, we

combine the TF reward and additional reward for new test cases, proposing the TF_NA

reward. The definition of this reward mechanism is as follows:

()_

2,

1,

1,

0, other

fail new

i i

fail new

TF NA i i

i fail new

i i

t TS t TS

t TS t TS
reward t

t TS t TS

s

=

 (1)

According to the formulation, test cases will receive rewards with a value of 1 based

on whether they are failure cases in the test sequence or new cases, respectively. Here

the additional reward value for new test cases is set to 1, which means that failed test

cases and new test cases have equal priority, because these two kinds of test cases cor-

respond to the error prone points of original codes and the changed parts in the program,

respectively. Both of them are very important and need to be prioritized during testing.

2.3 APHF plus New Test Case Additional Reward

APHF is a highly effective reward function proposed after TF, and many studies based

on this framework use this reward function as a benchmark for comparison [25-29].

Combining this reward with the new test case additional reward, a new reward mecha-

nism APHF_NA is proposed. The definition of this reward mechanism is as follows:

()

()
_

0

0 others

total

i i

APHF NA new

i i i

APHF t t TS m

reward t NAPFD t TS

=

，

，

，

 (2)

962 Y. Han et al.

1 1
with 1

2

m

j

j

R

APHF
m n n

=
= −

+ (3)

In the calculation formula of APHF [24], n represents the number of historical exe-

cutions of the test case, m represents the number of historical failures of the test case,

and
jR represents the reverse order of the j-th failure of the test case in the execution

history. According to this formula, only test cases that have failed in history can calcu-

late the APHF value. Therefore, there is no overlap between test cases that receive

APHF rewards and those that receive new test case additional rewards. The APHF re-

ward in the APHF_NA reward mechanism is a total reward, which rewards all test cases

that can calculate APHF rewards. NAPFD [33] is one of the evaluation indicators for

test cases prioritization, whose formula and definition will be given in section 3.2. Re-

inforcement learning evaluate the sorting outcome after executing the test sequence,

and NAPFD is a numerical expression of the evaluation, which makes it natural to set

NAPFD as the additional reward value for new test cases. Of course, other evaluation

values or constants can also be chosen as additional rewards for new test cases here,

but using NAPFD is the most intuitive and effective. In addition, since the range of

APHF is between 0 and 1, and the range of NAPFD is also between 0 and 1, reinforce-

ment learning does not have to worry about normalization during training.

3 Experimental Analysis

3.1 Datasets

This paper uses three industrial datasets: ABB Paint Control, ABB IOF/ROL, and

GSDTSR. The first two datasets are from ABB Robotics Norway, and GSDTSR is the

test suite data shared by Google. Spieker et al. [23] and He et al. [24] used these three

datasets for experiments, and other studies on continuous integration test optimization

also used the above datasets. In order to facilitate the comparison of experimental re-

sults, this article also uses these three datasets, and the basic information of the datasets

is shown in Table 1. It can be seen that the number of integration cycles of all three

datasets have exceeded 300, but the GSDTSR in terms of test execution results is much

larger than the first two datasets. In addition, the failure rate of the first two datasets is

relatively high, which means that once the test case is executed, there is a high proba-

bility of failure; The ABB Paint Control and GSDTSR datasets have a higher testing

frequency, indicating a higher probability of test cases being executed.

An Improved Method for Test Case Prioritization 963

Table 1. Information of Datasets

Datasets Test Cases CI Cycles Results Failure Rate Frequency

Paint Control 114 352 25594 19.36% 0.82

IOF/ROL 2086 320 32260 28.43% 0.05

GSDTSR 5555 336 1260617 0.25% 0.68

3.2 Evaluation Metrics

The evaluation metric used in this article is mainly NAPFD [33] (Normalized Average

Percentage of Faults Detected), which is the standardized average defect detection per-

centage. This is improved from APFD [34] (Average Percentage of Faults Detected).

