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Abstract. Software Cost Estimation is one of the challenges in software 
engineering. Accurate estimates can increase the speed of the effort for 
developing software projects, and prevent probabilistic failure consequently. 
Based on factor analysis and random forest, this article proposed a new SCE 
model. The model recombines factors that affect software workload into six 
factors, measuring the size of workload from aspects such as software 
performance requirements, developer capabilities, and data size. The random 
forest model using the XGBoost framework is built to complete the software 
workload prediction task. Then, we evaluated the performance of the model on 
three datasets, including COCOMO81, and the results showed that the model has 
high prediction accuracy and strong robustness, and can achieve high precision 
with fewer data samples. 
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1 Introduction 

Accurate estimation of cost and time is crucial for the success of software development 
projects. Therefore, it is a potential factor in estimating the cost, time, and effort re-
quired for software development projects. 

In order to estimate the cost and effort required for software development projects, 
different algorithmic software models, such as COCOMO I[1], COCOMO II[2], 
SLIM[3,4], and FP[5] have been used. Most of the coefficients in these methods are based 
on empirical values, and many weight factors have significant errors. In practical work, 
the evaluation results are often inaccurate. 

Using machine learning methods to establish evaluation models can greatly 
compensate for the deficiencies of traditional models that rely solely on empirical 
judgments. However, there is a lack of research on using machine learning techniques 
to solve workload evaluation problems, and the research that has been conducted is 
limited to comparing several machine learning (ML) models. The ML methods that 
have been studied include artificial neural networks (ANN), decision trees (DT), 
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regression trees (RT), Bayesian networks (BN), and support vector regression (SVR). 
Among these, only the models based on regression trees have received attention from 
researchers due to their strong generalization ability and interpretability. 

Selby and Porter[6] used the ID3 algorithm to generate a large number of decision 
trees to classify software modules with high development intensity. In order to deal 
with the uncertainty and inaccuracy of data in software development projects, the 
authors in [7] studied the application of fuzzy ID3 decision trees. This method was 
designed by combining the concepts of the ID3 algorithm and fuzzy set theory, and 
used MMRE and Pred as standards to measure prediction accuracy. After comparing 
the results with other decision tree-based models such as ID3, CART, and C4.5, it was 
found that the fuzzy ID3 method was more accurate than the other methods mentioned. 
In paper [8], decision tree forests (DTF) were further used to create predictive models 
for workload estimation. Nassif compared three methods: multiple linear regression 
(MLR), DT, and DTF. They used the ISBSG R10 and Desharnais datasets and 
implemented DTF using ten-fold cross-validation, with MMRE, MdMRE, and 
Pred(.25) as the metrics for accuracy measurement. The results showed that the 
performance of DTF was better than that of DT and MLR. 

It is not difficult to find from existing research that using decision tree-based models 
to improve the accuracy of project management workload estimation is quite common 
in these few studies. However, decision trees, especially regression trees, as a relatively 
simple machine learning algorithm, have inherent flaws such as easy overfitting, 
sensitivity to noise, and unstable prediction results. Given the various shortcomings of 
regression tree models, we should expand our thinking to use other methods to optimize 
decision-trees-based models. 

Factor analysis and random forest are two effective methods for improving the 
robustness and accuracy of models. By recombining weighted subsets of attributes, 
various factors that affect software workload can be comprehensively reflected from 
different perspectives. This makes the new attributes more robust with strong 
interpretability, reducing the possibility of large prediction errors caused by biased 
attribute values. At the same time, using a random forest model for workload prediction 
avoids the problem of low model accuracy due to insufficient data sets. The resulting 
model has strong generalization and robustness. Innovatively introducing these two 
methods into software workload assessment will further enhance the performance of 
the prediction model. 

The structure of the paper is as follows: In Section 2, we'll deal with factors 
extraction problem in Software Cost Estimation (SCE); in Section 3, we will review 
XGBoost model; in Section 4, we will discuss the building process and the performance 
of our model for the SCE, and finally in Section 5, we'll deal with the conclusions and 
future works. 

