
Factor Analysis and Random Forest Based Model of
Software Cost Estimation

Wei Zhang1, Haixin Cheng2*, Siyu Zhan2, Ming Luo1, Feng Wang1, Zhan Huang1

1PetroChina Southwest Oil and Gasfield Company, Chengdu, 610041, China
2University of Electronic Science and Technology of China, Chengdu, 611731, China

*Corresponding author’s e-mail:xhcmail@std.uestc.edu.cn

Abstract. Software Cost Estimation is one of the challenges in software
engineering. Accurate estimates can increase the speed of the effort for
developing software projects, and prevent probabilistic failure consequently.
Based on factor analysis and random forest, this article proposed a new SCE
model. The model recombines factors that affect software workload into six
factors, measuring the size of workload from aspects such as software
performance requirements, developer capabilities, and data size. The random
forest model using the XGBoost framework is built to complete the software
workload prediction task. Then, we evaluated the performance of the model on
three datasets, including COCOMO81, and the results showed that the model has
high prediction accuracy and strong robustness, and can achieve high precision
with fewer data samples.

Keywords: Software Cost Estimation; Factor Analysis; Random Forest

1 Introduction

Accurate estimation of cost and time is crucial for the success of software development
projects. Therefore, it is a potential factor in estimating the cost, time, and effort re-
quired for software development projects.

In order to estimate the cost and effort required for software development projects,
different algorithmic software models, such as COCOMO I[1], COCOMO II[2],
SLIM[3,4], and FP[5] have been used. Most of the coefficients in these methods are based
on empirical values, and many weight factors have significant errors. In practical work,
the evaluation results are often inaccurate.

Using machine learning methods to establish evaluation models can greatly
compensate for the deficiencies of traditional models that rely solely on empirical
judgments. However, there is a lack of research on using machine learning techniques
to solve workload evaluation problems, and the research that has been conducted is
limited to comparing several machine learning (ML) models. The ML methods that
have been studied include artificial neural networks (ANN), decision trees (DT),

© The Author(s) 2024
A. Rauf et al. (eds.), Proceedings of the 3rd International Conference on Management Science and Software
Engineering (ICMSSE 2023), Atlantis Highlights in Engineering 20,
https://doi.org/10.2991/978-94-6463-262-0_73

https://doi.org/10.2991/978-94-6463-262-0_73
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-262-0_73&domain=pdf

regression trees (RT), Bayesian networks (BN), and support vector regression (SVR).
Among these, only the models based on regression trees have received attention from
researchers due to their strong generalization ability and interpretability.

Selby and Porter[6] used the ID3 algorithm to generate a large number of decision
trees to classify software modules with high development intensity. In order to deal
with the uncertainty and inaccuracy of data in software development projects, the
authors in [7] studied the application of fuzzy ID3 decision trees. This method was
designed by combining the concepts of the ID3 algorithm and fuzzy set theory, and
used MMRE and Pred as standards to measure prediction accuracy. After comparing
the results with other decision tree-based models such as ID3, CART, and C4.5, it was
found that the fuzzy ID3 method was more accurate than the other methods mentioned.
In paper [8], decision tree forests (DTF) were further used to create predictive models
for workload estimation. Nassif compared three methods: multiple linear regression
(MLR), DT, and DTF. They used the ISBSG R10 and Desharnais datasets and
implemented DTF using ten-fold cross-validation, with MMRE, MdMRE, and
Pred(.25) as the metrics for accuracy measurement. The results showed that the
performance of DTF was better than that of DT and MLR.

It is not difficult to find from existing research that using decision tree-based models
to improve the accuracy of project management workload estimation is quite common
in these few studies. However, decision trees, especially regression trees, as a relatively
simple machine learning algorithm, have inherent flaws such as easy overfitting,
sensitivity to noise, and unstable prediction results. Given the various shortcomings of
regression tree models, we should expand our thinking to use other methods to optimize
decision-trees-based models.