This indicator is concerned about the number and ranking of failed test cases in the test

sequence. The more failed test cases are found and the higher the position, the closer

the value of this indicator is to 1, and the better the sorting effect of the test sequence.

The calculation formula for this indicator is as follows:

()

,
with

2

fail
i

fail

it TS

i fail total fail
ii i i

rank t
TSp

NAPFD p p
TSTS TS TS

 = − + =

 (4)

In the calculation formula of NAPFD, ()rank t is the position of the failed test case

in the test sequence, and the meanings of other elements have been discussed before.

Due to the inability to test all test cases in continuous integration testing, NAPFD has

standardized APFD. If the test sequence can detect all defects in the test case set, then

1p = , and NAPFD is equal to APFD.

In addition, this article also considers two auxiliary indicators: (1) TTF, which rep-

resents the position of the first failed test case in the test sequence. The smaller the

indicator, the earlier the defect is discovered in the test sequence, allowing developers

to receive feedback earlier and make adjustments to the program. (2) recall, also known

as recall rate, is the proportion of defects found in the test sequence to defects in the

test case set. The higher the value, the more complete the defects found in the test se-

quence.

3.3 Experimental Setup

To verify the effectiveness of additional rewards for new test cases in improving the

effect of test case prioritization in continuous integration environment, we conduct ex-

periments on three datasets with four reward mechanisms: APHF, APHF_NA, TF,

TF_NA, and propose the following three research questions:

RQ1: Can additional rewards for new test cases improve the effectiveness of test

case prioritization?

RQ2: Is there a significant difference in the improvements of sorting effect when TF

and APHF combine with additional rewards for new test cases respectively?

RQ3: Will adding additional rewards for new test cases bring too much time burden

to the reinforcement-learning-based test case prioritization framework?

964 Y. Han et al.

Among them, RQ1 is concerned about the actual effect of additional rewards for new

test cases, which is the key research issue of this article. By comparing NAPFD, TTF,

recall of APHF_NA and APHF, TF and TF_NA, it is clear to illustrate whether the

reward mechanism with additional rewards for new test cases can improve the sorting

effect in continuous integration testing. RQ2 is concerned about the difference in the

effect improvement generated by the combination of additional rewards for new test

cases and different reward functions. Although APHF and TF are combined with addi-

tional rewards for new test cases, APHF_NA and TF_NA have different additional re-

ward value, and the reward objects are not entirely the same, which may lead to differ-

ences in the final results. RQ3 is concerned about whether adding additional rewards

for new test cases will cause additional time burden, because continuous integration

testing requires a lightweight test optimization model. If the new reward mechanism

brings too much time consumption, the model will not be applicable to the continuous

integration environment. This research question is to confirm the feasibility of the new

reward mechanism.

During the experiment, due to the inability to obtain the available testing time for

each integration cycle in advance, we used 50% of the total testing time for all test cases

in that cycle as the available testing time [23]. After sorting the test cases, execute them

in order until the available testing time is exhausted. In addition, for some cycles where

there is no failed test case, it is meaningless to consider the sorting effect. If it is also

included in the calculation of evaluation indicators, the value of them will appear to be

artificially high. Therefore, the data for the subsequent experimental results in this ar-

ticle is based on the data of the cycles in which failed test cases occurred. To reduce the

interference of randomness during the experimental process, this article conducted 30

repeated experiments, and the subsequent result data was the average of 30 repeated

experiments.

3.4 Results and Analysis

Fig. 3 shows the NAPFD values of four reward mechanisms on three datasets, with the

abscissa representing the continuous integration cycle, the black line representing the

trend fitting of NAPFD values, and (a) representing APHF reward, (b) representing

APHF_NA reward, (c) represents TF reward, (d) represents TF_NA rewards. Table 2

shows the average NAPFD values for all failure cycles on three datasets with different

reward mechanisms, and the bold data represents the better result between the original

reward and those adding additional rewards for new test cases.

