
Design and Implementation of an Advanced Planning and
Scheduling System Based on Microservices

Haoyu Zhang1,a, Jianming Zhang3,b, Yaozong Wang2,c,*

1College of Computer and Cyber Security, Fujian Normal University
2Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dy-

namic System
3Quanzhou Institute of Equipment Manufacturing Haixi Institutes, Chinese Academy of Sci-

ence

ae-mail: qsz20211335@student.fjnu.edu.cn
be-mail: zhangjianming@fjirsm.ac.cn

ce-mail: *Corresponding auther e-mail:yzwang@fjirsm.ac.cn

Abstract. In response to the problems faced by current Advanced Planning and
Scheduling Systems (APS), including their difficulty to scale, deploy, high cou-
pling between modules, and lack of versatility, we have meticulously divided
each function of the system based on the original monolithic architecture, con-
structing an APS based on a microservices architecture. Utilizing Docker con-
tainerization technology and the Kubernetes container orchestration engine, we
orchestrate and deploy containers loaded with various microservice components,
making the system more elastic and flexible. On this basis, with the aid of com-
mon services such as Jenkins and the Harbor private repository, we have achieved
agile development of the system, enabling the APS system based on the micro-
services architecture to better adapt to rapidly changing environments and de-
mands. System simulations have shown that the improved system has better agil-
ity, scalability, decoupling, and maintainability.

Keywords: microservice; Containerization technology; Advanced planning ex-
ecution system

1 Introduction

Since the start of the 12th Five-Year Plan, China's manufacturing industry has achieved
significant progress, making positive contributions to the transformation and upgrading
of the Chinese economy and the advancement of global manufacturing. However, with
the continuous advancement of computer networking technology and the progress of
manufacturing informatization, manufacturing enterprises are facing increasingly
fierce domestic competition and international challenges. To enhance production ca-
pacity and management level, the manufacturing industry needs to implement enter-
prise management systems. Currently, most domestic enterprises use ERP (Enterprise
Resource Planning) systems, which encompass multiple functional modules such as

© The Author(s) 2024
A. Rauf et al. (eds.), Proceedings of the 3rd International Conference on Management Science and Software
Engineering (ICMSSE 2023), Atlantis Highlights in Engineering 20,
https://doi.org/10.2991/978-94-6463-262-0_61

https://doi.org/10.2991/978-94-6463-262-0_61
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-262-0_61&domain=pdf

finance, procurement, sales, inventory, production, and human resources. The aim is to
improve operational efficiency and decision-making capabilities. However, these sys-
tems lack flexibility and real-time capabilities in production planning and scheduling,
failing to adapt to today's dynamic market environment. Therefore, it is necessary for
enterprises to deploy APS (Advanced Planning and Scheduling) systems to compensate
for the deficiencies in production planning and scheduling. This will improve the oper-
ational efficiency of production lines, enhance the flexibility and real-time nature of
planning, and ultimately enhance the competitiveness of the enterprise.

Due to the complex and volatile market environment, the number of orders handled
by enterprises frequently changes. Traditional monolithic architectures of Advanced
Planning and Scheduling systems, due to high coupling between components, are una-
ble to effectively scale up or down according to order volume. This presents a series of
problems for enterprise development and subsequent maintenance. For instance, during
a sudden increase in order volume in a particular quarter, a monolithic APS system
cannot handle such a large number of orders. Rebuilding an entire system is time-con-
suming, and the inability to provide reasonable production schedule arrangements
within a short time greatly affects the progress of the enterprise. Therefore, enterprises
require a flexible and scalable APS system based on a microservices architecture to
address the limitations of the existing system and support future development. Such an
advanced planning and scheduling system can better adapt to changes in market de-
mand and facilitate effective production line planning and resource allocation. By col-
lecting and analyzing real-time data, enterprises can make more accurate decisions, im-
prove production efficiency, and promptly respond to fluctuations in order volume.

