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Abstract.The increasing complexity of financial markets and the introduction 
of sophisticated products have amplified investment volatility and uncertainty. 
The present work introduces a general framework for addressing uncertainty in 
financial multi-stage planning problems. To solve this uncertainty quantifica-
tion problem, the proposed methodology involves randomization of vectors, 
dimension reduction via KL-expansion, and distribution transformation using 
the Maximum Entropy principle. Stochastic solvers, such as Monte Carlo, Gen-
eralized Moment methods, or Stochastic Collocation methods, are then em-
ployed for forward uncertainty propagation, mapping stochastic inputs to out-
put, and generating the probability distribution. This integrated approach aims 
to enhance financial analysis and planning by providing a comprehensive un-
derstanding of the decision-making context and stochastic factors that influence 
investment outcomes. 

Keywords: market uncertainty, multi-stage stochastic process, probability dis-
tribution, financial planning, decision-making 

1 Introduction 

The globalization of financial markets and the introduction of complex products such 
as financial derivatives have increased investment volatility and uncertainty. The 
financial rewards for good decisions and the penalties for bad decisions are both huge. 
Uncertainty plays a crucial role in this process [1]. There is a great need for an inte-
grated approach to financial analysis and planning that incorporates decision context 
and random factors. So, I propose a general framework for modeling financial plan-
ning problems via multi-stage stochastic process. 

In this project, the stochastic modeling of the investor’s total wealth is explored, 
and the inputs are randomized and fit Gaussian distribution [2]. After reducing the 
dimension, stochastic solvers can be performed to quantify uncertainty, i.e., Monte 
Carlo, Galerkin method, and Stochastic Collocation method. This project aims at 
understanding the use of stochastic principles in financial valuation model, and the 
advantages and disadvantages of these methods. Recently, some researchers also use 
machine learning and deep learning methods to quantify uncertainty in high dimen-
sions, such as generative adversarial networks [3] and Bayesian neural networks [4]. 
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2 Stochastic Methods 

2.1 Financial Valuation Model 

To visualize our multi-stage financial model, a network is displayed in Figure.1(a). 
Although the network is ideal and not complex enough to reflect reality, it enhances 
our understanding of the multi-stage financial model. 

 

Fig. 1. (a) multi-stage financial planning model, (b) scenario path tree 

In our multi-stage stochastic approach, the planning horizon consists of t periods, 
denoted by T = {0,1,…,t-1}. The first period represents the current date. I focus on 
the investor's position at the beginning of period t. An asset investment class is de-
fined as the set A = {1,2,…,I}, representing a diversified portfolio of investments 
such as stocks, bonds, real estate, or cash. S represents the set of scenarios, each sce-
nario represents a set of outcomes for all random coefficients over the entire planning 
period T. Scenario s is the continuous path through nodes, shown as Figure.1. (b). 
The main decision variable xi,t

s represents the amount of assets invested in class i at 
the beginning of time period t under the scenario. After rebalancing the assets, the 
buying and selling values of assets are considered, which are respectively regulated 
by the variables yi,t-1

s and zi,t-1
s, and assume the transaction cost is the constant coeffi-

cient ξi. Therefore, the total asset is: 

 𝑥௜,௧ೄ ൌ 𝑥௜,௧ିଵೄ ൅ ሺ1 െ 𝜉௜ሻ𝑦௜,௧ିଵೄ െ ሺ1 ൅ 𝜉௜ሻ𝑧௜,௧ିଵೄ     ∀𝑖 ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (1) 

For the wealth of the focal investor, the Quantity of Interest (QoI) is: 

 𝑤𝑒𝑎𝑙𝑡ℎ்ೄ ൌ 𝑥௜,௧ೄ െ 𝐿 ൌ 𝑥௜,௧ିଵೄ ൅ ሺ1 െ 𝜉௜ሻ𝑦௜,௧ିଵೄ െ ሺ1 ൅ 𝜉௜ሻ𝑧௜,௧ିଵೄ െ 𝐿 (2) 

where L is the investor’s present value of the liability. To simplify the uncertainty 
qualification problem, the liability is assumed to be constant. 
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2.2 Multi-Stage Stochastic Process 

To solve the uncertainty qualification problem, randomization of input and output 
vectors is first employed. The stochastic inputs yi,t-1

s and zi,t-1
s are represented as mul-

ti-dimensional random vectors. A statistical summary of these inputs is in Table.1. 
Then, Gaussian distribution is employed to describe the stochastic inputs, KL-
expansion is used to reduce the dimension, and subsequently, the distributions of 
inputs are transformed to a non-Gaussian vector using the Max Entropy principle, 
with an appropriate probability distribution. 