Analysis of RQ1.According to Fig. 3 and Table 2, adding additional rewards for new

test cases can effectively improve the NAPFD value of test case prioritization. Both

APHF_NA and TF_NA has a positive slope of their trend fitting lines, indicating that

reward mechanism with additional rewards for new test cases can continuously opti-

mize the sorting model and improve the sorting effect under the guidance of feedback

from reinforcement learning. In order to further compare the sorting effects of the re-

ward mechanisms with and without additional rewards for new test cases, we need to

An Improved Method for Test Case Prioritization 965

analyze their TTF and recall values. Table 3 shows the average TTF values of all failure

cycles using different reward mechanisms on the datasets, and Table 4 shows the aver-

age recall values of all failure cycles using different reward mechanisms on the datasets.

The bold data represents the better value between the original reward and those adding

additional rewards for new test cases.

Fig. 3. NAPFD on three datasets: (a) APHF, (b) APHF_NA, (c) TF, (d) TF_NA

Table 2. Average NAPFD on three Datasets with four Reward Mechanisms

Reward Mechanisms APHF APHF_NA TF TF_NA

ABB Paint Control 0.6017 0.6330 0.6624 0.6535

ABB IOF/ROL 0.3203 0.3305 0.2118 0.3079

GSDTSR 0.6176 0.6792 0.1372 0.6859

Table 3. Average TTF on three Datasets with four Reward Mechanisms

Reward Mechanisms APHF APHF_NA TF TF_NA

ABB Paint Control 3.79 3.93 3.88 4.00

ABB IOF/ROL 2.56 2.05 5.48 1.68

GSDTSR 77.94 8.63 520.55 46.19

966 Y. Han et al.

Table 4. Average Recall on three Datasets with four Reward Mechanisms

In terms of NAPFD, it can be seen that the average NAPFD values of APHF_NA on

all three datasets are slightly higher than APHF. While NAPFD of TF_NA is somewhat

lower than that of TF on the ABB Paint Control dataset, there is a significant difference

between them on the remaining two datasets, and even on the GSDTSR dataset, the

average NAPFD of TF_NA is 0.5487 higher than TF. This shows that in the sorting

model based on reinforcement learning, using reward mechanisms that assign addi-

tional rewards to new test cases can indeed improve the sorting effect. In terms of TTF

values, except for the ABB Paint Control dataset where the original reward can obtain

smaller TTF values, the remaining two datasets both witness that mechanisms with ad-

ditional rewards for new test cases obtain smaller TTF values, especially on the

GSDTSR dataset where the location of the first failed case discovered by APHF_NA is

69.31 ahead of APHF, and that discovered by TF_NA was 474.36 earlier than TF, in-

dicating that adding additional rewards for new test cases increased the priority of new

test cases and enabled earlier defect detection. In terms of recall, TF can be slightly

larger than TF_NA on the ABB Paint Control dataset, while in other scenarios, the

reward mechanisms adding additional rewards for new test cases are used to obtain

higher recall values. The distribution characteristics of this metric are similar to that of

NAPFD, indicating that the additional rewards for new test cases cause the model to

discover more failed test cases in each cycle. This is due to the priority given to new

test cases, which causes the failed new test cases to be executed preferentially.

From a perspective of datasets, it is shown that adding additional rewards for new

test cases is not significantly improved the sorting effect on the ABB Paint Control

dataset, and the average NAPFD values of each reward mechanism are between 0.6 and