Factor analysis and random forest are two effective methods for improving the
robustness and accuracy of models. By recombining weighted subsets of attributes,
various factors that affect software workload can be comprehensively reflected from
different perspectives. This makes the new attributes more robust with strong
interpretability, reducing the possibility of large prediction errors caused by biased
attribute values. At the same time, using a random forest model for workload prediction
avoids the problem of low model accuracy due to insufficient data sets. The resulting
model has strong generalization and robustness. Innovatively introducing these two
methods into software workload assessment will further enhance the performance of
the prediction model.

The structure of the paper is as follows: In Section 2, we'll deal with factors
extraction problem in Software Cost Estimation (SCE); in Section 3, we will review
XGBoost model; in Section 4, we will discuss the building process and the performance
of our model for the SCE, and finally in Section 5, we'll deal with the conclusions and
future works.

2 Factors extraction

In software workload evaluation, the same task is often characterized by many variables
to depict the actual workload size. Multiple variable samples can provide a lot of

Factor Analysis and Random Forest Based Model of Software 701

information for predicting results, but to some extent, it increases the workload of data
collection. More importantly, in most cases, there may be correlations between many
variables, which means that variables that seem different on the surface may not reflect
different attributes of things from various perspectives, but rather different expressions
of the same attribute. To enhance the robustness and interpretability of the model, we
used factor analysis to combine closely related variables, so that the recombined factors
reflect the size of the software workload from different dimensions, and avoid the prob-
lem of inaccurate model caused by large estimation deviation of individual attribute.

To establish a software workload assessment model, we used the COCOMO81

dataset as the data for training and testing the model. It includes 15 independent
variables (such as analyst ability, programmer ability, application experience, etc.) and
two dependent variables (actual workload and source code lines), each of which is a
continuous variable. To perform factor analysis on this dataset, the correlation between
variables should be determined first, and the covariance matrix is shown in the Fig. 1.
The KMO value obtained through the KMO test is 0.70, indicating a high correlation
between the attributes, which allows for factor analysis to be conducted.

Next, we need to determine the number of factors. Having too many factors can
make the model more susceptible to noise and reduce its robustness, while having too
few factors can result in a low expression rate for the factors, which cannot effectively
extract the underlying information in the original data. Therefore, we combine the
practical significance of scree plot and software workload evaluation to
comprehensively determine the optimal number of factors. When the number of factors
is 6, the eigenvalue of the matrix reaches the inflection point, and the expression rate
of these factors reaches 81%. Therefore, the number of factors after dimensionality
reduction is determined to be 6.

Fig. 1. Heatmap of the covariance matrix between attributes

After determining the number of factors, it is necessary to name the obtained factors
based on the actual background of software workload evaluation and the actual

702 W. Zhang et al.

significance of the original attributes. The contribution rates of the original attributes
to each factor are shown in the Fig. 2. Based on this, we named the six factors as shown
in the Table 1. These six factors evaluate the workload of software development from
aspects such as software complexity, development environment, and personnel
technical level, which have strong practical guidance significance and make the model
highly interpretable. Subsequently, all data will undergo factor rotation to obtain the
dimensionality reduced data.

Fig. 2. Factor loading coefficient heatmap

Table 1. Factor Naming Result Table

Factor index Factor name

F1 Software performance requirements
F2 Difficulty in platform development
F3 Personnel development capability
F4 Teamwork ability

F5
Difficulty in software operation and
maintenance

F6 Software data scale

3 Model building strategy based on XGBoost

In order to overcome the shortcomings of low prediction accuracy and poor model
interpretability in the software workload evaluation process of existing technologies,
we propose a prediction model that combines factor analysis and random forest. The

Factor Analysis and Random Forest Based Model of Software 703

model mainly includes four steps: data cleaning, feature extraction, model training, and
result prediction. The model building process is shown in the figure.