Table 1. Statistical summary of inputs 

 Mean 
Standard devia-

tion 
Lower 
bound 

Upper 
bound 

Correlation 
length 

yi,t-1
s 4.87 1.84 0.04 11.44 20 

zi,t-1
s 4.80 1.61 0.14 9.94 20 

Then, use stochastic solvers (Monte Carlo, Galerkin method, and Stochastic Collo-
cation method) to tackle the forward uncertainty propagation problem, which involves 
mapping the stochastic inputs to the stochastic outputs, resulting in the availability of 
the probability distribution of the outputs. Figure.2 illustrates the entire workflow. 

 

Fig. 2. flowchart of multi-step stochastic model 
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Randomization of input and output vectors. 
People usually use the Gaussian distribution to describe the return on investment 

for the convenience of analysis. As for asset values yi,t-1s and zi,t-1s ,  they are both 
multi-dimensional random vectors and normally represented by Gaussian distribution 
[5]. To visualize two inputs, their probability density functions are shown in Figure.3. 
(a-d). In the financial industry, Gaussian random vectors are utilized as a popular 
choice among various distributions due to their ease of generation. In the approach, 
the parameters of a Gaussian vector are means and covariance matrix. I assume the 
mean of each yi,t-1s and zi,t-1s is all 0, 𝐶൫𝑦௜,௧ିଵೄ, 𝑧௜,௧ିଵೄ൯ represents the covariance of 
them, 𝑙 denotes correlation length structure. The squared-exponential structure is: 

 𝐶൫𝑦௜,௧ିଵೄ, 𝑧௜,௧ିଵೄ൯ ൌ 𝑒ି
೤

೔,೟షభೄష೥
೔,೟షభೄ

మ೗మ   (3) 

 

Fig. 3. probability density functions of two inputs (a): y, (b): z. c) 2D gaussian distribution with 
covariance=1.5. d) 2D gaussian distribution with 0 covariance. 

Reduce-order Model. 
Since Gaussian vectors yi,t-1s and zi,t-1s are high-dimensional, Karhunen-Lo`eve 

expansion (KL-expansion) is utilized to construct Gaussian vectors, which helps to 
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remove redundant and complex data, so that the computational cost of analyzing data 
could be reduced as well. 

According to Mercer’s theorem of KL-expansion, the covariance 𝐶൫𝑦௜,௧ିଵೄ, 𝑧௜,௧ିଵೄ൯ 
could be reformulated as: 

 𝐶൫𝑦௜,௧ିଵೄ, 𝑧௜,௧ିଵೄ൯ ൌ ∑ 𝜆ஶ
௜ୀଵ ௜ 𝜑௜൫𝑦௜,௧ିଵೄ൯𝜑௜

்௥௔௡௦ሺ𝑧௜,௧ିଵೄሻ (4) 

where {λ i} and {φi} are eigenvalues and corresponding eigenvectors, respectively. 
Assume a normalized Gaussian field 𝐺. Let {ηi} denote independent Gaussian random 
variables, {ηi} of H~N (0,1) are independent, centered and reduced, and n represents a 
truncation degree: 

ηi = 𝜆ି
భ
మ ൏ 𝐺, φi ൐, and 

 𝐺 ൌ ∑ 𝜆ஶ
௜ୀଵ ௜

ଵ/ଶ 𝜂௜𝜑௜ ൎ ∑ 𝜆௜
ଵ/ଶ𝜂௜𝜑௜

௡
௜ୀଵ ൌ 𝐺ழ௡வ 

  (5) 