Microservice architecture is a distributed system architecture emerging in recent
years. It was proposed by Martin Fowler and James Lewis in 2014. Its predecessor is
service-oriented Architecture (SOA)1. but SOA has some shortcomings such as too
complex, difficult deployment and low performance. The microservices architecture
pattern solves the SOA architecture problem by breaking up a large application into
smaller services. Microservices emphasize distribution and decentralization, dividing
services at a finer granularity, each running in its own process, and communicating
using lightweight communication mechanisms such as REST API2. Key features of the
microservices technology architecture include: loose coupling, expandability, fault tol-
erance, multilanguage support, autonomy, etc.

The current system is deployed in a server cluster using containerization technolo-
gies such as Docker and Kubernetes (abbreviated as K8s). Containerization is a light-
weight form of virtualization that allows applications and their dependencies to be
packaged into separate, isolated runtime environments. Docker is the most popular con-
tainerization engine, providing a complete ecosystem of components including images,
containers, and repositories. Kubernetes, an open-source container orchestration plat-
form developed by Google, offers automated deployment, scaling, and management
functionalities for container clusters. With the support of these containerization tech-
nologies, the microservices-based APS system can effectively scale up or down, as well
as achieve load balancing and other capabilities3.

The subject of this paper is a domestic clothing accessories manufacturing company.
Due to the nature of its business, the company faces frequent changes in requirements

594 H. Zhang et al.

and evolving customer demands, necessitating timely adjustments to adapt to the mar-
ket. Therefore, to effectively respond to the rapidly changing environment and require-
ments, and to enhance product efficiency and quality, the APS system for this enterprise
needs to implement agile development. Agile development is a software development
methodology based on iteration, adaptability, and collaboration. Through agile devel-
opment, the development team can flexibly adjust priorities and tasks, promptly re-
spond to new requirements, and ensure that the project meets customer expectations4.

2 Design and Implementation

2.1 Demand Analysis

Through field visits and problem analysis of the production workshop, it has been de-
termined that the APS system for the workshop should have the following functional
modules: System Dashboard, Workshop Management, Production Management, Pro-
duction Planning Management, Statistical Charts, and Visualization Dashboard.
Among them, the System Dashboard module includes features such as login and regis-
tration. The Workshop Management module is responsible for monitoring the opera-
tional status of equipment, material inventory, and the presence of personnel at each
workstation. The Production Management module primarily handles production sched-
uling and management. The Production Planning module subdivides plans into master
plans and sub-plans based on specific scheduling arrangements, which are then dissem-
inated to various workshops and positions. The Statistical Charts module calculates the
current workshop's production progress and the overall order progress based on the
reported work of workshop personnel5. The Visualization Dashboard module displays
comprehensive data, including workshop progress, order progress, work reporting, ma-
terial usage, and quarterly performance. The specific business modules are illustrated
in Figure 1.

Fig. 1. APS service module diagram

595Design and Implementation of an Advanced Planning and Scheduling System

2.2 Business Unbundling and Architecture Implementation

Based on the requirements analysis and the aforementioned functional modules, com-
bined with the actual production process, it can be concluded that there is frequent data
exchange between the production management and production planning management
modules. Therefore, there is a strong coupling between these two sets of functionalities,
and they need to be merged into the same production management microservice. Due
to the significant resource consumption involved in order scheduling, the intelligent
scheduling component of the production management module will be separated and
developed as a separate microservice called the scheduling engine. To centralize the
management of security-related functionalities such as password encryption, identity
verification, and access control, in order to enhance system security and protect user
privacy, a login and registration microservice will be set up. Therefore, the improved
system primarily consists of the following microservices: login and registration micro-
service, workshop management microservice, production management microservice,
scheduling engine microservice, statistical reporting microservice, and visualization
dashboard microservice.

These microservices are packaged into Docker images and deployed on a cluster of
multiple servers using Kubernetes. Each microservice returns its response results to the
microservice gateway via API interfaces, enabling information exchange between mi-
croservices as well as between the frontend and backend. This microservice design is
based on Node.js and the Loopback 4 framework.