In practical applications, there may be some attributes in the sample data used for
model training and prediction whose values cannot be estimated or whose data errors
are large due to the strong subjectivity during estimation, leading to inaccurate
prediction results. To address this issue, we use the box plot method to remove outlier
data from the data to avoid the influence of extreme values on prediction results. For
the missing values that arise from the removal of outliers, we fill them using a linear
regression tree model. Specifically, we select a factor with missing values as the
dependent variable and other factors as independent variables to construct a regression
tree model. We use the constructed regression tree model to predict the numerical value
of the missing value, and repeat this step until all missing values are filled.

After completing the data preprocessing, the factor analysis step will be performed,
and its specific method has been detailed in section three. The reduced data will be
shuffled and divided into a training set and a test set. To ensure that the model has
sufficient training data, the training set accounts for 90% of the total data, with a total
of 53 data samples, and the test set accounts for 10%, with a total of 7 data samples.
Next, for the training set data, the XGBoost[9] distributed gradient boosting library is
used to train the model. The prediction of random forests depends on various factors,
such as the number of decision trees used, the number of features used for splitting at
each node, the method used to calculate information gain (such as Gini coefficient,
entropy), the number of samples, and the maximum depth of the tree. In order to
determine the parameter values that can generate the best random forest, this
experiment adopts the method of adjusting hyperparameters instead of theoretical
analysis. During the hyperparameter tuning process, a random forest model is
established by using different combinations of parameter values. Then, the parameter
values that generate the best predictive model are considered to be the most suitable
values for that model. The final model contains 10 regression trees, with a maximum
depth of no more than 8 layers, and a training rate set at 0.1.

So far, our software workload estimation model has been fully constructed. We input
the data from the testing set into the model to obtain the model's predicted results. In
order to facilitate horizontal comparison between models, we will use some common
performance evaluation standards to evaluate the predicted results of the testing set.
There are many traditional methods and ML models available for workload estimation.
To determine the better model or method, it is necessary to calculate the accuracy of
the model. Several criteria can be used to evaluate the model. This experiment considers
the three most common evaluation criteria shown in the Table 2, all based on the
calculation of the Magnitude of Relative Error [10] (MRE)：

𝑀𝑅𝐸 ൌ
|𝐸௔௖௧௨௔௟ െ 𝐸௘௦௧௜௠௔௧௘ௗ|

𝐸௔௖௧௨௔௟

𝐸௔௖௧௨௔௟ represents the actual workload value, while 𝐸௘௦௧௜௠௔௧௘ௗ represents the
predicted value of the model.

704 W. Zhang et al.

Table 2. Some common evaluation criteria used in the experience

Evaluation Criteria Description

𝑀𝑀𝑅𝐸 ൌ
1
𝑛

෍ 𝑀𝑅𝐸௜

௡

௜ୀଵ

Mean MRE (MMRE). MMRE is a
common method used for evaluation
prediction models.

𝑀𝑑𝑀𝑅𝐸  𝑀𝑒𝑑𝑖𝑎𝑛ሺ𝑀𝑅𝐸ሻ

Median MRE (MdMRE). MdMRE is
criterion for mean MRE error.
MdMRE has been used as another
criterion because it is less sensitive to
outliers.

𝑃𝑅𝐸𝐷ሺ𝑥ሻ ൌ
1
𝑛

ൈ ෍ ൜
1, 𝑖𝑓 𝑀𝑅𝐸௜ ൑ 𝑥
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

௡

௜ୀଵ

Where n denotes the total number of
projects and k denotes the number of
projects whose MRE is less than or
equal to 𝑥 . normally, 𝑥 is set to be
0.25.

In order to evaluate the effectiveness of the model on different datasets, we built the
model using the above method on three datasets: COCOMO 81, Albrecht, and
Desharnais. The evaluation results of the model are shown in the Table 3.