Once the eigen decomposition of the covariance matrix is computed, the corre-
sponding eigenvalues and eigenvectors are gained. Let 𝜀 denote the truncation error 
which varies with respect to the number of reduced variables 𝑞. When q approaches 
infinite, the initial covariance matrix is recovered. The truncation error can be deter-
mined using the following calculation: 

 𝜀ሺ𝑞ሻ ൌ 1 െ
∑ ఒ೔

ಮ
೔స೜శభ  

∑ ఒ೔
ಮ
೔సభ

ൎ  
௧௥ሺ஼ሻି∑ ఒ೔

೜
೔సభ

௧௥ሺ஼ሻ
ൌ 1 െ

∑ ఒ೔
೜
೔సభ

௧௥ሺ஼ሻ
 (6) 

To reduce the stochastic dimension, KL-expansion is employed on each covariance 
function. In Figure.4.(a), the curve for truncation error as a function of the number of 
reduced variable 𝑞 is displayed, indicating that a truncation degree (n) greater than 25 
results in a truncation error below 0.1. To account for the assumption of uncorrelated 
and independent variables for both yi,t-1

s and zi,t-1
s, each random field necessitates a 

realization, thereby leading to a stochastic dimension of m = 2q = 50. 
To examine if the truncated Gaussian vector is efficient, given a correlation length, 

the Frobenius norm of the difference between the approximated and original covari-
ance matrices with respect to q is shown as the convergence of the covariance matrix 
in Figure.4.(b). The plot shows the error converges when the truncated number is 
about 50, which verifies the results in Figure.4.(a). The error changes as the covari-
ance changes. A larger covariance usually leads to a more significant concave error-
truncated number curve (shown in Figure.4.(c)). 
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Fig. 4. (a) truncation error curve, (b) Frobenius norm of the error, (c) truncation error at differ-
ent levels of covariances. 
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Transformation to Non-Gaussian Field. 
Table 1 indicates that the two parameters yi,t-1s and zi,t-1s are constrained to a 

specific range, whereas the Gaussian distribution has unbounded support. Therefore, 
it is necessary to introduce a non-Gaussian vector to accommodate the bounded pa-
rameters. 

Assume 𝑆=[ 𝜁𝑙𝑜, 𝜁ℎ𝑖] supports non-Gaussian vector, 𝜁 denotes non-Gaussian vari-
ables. For each variable in vector 𝑆, there are two constraints: 

 E{log(𝜁- 𝜁𝑙𝑜)}<c1 and E{log(𝜁ℎ𝑖 - 𝜁)}<c2 (7) 

where the values of c1 and c2 are not important. In this method, logarithmic is em-
ployed to trigger an impulse near the boundness. 

Using Shannon’s information theory, entropy is a measure of the uncertainty or 
randomness associated with a probability distribution. Let 𝐱 be a vector-valued ran-
dom variable defined by a probability distribution 𝑓𝐱(𝑋)dx. An entropy of a distribu-
tion is: 

 ℰ(𝑓𝐱) = − 𝔼{log(𝑓𝐱(𝑋))} (8) 

According to the Max Entropy principle, the most reasonable probability distribu-
tion to assume is the one that maximizes entropy subject to the constraints imposed by 
the available information. Thus, I maximize a Lagrange equation as follows: 

f * =arg max ℒ (f)= ℰ(𝑓𝐱)- 𝜆1(𝔼{log(𝜁−𝜁𝑙𝑜)} −𝑐1)−𝜆2(𝔼{log(𝜁ℎ𝑖−𝜁)}−𝑐2) (9) 

where above variables are the set of all possible probability density functions and 
satisfying the constraints. After solving this equation, notice that the Beta distribution 
is the most reasonable distribution, which maximizes entropy and satisfies constraints. 
The probability density function and cumulative density function are displayed in 
Figure.5. Therefore, let ℱ denotes the cumulative probability function of Beta distri-
bution, and the non-Gaussian vector transformed from the Gaussian vector is: 

 𝜁(𝑥)=(𝜁ℎ𝑖−𝜁𝑙𝑜)ℱ-1𝔹(1−𝜆1,1−𝜆2){ℱ𝒩(0,1)(𝜉(𝑥))}+𝜁𝑙𝑜 (10) 

 
Fig. 5. probability density function and cumulative density function of beta distribution after 

Max Entropy principle 
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3 Uncertainty Propagation: Stochastic Solvers 

To propagate uncertainties through large-scale models or when the dimension is fairly 
high, stochastic solvers are devised. Three propagation techniques are employed in 
this project: Monte Carlo, SGM, or SCM. 