0.7. This may be due to the small number of test cases and high testing frequency in

this dataset. On the one hand, this leads to fewer new test cases and less additional

rewards can be obtained. On the other hand, due to the high frequency of testing, the

probability of test cases being selected into the testing sequence is high, and the addi-

tional rewards for new test cases become insignificant. On the ABB IOF/ROL dataset,

the performance of various reward mechanisms is not ideal, and even the best perform-

ing reward APHF_NA has the average NAPFD value of only 0.3305 and the recall

value of only 0.4191, which means that only 40% of defects are found on average dur-

ing the integration cycle. The reason for this may be that the reward strategies used in

the text, such as TF, APHF, and additional rewards for new test cases, do not grasp the

characteristics of the dataset well, resulting in the model not assigning high priority

values to those truly important test cases. More suitable reward mechanisms for this

dataset can be analyzed in future research. On the GSDTSR dataset, the performance

of additional rewards for new test cases is particularly outstanding, especially TF_NA

significantly improves sorting performance compared to TF. The dataset has a low fail-

ure rate, therefore, the TF and APHF reward values that test cases can obtain are

Reward Mechanisms APHF APHF_NA TF TF_NA

ABB Paint Control 0.6893 0.7250 0.7646 0.7550

ABB IOF/ROL 0.4062 0.4191 0.2852 0.3861

GSDTSR 0.6590 0.7263 0.1838 0.7323

An Improved Method for Test Case Prioritization 967

relatively low. At this point, the additional reward for new test cases becomes the main

rewards for test cases, indicating that the reward mechanism with additional rewards

for new test cases can better adapt to this integration testing environment.

Analysis of RQ2. In the analysis to RQ1, it can already be observed that TF_NA has

achieved more improvement to TF than that of APHF_NA to APHF. Especially on the

ABB IOF/ROL and GSDTSR datasets, the NAPFD values of TF_NA are 0.0961 and

0.5487 higher than TF respectively, while the NAPFD values of APHF_NA are 0.0102

and 0.0616 higher than APHF respectively. The reasons for the differences are analyzed

as follows: firstly, the TF reward function itself may not be suitable for these two da-

tasets, as the performance of the TF reward on the ABB Paint Control dataset is not

significantly different from other reward functions. Secondly, the additional rewards

for new test cases are combined with TF and APHF in different ways, in TF_NA there

are some test cases that can receive both TF rewards and additional rewards for new

test cases; but in APHF_NA, there is no overlap between test cases that receive APHF

rewards and additional rewards for new test cases. Test cases either receive only one of

these two rewards or do not receive any rewards. Thirdly, the reward values assigned

to test cases are different, TF_NA assigns the same priority to failure test cases and new

cases, believing that they are equally important; while in APHF_NA, test cases that has

failed receive the priority value of their APHF value, and new test cases receive the

priority value of the NAPFD value of sorting result. These two values are not equal,

and the reward values for test cases that receive APHF rewards is also different, which

is related to the execution history of the test cases. However, the reward values for test

cases that receive new test case additional reward is exactly the same. The above anal-

ysis explains the reason why the additional rewards for new test cases differ in improv-

ing sorting effects when different reward functions are combined, and also inspires us

to further study the setting and combination methods of reward values for new test cases

in the future.

Analysis of RQ3. Table 5 shows the average calculation time per cycle, in seconds,

with different reward mechanisms on the datasets. It can be seen that in each cycle of

continuous integration, the time used to calculate the priority of test cases, sort them,

evaluate and feedback the results is actually very short, which makes most of the test

time available for the execution of test cases, rather than for priority analysis. It is very

friendly to the continuous integration environment. The reward mechanisms that add

additional rewards for new test cases has a slightly higher computational time than the

original mechanisms, which is the time they take to assign additional rewards to new

test cases, but it is completely within an acceptable time growth range. Even in the

GSDTSR dataset with the most test cases, the maximum time growth is only 0.0581

seconds. As a result, the additional rewards for new test cases not only improve the

sorting performance of the reinforcement learning framework, but also do not bring too

much time burden.