To facilitate the exchange of information between microservices, a service discovery
and registration mechanism is needed. Service discovery in the context of microservices
architecture refers to the ability of services to automatically discover and locate each
other6. Manually managing a large number of service instances can be challenging, so
an automated mechanism is required for service discovery. Common service discovery
mechanisms include DNS-based service discovery, client-side load balancing, and ser-
vice registries. Through service discovery mechanisms, services can quickly find the
other services they depend on, enabling efficient communication between services. The
Service mechanism in Kubernetes aligns well with this requirement. It abstracts the
different IP addresses of pods hosting multiple microservices into a publicly accessible
network and provides them with the same DNS, allowing communication between mul-
tiple pods and enabling service discovery and load balancing, among other features.

In large-scale distributed systems, there is frequent interaction between services, and
manually tracking service calls can be highly inconvenient6. To achieve goals such as
fault localization and troubleshooting, performance optimization, service topology vis-
ualization, SLA monitoring7, and compliance checks, the revamped APS system needs
to implement a service tracing mechanism. In the K8s cluster, deploying Zipkin can
enable service tracing and monitoring.

In a microservices architecture, where each microservice runs independently, effec-
tive logging is crucial for troubleshooting and issue resolution when the system expe-
riences failures, errors, or exceptions8. By recording detailed log information, develop-
ers can quickly identify the service and request involved in the problem and pinpoint
the specific source of the error. Log recording not only provides traceability for system

596 H. Zhang et al.

errors but also proves valuable in performance optimization and capacity planning. By
analyzing log data, system bottlenecks and performance issues can be identified, lead-
ing to appropriate adjustments and optimizations9. Additionally, collecting and analyz-
ing logs provides deeper insights into business activities. For example, monitoring user
behavior, tracking business processes, and analyzing usage patterns can all be achieved
through log analysis10.In the APS system, there are two client interfaces: a web appli-
cation and a mobile app. According to the above description, the improved APS system
architecture can be shown in Figure 2.

Fig. 2. Overall architecture diagram of APS system

The aforementioned APS system based on the microservices architecture will be de-
ployed in a K8s cluster. The cluster used in this experiment comprises five servers, two
of which serve as master nodes, while the remaining three operate as worker nodes. The
scale of the cluster is shown in Figure 3.

Fig. 3. K8s Cluster scale

597Design and Implementation of an Advanced Planning and Scheduling System

In order to facilitate the scalability of the APS system and achieve isolation between
microservices, the core business parts of the system are placed in different pods, as
shown in Figure 4. When business requirements change, it is very straightforward to
make adjustments to different microservices.

Fig. 4. APS core service pods

2.3 Improvement effect

In order to verify the advantages of APS system based on microservice architecture
over traditional APS architecture, we conducted a comparative simulation experiment,
and the results are shown in Table 1.

Table 1. Comparison of simulation results

Operation
Concurrent

volume

Max response time Average response time

single-
service

micro-
service

single-
service

micro-
service

Order entry

50 1.021s 0.502s 0.651s 0.322s

100 1.765s 0.695s 1.132s 0.585s

200 2.325s 1.024s 1.952s 0.883s

Report
query

50 1.126s 0.601s 0.692s 0.352s

100 1.835s 0.695s 1.253s 0.593s

200 2.525s 1.138s 2.012s 0.903s

Shop
monitoring

50 1.009s 0.402s 0.643s 0.301s

100 1.685s 0.595s 1.112s 0.512s

200 2.257s 0.924s 1.812s 0.872s
The testing machine used for this experiment has a Windows 10 operating system,

an AMD Ryzen 5 processor, and 8GB of memory. The stress test tool used in this ex-
periment is Apache JMeter. The experimental data was generated from the production
of auxiliary clothing materials, and a web crawler program was used to simulate

598 H. Zhang et al.

browser access to the server. We selected several commonly used system operations
and counted the response time of different systems through crawler simulation of dif-
ferent visits. As can be seen from the above table, microservices architecture has sig-
nificant advantages in handling multiple concurrency.