3.1 Monte Carlo Approach 

Although the KL-expansion technique was used to reduce the stochastic dimension to 
m = 50 in this project, in real-world applications, complex problems may have a sig-
nificantly larger stochastic dimension, making the computational cost prohibitively 
expensive. However, the Monte Carlo approach has a convergence rate that is inde-
pendent of the stochastic dimension. Hence, it is not affected by the curse of dimen-
sionality. 

Our problem is solved NMC times, and as NMC → ∞, the PDF of output should be 
precise, and the moments are converged. For each solution, I sample m random varia-
bles: 

 ηj(Θi) of H ~N (0,1), 1≤ i ≤ NMC, 1≤ j ≤ m (11) 

The Quantity of Interest (QoI), the wealth of investor in our financial problem, is: 

𝑤𝑒𝑎𝑙𝑡ℎ்ೄ ൌ
ଵ

௡
∑ ሾ௡

௜ୀଵ ሺ1 െ 𝜉௜ሻ𝑦௜,௧ିଵೄሺ𝐻ሻ െ ሺ1 ൅ 𝜉௜ሻ𝑧௜,௧ିଵೄሺ𝐻ሻሿ െ 𝐿    ∀𝑖 ∈ 𝐴, 𝑡 ∈

𝑇, 𝑠 ∈ 𝑆  (12) 

where n is the number of elements in the bound. Based on sampling variables and 
KL-expansion, let 𝜔௜, μ୧ be element averages of nodal values, the realization of QoI 
is: 

 wealth Ts = 
ଵ

௡
∑ ሾ𝜔௜൫ηሺΘ୧ሻ൯ ൅ μ୧൫ηሺΘ୧ሻ൯ሿ௡

௜ୀଵ -L (13) 

In the process of executing the Monte Carlo simulation, 10,000 random samples 
are generated utilizing the fitted Beta distribution. It is assumed that the displacement 
distribution at the end node adequately represents all other output variables. The con-
vergence results for the first and second moments are illustrated in Figure.6. The 
graphical representation demonstrates that convergence is achieved when NMC → 
3,000, which constitutes a reasonable quantity of realizations. 
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Fig. 6. the convergence results for the first and second moments using the Monte Carlo simula-
tion 

3.2 GMs or SCMs Approach 

The Galerkin Methods (GMs) or Stochastic Collocation Methods (SCMs) are com-
monly utilized to solve for the coefficients of the polynomial chaos expansion (PCE). 
Their equations are similar: 

 Wealth(Ξ)= ∑ 𝑤𝑒𝑎𝑙𝑡ℎ୧ ൉ Ψ୧ሺΞሻ
ே೛೎೐
௜ୀଵ  (14) 

When using GMs, the PCEs are incorporated into the model equations to determine 
the equations that the chaos coefficients of the output must satisfy. GMs are consid-
ered intrusive and satisfy the model in a weak form. On the other hand, SCMs involve 
sampling the solution map to enforce the governing equations on a finite set of points 
(known as collocation points). SCMs are non-intrusive, and the model is satisfied in a 
discrete (or strong) sense. 

To test the two methods and compare the results, the Monte Carlo method is uti-
lized as a benchmark. Evaluating the convergence was employed. 

In GMs method, let K be the PCE coefficients of the stiffness matrix, and let F be 
the PCE coefficients of the force vector, the deterministic linear system is: 

 K൉wealth ൌ F (15) 

It is extended to a larger linear system. The main idea is to derive the PCE coeffi-
cients of the stiffness matrix and the force vector, rather than solving for the PCE of 
the output wealth. 