968 Y. Han et al.

Table 5. Average Calculation Time per Cycle (s)

Reward Mechanisms APHF APHF_NA TF TF_NA

ABB Paint Control 0.0110 0.0110 0.0119 0.0133

ABB IOF/ROL 0.0127 0.0126 0.0161 0.0194

GSDTSR 0.6506 0.6710 1.4889 1.5470

4 Conclusion

Based on the reinforcement learning framework for continuous integration test case

prioritization, this paper improves the reward mechanism of reinforcement learning,

and proposes two reward mechanism TF_NA and APHF_NA that gives additional re-

wards to new test cases, and conducted experiments on industrial datasets. The experi-

ments show that: (1) Additional rewards for new test cases can effectively improve the

optimization effect of continuous integration test case set, which makes the sorting re-

sults have a certain degree of improvement in defect detection rate, recall rate of failed

test cases, and efficiency of test feedback; (2) The additional rewards for new test cases

have different effects when combined with different reward functions, specifically

manifested in that TF_NA can significantly improve the sorting performance of TF,

while APHF_NA’s improvement to APHF is relatively small; (3) Additional rewards

for new test cases will not result in excessive time consumption, and the model using

TF_NA or APHF_NA reward mechanism is still a lightweight reinforcement learning

model.

The method proposed in this paper conforms to the idea of regression testing and the

characteristics of continuous integration testing. The experimental results are clear,

which can demonstrate the importance of giving high priority to new test cases in re-

gression testing. However, there is still room for improvement in this method, such as

considering more kinds of reward functions and combination methods when combining

with additional rewards for new test cases. As for the additional reward value, although

different attempts have been made in experiments, it is still not systematic enough and

can be analyzed and studied more comprehensively.

References

1. F. Cannizzo, R. Clutton and R. Ramesh, "Pushing the Boundaries of Testing and Continuous

Integration," Agile 2008 Conference, Toronto, ON, Canada, 2008, pp. 501-505, doi:

10.1109/Agile.2008.31.

2. Pinto, G, Castor, F, Bonifacio, R, Rebouças, M. Work practices and challenges in continuous

integration: A survey with Travis CI users. Softw Pract Exper. 2018; 48: 2223– 2236.

https://doi.org/10.1002/spe.2637

3. D. Mondal, H. Hemmati and S. Durocher, "Exploring Test Suite Diversification and Code

Coverage in Multi-Objective Test Case Selection," 2015 IEEE 8th International Conference

on Software Testing, Verification and Validation (ICST), Graz, Austria, 2015, pp. 1-10, doi:

10.1109/ICST.2015.7102588.

An Improved Method for Test Case Prioritization 969

https://doi.org/10.1002/spe.2637

4. D. Mondal, H. Hemmati and S. Durocher, "Exploring Test Suite Diversification and Code

Coverage in Multi-Objective Test Case Selection," 2015 IEEE 8th International Conference

on Software Testing, Verification and Validation (ICST), Graz, Austria, 2015, pp. 1-10, doi:

10.1109/ICST.2015.7102588.

5. Hao, D., Zhang, L. & Mei, H. Test-case prioritization: achievements and challenges. Front.

Comput. Sci. 10, 769–777 (2016). https://doi.org/10.1007/s11704-016-6112-3

6. Mohapatra, S.K., Mishra, A.K. & Prasad, S. Intelligent Local Search for Test Case Minimi-

zation. J. Inst. Eng. India Ser. B 101, 585–595 (2020). https://doi.org/10.1007/s40031-020-

00480-7

7. G. Rothermel, R. H. Untch, Chengyun Chu and M. J. Harrold, "Prioritizing test cases for

regression testing," in IEEE Transactions on Software Engineering, vol. 27, no. 10, pp. 929-

948, Oct. 2001, doi: 10.1109/32.962562.