2 Factors extraction 

In software workload evaluation, the same task is often characterized by many variables 
to depict the actual workload size. Multiple variable samples can provide a lot of 
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information for predicting results, but to some extent, it increases the workload of data 
collection. More importantly, in most cases, there may be correlations between many 
variables, which means that variables that seem different on the surface may not reflect 
different attributes of things from various perspectives, but rather different expressions 
of the same attribute. To enhance the robustness and interpretability of the model, we 
used factor analysis to combine closely related variables, so that the recombined factors 
reflect the size of the software workload from different dimensions, and avoid the prob-
lem of inaccurate model caused by large estimation deviation of individual attribute. 

To establish a software workload assessment model, we used the COCOMO81 

dataset as the data for training and testing the model. It includes 15 independent 
variables (such as analyst ability, programmer ability, application experience, etc.) and 
two dependent variables (actual workload and source code lines), each of which is a 
continuous variable. To perform factor analysis on this dataset, the correlation between 
variables should be determined first, and the covariance matrix is shown in the Fig. 1. 
The KMO value obtained through the KMO test is 0.70, indicating a high correlation 
between the attributes, which allows for factor analysis to be conducted. 

Next, we need to determine the number of factors. Having too many factors can 
make the model more susceptible to noise and reduce its robustness, while having too 
few factors can result in a low expression rate for the factors, which cannot effectively 
extract the underlying information in the original data. Therefore, we combine the 
practical significance of scree plot and software workload evaluation to 
comprehensively determine the optimal number of factors. When the number of factors 
is 6, the eigenvalue of the matrix reaches the inflection point, and the expression rate 
of these factors reaches 81%. Therefore, the number of factors after dimensionality 
reduction is determined to be 6. 

 

Fig. 1. Heatmap of the covariance matrix between attributes 

After determining the number of factors, it is necessary to name the obtained factors 
based on the actual background of software workload evaluation and the actual 
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significance of the original attributes. The contribution rates of the original attributes 
to each factor are shown in the Fig. 2. Based on this, we named the six factors as shown 
in the Table 1. These six factors evaluate the workload of software development from 
aspects such as software complexity, development environment, and personnel 
technical level, which have strong practical guidance significance and make the model 
highly interpretable. Subsequently, all data will undergo factor rotation to obtain the 
dimensionality reduced data. 

 

Fig. 2. Factor loading coefficient heatmap 

Table 1. Factor Naming Result Table 

Factor index Factor name 

F1 Software performance requirements 
F2 Difficulty in platform development 
F3 Personnel development capability 
F4 Teamwork ability 

F5 
Difficulty in software operation and 
maintenance 

F6 Software data scale 

3 Model building strategy based on XGBoost 

In order to overcome the shortcomings of low prediction accuracy and poor model 
interpretability in the software workload evaluation process of existing technologies, 
we propose a prediction model that combines factor analysis and random forest. The 
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model mainly includes four steps: data cleaning, feature extraction, model training, and 
result prediction. The model building process is shown in the figure. 

In practical applications, there may be some attributes in the sample data used for 
model training and prediction whose values cannot be estimated or whose data errors 
are large due to the strong subjectivity during estimation, leading to inaccurate 
prediction results. To address this issue, we use the box plot method to remove outlier 
data from the data to avoid the influence of extreme values on prediction results. For 
the missing values that arise from the removal of outliers, we fill them using a linear 
regression tree model. Specifically, we select a factor with missing values as the 
dependent variable and other factors as independent variables to construct a regression 
tree model. We use the constructed regression tree model to predict the numerical value 
of the missing value, and repeat this step until all missing values are filled. 

After completing the data preprocessing, the factor analysis step will be performed, 
and its specific method has been detailed in section three. The reduced data will be 
shuffled and divided into a training set and a test set. To ensure that the model has 
sufficient training data, the training set accounts for 90% of the total data, with a total 
of 53 data samples, and the test set accounts for 10%, with a total of 7 data samples. 
Next, for the training set data, the XGBoost[9] distributed gradient boosting library is 
used to train the model. The prediction of random forests depends on various factors, 
such as the number of decision trees used, the number of features used for splitting at 
each node, the method used to calculate information gain (such as Gini coefficient, 
entropy), the number of samples, and the maximum depth of the tree. In order to 
determine the parameter values that can generate the best random forest, this 
experiment adopts the method of adjusting hyperparameters instead of theoretical 
analysis. During the hyperparameter tuning process, a random forest model is 
established by using different combinations of parameter values. Then, the parameter 
values that generate the best predictive model are considered to be the most suitable 
values for that model. The final model contains 10 regression trees, with a maximum 
depth of no more than 8 layers, and a training rate set at 0.1. 