 K(Ξ)= ∑ 𝑘୧Ψ୧ሺΞሻ
ே೛೎೐
௜ୀଵ      F(Ξ)= ∑ 𝑓୧Ψ୧ሺΞሻ

ே೛೎೐
௜ୀଵ  (16) 

The global linear system can be obtained by projecting the original equation to 
each of the polynomials Ψ୧ሺΞ). By solving the resulting extended global linear sys-
tem, the PCE coefficients {wealth i}i≥1 can be determined. 

The results for the Monte Carlo simulation and the Galerkin method with polyno-
mial degrees Q=2,4,6,8 were plotted in Figure.7, and it contains the displacement 
distribution on the middle and the end node. The Galerkin method for all polynomial 
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degrees converges to the Monte Carlo simulation well, although some noise exists. 
When polynomial degree Q=8, the convergence result is the best. 

 

Fig. 7. the convergence results for the Monte Carlo simulation and the Galerkin method with 
polynomial degrees Q=2,4,6,8 for (a): end node(x=1.0), (b): middle node(x=0.5) 

In SCMs method, the PCE coefficients {Wealth i}i൒1 can be determined by: 

 Wealth i=∫ Wealth (𝜉)Ψi(𝜉)𝑝Ξ(𝜉)𝑑𝜉 (17) 

Due to the high number of dimensions involved in stochastic inputs, it is often re-
quired to use quadrature rules to calculate the integration mentioned earlier. This im-
plies that a substantial number of deterministic simulations need to be performed, 
which can be extremely time-consuming, particularly if each simulation requires a 
considerable amount of time to execute. In this project, the Gaussian-Hermite rules 
are employed due to the Gaussian distribution of stochastic inputs. The convergence 
result with respect to quadrature depth for second-order expansion is illuminated in 
Figure.8. It is shown that the peak of SCMs method lines is almost twice that of the 
Monte Carlo line, so the SCMs method does not converge well. 

 

Fig. 8. the convergence result with respect to quadrature depth for second-order expansion 
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4 Conclusion 

Monte Carlo, Galerkin method, and Stochastic Collocation method are all techniques 
for solving stochastic problems. Each method has its advantages and disadvantages, 
making them more suitable for specific problems or situations. In this project, Monte 
Carlo and Galerkin method works well for the financial model, while the Stochastic 
Collocation method is not suitable. Their advantages and disadvantages are as fol-
lows. 

As a general method that is easy to implement, the Monte Carlo method is em-
ployed as the benchmark for the comparison of two other methods. It is also not sensi-
tive to the dimensionality of the problem. The convergence rate is independent of the 
smoothness of the function. It could also handle non-linear and non-Gaussian prob-
lems. However, the convergence rate is normally slow, and it requires many samples 
for accurate results. 

For Galerkin, it provides rapid convergence for smooth functions with low effec-
tive dimensions, and handles a wide range of problems, including linear and non-
linear systems. It also provides a compact representation of the solution in terms of 
orthogonal polynomial basis functions. On the other hand, it assumes specific proba-
bility distributions for input variables (usually Gaussian) and is sensitive to the choice 
of polynomial basis. It is also computationally expensive for high-dimensional prob-
lems due to the curse of dimensionality. Solving a system of equations that may be-
come ill-conditioned is required as well. 

The stochastic Collocation method (SCM) can handle non-linear problems and 
non-Gaussian input distributions. The convergence rate is generally faster than Monte 
Carlo for smooth functions. It also can handle higher effective dimensions and non-
smooth functions better than the Galerkin method and does not require solving a sys-
tem of equations. However, it is sensitive to the choice of collocation points and in-
terpolation strategy and can be affected by numerical issues like the curse of dimen-
sionality or ill-conditioning in the interpolation step, so it may not converge as well as 
the Galerkin method for certain problems. 

In summary, each method has its strengths and weaknesses. The choice of the 
method depends on the problem at hand, its characteristics, and the desired level of 
accuracy. In this project, the Galerkin method achieves better convergence. It captures 
the structure of the financial model more efficiently, while it is computationally ex-
pensive. Overall, the choice between the Galerkin method and the Stochastic Colloca-
tion method is a trade-off between computational efficiency, convergence, and accu-
racy. 
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