8. Dusica Marijan. 2015. Multi-perspective Regression Test Prioritization for Time-Con-

strained Environments. In Proceedings of the 2015 IEEE International Conference on Soft-

ware Quality, Reliability and Security (QRS '15). IEEE Computer Society, USA, 157–162.

https://doi.org/10.1109/QRS.2015.31

9. Nayak, S., Kumar, C. & Tripathi, S. Enhancing Efficiency of the Test Case Prioritization

Technique by Improving the Rate of Fault Detection. Arab J Sci Eng 42, 3307–3323 (2017).

https://doi.org/10.1007/s13369-017-2466-6

10. Vescan, Andreea & Serban, Camelia & Chisalita-Cretu, Camelia & Diosan, Laura. (2017).

Requirement dependencies-based formal approach for test case prioritization in regression

testing. 181-188. 10.1109/ICCP.2017.8117002.

11. Noor T B, Hemmati H. A similarity-based approach for test case prioritization using histor-

ical failure data[C]//2015 IEEE 26th International Symposium on Software Reliability En-

gineering (ISSRE). IEEE, 2015: 58-68.

12. Hema Srikanth, Mikaela Cashman, Myra B. Cohen, Test case prioritization of build ac-

ceptance tests for an enterprise cloud application: An industrial case study, Journal of Sys-

tems and Software, Volume 119, 2016, Pages 122-135, ISSN 0164-1212,

https://doi.org/10.1016/j.jss.2016.06.017.

13. Yingling Li, Qing Wang. Review of test case set optimization in continuous integration [J].

Journal of Software, 2018, 29(10):3021-3050.DOI:10.13328/j.cnki.jos.005613.

14. Rahmani A, Ahmad S, Jalil I E A, et al. A Systematic Literature Review on Regression Test

Case Prioritization[J]. International Journal of Advanced Computer Science and Applica-

tions, 2021, 12(9).

15. Y. Zhu, E. Shihab and P. C. Rigby, "Test Re-Prioritization in Continuous Testing Environ-

ments," 2018 IEEE International Conference on Software Maintenance and Evolution

(ICSME), Madrid, Spain, 2018, pp. 69-79, doi: 10.1109/ICSME.2018.00016.

16. Prado Lima, J.A., Mendonça, W.D.F., Vergilio, S.R. et al. Cost-effective learning-based

strategies for test case prioritization in continuous integration of highly-configurable soft-

ware. Empir Software Eng 27, 133 (2022). https://doi.org/10.1007/s10664-021-10093-3

17. Rosenbauer, L., Pätzel, D., Stein, A. et al. A Learning Classifier System for Automated Test

Case Prioritization and Selection. SN COMPUT. SCI. 3, 373 (2022).

https://doi.org/10.1007/s42979-022-01255-1

18. Xiao, L., Miao, H., Shi, T. et al. LSTM-based deep learning for spatial–temporal software

testing. Distrib Parallel Databases 38, 687–712 (2020). https://doi.org/10.1007/s10619-020-

07291-1

19. Ali, S., Hafeez, Y., Hussain, S. et al. Enhanced regression testing technique for agile soft-

ware development and continuous integration strategies. Software Qual J 28, 397–423

(2020). https://doi.org/10.1007/s11219-019-09463-4

970 Y. Han et al.

https://doi.org/10.1007/s11704-016-6112-3
https://doi.org/10.1007/s40031-020-00480-7
https://doi.org/10.1007/s40031-020-00480-7
https://doi.org/10.1109/QRS.2015.31
https://doi.org/10.1007/s13369-017-2466-6
https://doi.org/10.1016/j.jss.2016.06.017

20. A. G. Barto, R. S. Sutton, and C. J. C. H. Watkins. 1990. Sequential decision problems and

neural networks. Advances in neural information processing systems 2. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 686–693.