From the results, it can be seen that the difference between MMRE and MdMRE
indicators of different datasets are small, indicating that the predicted results are
relatively stable and there are no individual predicted results that differ significantly
from the true values. Although the Albrecht training set contains only 21 training
samples, the obtained model still has a high prediction accuracy, which confirms the
efficient convergence of the random forest model. Our models possess the ability to
discern the connections between input and output within system data. The training
process modulates the activity levels of these connections, enabling the model to
uncover the associated rules between input and output, even in cases where these rules
are non-linear and intricate. Essentially, the models are capable of learning and possess
the knowledge to address issues through learning methods. The learning capacity of the
model is achieved by adjusting the parameters. The objective is to ensure that the model
remains efficient in adapting to new conditions with minimal training, even when slight
changes transpire in the model's environmental circumstances.

Table 3. Evaluation of Criteria MMRE, MdMRE and PRED

Dataset MMRE MdMRE PRED(25)

COCOMO81 0.44 0.50 0.29

Albrecht 0.17 0.38 0.33

Desharnais 0.56 0.64 0.22

4 Conclusions and Future Works

Estimating the cost of software development is a particularly difficult task for managers
since a multitude of cost factors are subject to change and can be difficult to accurately

Factor Analysis and Random Forest Based Model of Software 705

predict, especially in the initial stages of development. After conducting investigations
and carefully considering the findings presented in this paper, it can be concluded that
both factor analysis and random forest are valuable tools for Software Cost Estimation.
These methods can be applied to analyze and estimate software projects with large and
small dataset. The model built through these methods have the advantages of fast
training speed, good convergence effect, and strong robustness to noise. It has great
practical value in software development applications. We hope that in future software
workload assessment tasks, combining factor analysis and random forest to build
models will lead to faster prediction speeds and more accurate forecasting results.

Acknowledgments

This study was supported by Sichuan Science and Technology Program (No.
2022YFG0176).

References

1. Boehm, B. W. (1984). Software engineering economics. IEEE transactions on Software
Engineering, (1), 4-21. DOI: 10.1109/TSE.1984.5010193

2. Musílek, P., Pedrycz, W., Sun, N., & Succi, G. (2002, June). On the sensitivity of COCOMO
II software cost estimation model. In Proceedings Eighth IEEE Symposium on Software
Metrics (pp. 13-20). IEEE. DOI: 10.1109/METRIC.2002.1011321

3. Côté, V., Bourque, P., Oligny, S., & Rivard, N. (1988). Software metrics: An overview of
recent results. Journal of Systems and Software, 8(2), 121-131.
https://doi.org/10.1016/0164-1212(88)90005-2

4. Conte, S. D., Dunsmore, H. E., & Shen, Y. E. (1986). Software engineering metrics and
models. Benjamin-Cummings Publishing Co., Inc..
https://dl.acm.org/doi/abs/10.5555/42168

5. Albrecht, A. J., & Gaffney, J. E. (1983). Software function, source lines of code, and
development effort prediction: a software science validation. IEEE transactions on software
engineering, (6), 639-648. DOI: 10.1109/TSE.1983.235271

6. Porter, A. A., & Selby, R. W. (1990). Evaluating techniques for generating metric-based
classification trees. Journal of Systems and Software, 12(3), 209-218.
https://doi.org/10.1016/0164-1212(90)90041-J

7. Idri, A., & Elyassami, S. (2011). A fuzzy decision tree to estimate development effort for
web applications. International Journal of Advanced Computer Science and Applications,
1(3). DOI : 10.14569/SpecialIssue.2011.010314

8. Nassif, A. B., Azzeh, M., Capretz, L. F., & Ho, D. (2013, June). A comparison between
decision trees and decision tree forest models for software development effort estimation. In
2013 Third International Conference on Communications and Information Technology
(ICCIT) (pp. 220-224). IEEE. DOI: 10.1109/ICCITechnology.2013.6579553

9. Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining (pp. 785-794). https://doi.org/10.1145/2939672.2939785

10. Capretz L F, Marza V. Improving effort estimation by voting software estimation models[J].
Advances in Software Engineering, 2009, 2009. https://doi.org/10.1155/2009/829725

706 W. Zhang et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Factor Analysis and Random Forest Based Model of Software 707

http://creativecommons.org/licenses/by-nc/4.0/

	Factor Analysis and Random Forest Based Model of Software Cost Estimation