2.4 Implementation of agile development

The agile implementation of this system is based on the Jenkins automation tool. We
have set up Jenkins, GitLab code repository, and Harbor private image repository as
common services on the K8s cluster. GitLab code repository and Harbor container im-
age repository are interconnected through Jenkins. Jenkins triggers continuous integra-
tion and deployment by deploying a webhook on GitLab. When developers perform
actions such as code submission or code merging, Jenkins pulls the code from the code
repository and performs operations such as compilation, packaging, and testing. Once
the build and tests are successful, Jenkins utilizes its built-in Docker plugin to publish
the packaged image to the private image repository. The Jenkins Kubernetes plugin is
then used to pull the new version of the image from the private repository and deploy
it within the cluster, enabling agile development4. The process is illustrated in Figure
5.

Fig. 5. Agile development implementation process

3 Conclusions

This paper presents the improvement and design of the APS system based on micro-
services architecture. The enhanced system demonstrates higher agility, robustness, and
scalability, providing a strong solution to tackle the challenges posed by frequent pro-
ject updates and explosive data growth. Additionally, agile development practices were
proposed and implemented for the improved system, enabling rapid adjustments ac-
cording to enterprise needs. The enhancement approach for the microservices-based
APS holds significant importance in today's business environment. The experiences
and insights gained from this study are valuable for the design and optimization of sim-
ilar systems, offering beneficial references for enterprises to maintain a competitive
edge in the era of digital transformation.

599Design and Implementation of an Advanced Planning and Scheduling System

Acknowledgment

The authors recognize the support of this work by the STS program of the Fujian Sci-
ence and Technology Sciences Project under Grant(2022T3025).

References

1. Niknejad N, Ismail W, Ghani I, et al. Understanding Service-Oriented Architecture (SOA):
A systematic literature review and directions for further investigation[J]. Information Sys-
tems, 2020, 91: 101491. https://doi.org/10.1016/j.is.2020.101491

2. Mantravadi S, Srai J S, Brunoe T D, et al. Exploring reconfigurability in manufacturing
through IIoT connected MES/MOM[C]//2020 IEEE International Conference on Industrial
Engineering and Engineering Management (IEEM). IEEE, 2020: 161-165.
[doi: 10.1109/IEEM45057.2020.9309989]

3. Gias A U, Casale G, Woodside M. ATOM: Model-driven autoscaling for micro-
services[C]//2019 IEEE 39th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2019: 1994-2004. [doi: 10.1109/ICDCS.2019.00197]

4. Balalaie A, Heydarnoori A, Jamshidi P. Microservices architecture enables devops: Migra-
tion to a cloud-native architecture[J]. IEEE Software, 2016, 33(3): 42-
52. [doi: 10.1109/MS.2016.64]

5. Xu S S D, Chang T C. A feasible architecture for ARM-based microserver systems consid-
ering energy efficiency[J]. IEEE Access, 2017, 5: 4611-4620. [doi: 10.1109/ACCESS.
2017.2657658]

6. Vural H, Koyuncu M. Does Domain-Driven Design Lead to Finding the Optimal Modularity
of a Microservice? [J]. IEEE Access, 2021, 9: 32721-32733. [doi: 10.1109/ACCESS.2021.
3060895]

7. Baarzi A F, Kesidis G. Showar: Right-sizing and efficient scheduling of micro-
services[C]//Proceedings of the ACM Symposium on Cloud Computing. 2021: 427-441.
[doi: 10.1145/3472883.3486999]

8. Soldani J, Brogi A. Anomaly detection and failure root cause analysis in (micro) service-
based cloud applications: A survey[J]. ACM Computing Surveys (CSUR), 2022, 55(3): 1-
39. [doi: 10.1145/3501297]

9. Tak B C, Tao S, Yang L, et al. Logan: Problem diagnosis in the cloud using log-based ref-
erence models[C]//2016 IEEE International Conference on Cloud Engineering (IC2E).
IEEE, 2016: 62-67. [doi: 10.1109/IC2E.2016.12]

10. Roelke R. Dynamic Causal Monitoring for Distributed Systems[J]. ACM Trans. On Com-
puter Systems, 2017, 35(4): 11. [doi: 10.1145/3208104]

600 H. Zhang et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Design and Implementation of an Advanced Planning and Scheduling System 601

http://creativecommons.org/licenses/by-nc/4.0/

	Design and Implementation of an Advanced Planning and Scheduling System Based on Microservices