21. Veanes, M., Roy, P., Campbell, C. (2006). Online Testing with Reinforcement Learning. In:

Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds) Formal Approaches to Software Testing

and Runtime Verification. FATES RV 2006 2006. Lecture Notes in Computer Science, vol

4262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940197_16

22. Cave, P. (2000), The error of excessive proximity preference – a modest proposal for under-

standing holism. Nursing Philosophy, 1: 20-25. https://doi.org/10.1046/j.1466-

769x.2000.00003.x

23. Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Reinforcement

learning for automatic test case prioritization and selection in continuous integration. In Pro-

ceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA 2017). Association for Computing Machinery, New York, NY, USA, 12–

22. https://doi.org/10.1145/3092703.3092709

24. Liuliu He, Yang Yang, Zheng Li, et al. Reinforcement learning reward mechanism for con-

tinuous integration testing optimization [J]. Journal of Software, 2019, 30(05):1438-

1449.DOI:10.13328/j.cnki.jos.005714.

25. Zhaolin Wu, Yang Yang, Zheng Li, and Ruilian Zhao. 2019. A Time Window based Rein-

forcement Learning Reward for Test Case Prioritization in Continuous Integration. In Pro-

ceedings of the 11th Asia-Pacific Symposium on Internetware (Internetware '19). Associa-

tion for Computing Machinery, New York, NY, USA, Article 4, 1–6.

https://doi.org/10.1145/3361242.3361258

26. Yang Yang, Zheng Li, Liuliu He, Ruilian Zhao, A systematic study of reward for reinforce-

ment learning based continuous integration testing, Journal of Systems and Software, Vol-

ume 170, 2020, 110787, ISSN 0164-1212, https://doi.org/10.1016/j.jss.2020.110787.

27. Ying Shang, Qianyu Li, Yang Yang, and Zheng Li. 2020. Occurrence Frequency and All

Historical Failure Information Based Method for TCP in CI. In Proceedings of the Interna-

tional Conference on Software and System Processes (ICSSP '20). Association for Compu-

ting Machinery, New York, NY, USA, 105–114. https://doi.org/10.1145/3379177.3388903

28. G. Li, Y. Yang, Z. Wu, T. Cao, Y. Liu and Z. Li, "Weighted Reward for Reinforcement

Learning based Test Case Prioritization in Continuous Integration Testing," 2021 IEEE 45th

Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain,

2021, pp. 980-985, doi: 10.1109/COMPSAC51774.2021.00132.

29. Yang Yang, Chaoyue Pan, Tiange Cao, et al. Reinforcement learning reward strategy of

CITCP based on similarity [J]. Computer Systems & Applications, 2022, 31(02):325-

334.DOI:10.15888/j.cnki.csa.008300.

30. Li Zhang, Lili Dai, Lan Du. Regression testing case prioritization in agile development mode
[J]. Microelectronics & Computer, 2020, 37(12):48-52.DOI:10.19304/j.cnki.issn1000-

7180.2020.12.010.

31. R. Chen, Z. Xiao, L. Xiao and Z. Li, "Regression Testing Prioritization Technique Based on

Historical Execution Information," 2022 International Conference on Machine Learning,

Cloud Computing and Intelligent Mining (MLCCIM), Xiamen, China, 2022, pp. 276-281,

doi: 10.1109/MLCCIM55934.2022.00054.

32. Parsons, D., Susnjak, T. & Lange, M. Influences on regression testing strategies in agile

software development environments. Software Qual J 22, 717–739 (2014).

https://doi.org/10.1007/s11219-013-9225-z

An Improved Method for Test Case Prioritization 971

33. D. Marijan, A. Gotlieb and S. Sen, "Test Case Prioritization for Continuous Regression Test-

ing: An Industrial Case Study," 2013 IEEE International Conference on Software Mainte-

nance, Eindhoven, Netherlands, 2013, pp. 540-543, doi: 10.1109/ICSM.2013.91.

34. Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for improving re-

gression testing in continuous integration development environments. In Proceedings of the

22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering

(FSE 2014). Association for Computing Machinery, New York, NY, USA, 235–245.

https://doi.org/10.1145/2635868.2635910

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

972 Y. Han et al.

http://creativecommons.org/licenses/by-nc/4.0/

	An Improved Method for Test Case Prioritization in Continuous Integration based on Reinforcement Learning