So far, our software workload estimation model has been fully constructed. We input 
the data from the testing set into the model to obtain the model's predicted results. In 
order to facilitate horizontal comparison between models, we will use some common 
performance evaluation standards to evaluate the predicted results of the testing set. 
There are many traditional methods and ML models available for workload estimation. 
To determine the better model or method, it is necessary to calculate the accuracy of 
the model. Several criteria can be used to evaluate the model. This experiment considers 
the three most common evaluation criteria shown in the Table 2, all based on the 
calculation of the Magnitude of Relative Error [10] (MRE)： 

𝑀𝑅𝐸 ൌ
|𝐸௔௖௧௨௔௟ െ 𝐸௘௦௧௜௠௔௧௘ௗ|

𝐸௔௖௧௨௔௟
 

𝐸௔௖௧௨௔௟  represents the actual workload value, while 𝐸௘௦௧௜௠௔௧௘ௗ  represents the 
predicted value of the model. 
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Table 2. Some common evaluation criteria used in the experience 

Evaluation Criteria Description 

𝑀𝑀𝑅𝐸 ൌ
1
𝑛

෍ 𝑀𝑅𝐸௜

௡

௜ୀଵ

 
Mean MRE (MMRE). MMRE is a 
common method used for evaluation 
prediction models. 

𝑀𝑑𝑀𝑅𝐸  𝑀𝑒𝑑𝑖𝑎𝑛ሺ𝑀𝑅𝐸ሻ 

Median MRE (MdMRE). MdMRE is 
criterion for mean MRE error. 
MdMRE has been used as another 
criterion because it is less sensitive to 
outliers. 

𝑃𝑅𝐸𝐷ሺ𝑥ሻ ൌ
1
𝑛

ൈ ෍ ൜
1, 𝑖𝑓 𝑀𝑅𝐸௜ ൑ 𝑥
0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

௡

௜ୀଵ

 

Where n denotes the total number of 
projects and k denotes the number of 
projects whose MRE is less than or 
equal to 𝑥 . normally, 𝑥  is set to be 
0.25. 

In order to evaluate the effectiveness of the model on different datasets, we built the 
model using the above method on three datasets: COCOMO 81, Albrecht, and 
Desharnais. The evaluation results of the model are shown in the Table 3. 

From the results, it can be seen that the difference between MMRE and MdMRE 
indicators of different datasets are small, indicating that the predicted results are 
relatively stable and there are no individual predicted results that differ significantly 
from the true values. Although the Albrecht training set contains only 21 training 
samples, the obtained model still has a high prediction accuracy, which confirms the 
efficient convergence of the random forest model. Our models possess the ability to 
discern the connections between input and output within system data. The training 
process modulates the activity levels of these connections, enabling the model to 
uncover the associated rules between input and output, even in cases where these rules 
are non-linear and intricate. Essentially, the models are capable of learning and possess 
the knowledge to address issues through learning methods. The learning capacity of the 
model is achieved by adjusting the parameters. The objective is to ensure that the model 
remains efficient in adapting to new conditions with minimal training, even when slight 
changes transpire in the model's environmental circumstances. 

Table 3. Evaluation of Criteria MMRE, MdMRE and PRED 

Dataset MMRE MdMRE PRED(25) 

COCOMO81 0.44 0.50 0.29 

Albrecht 0.17 0.38 0.33 

Desharnais 0.56 0.64 0.22 

4 Conclusions and Future Works 

Estimating the cost of software development is a particularly difficult task for managers 
since a multitude of cost factors are subject to change and can be difficult to accurately 
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predict, especially in the initial stages of development. After conducting investigations 
and carefully considering the findings presented in this paper, it can be concluded that 
both factor analysis and random forest are valuable tools for Software Cost Estimation.  
These methods can be applied to analyze and estimate software projects with large and 
small dataset. The model built through these methods have the advantages of fast 
training speed, good convergence effect, and strong robustness to noise. It has great 
practical value in software development applications. We hope that in future software 
workload assessment tasks, combining factor analysis and random forest to build 
models will lead to faster prediction speeds and more accurate forecasting results. 
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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