

BitAFL: Provide More Accurate Coverage Information
for Coverage-guided Fuzzing

Hang Xua, Zhi Yang*, Xingyuan Chen, Bing Han, Xuehui Du

PLA Information Engineering University, Zhengzhou, China

ae-mail: xuhangzzz@outlook.com
*Corresponding author’s e-mail: zynoah@163.com

Abstract. CGF (Coverage-guided fuzzing) has found a large number of software
vulnerabilities with its low cost and adaptability. CGF mutates at the bit or byte
level, so most of the mutated test cases cover the same paths. But no previous
work had quantified the percentage of test cases that covered the duplicate paths.
Therefore, we designed the experimental framework GSPR (get same path rate)
based on AFL. We fuzzed seven applications using GSPR and found that approx-
imately 70% of the test cases covered duplicate paths. Based on the above exper-
imental results, we solve the hash collision issue in AFL. We analyzed the various
situations that cause hash collision, and introduced the concepts of local collision
and global collision. Because a large number of test cases cover duplicate paths,
there are much repeated global collision. Based on these findings, we propose
different solutions to hash collision according to the size of target program. We
extended AFL to implement BitAFL and evaluated it on seven applications. In a
comparison experiment with AFL, the results show that our method can com-
pletely eliminate hash collisions in small programs. In large programs, BitAFL
is able to reduce collisions by more than 80%. In addition, on average, BitAFL
found 8.87% more paths than AFL. In summary, our approach provides AFL
with more accurate coverage information and can find more paths.

Keywords: fuzzing, vulnerability, hash collision, bit operation, instrumentation

1 Introduction

CGF (Coverage-guided fuzzing) is the most popular fuzzing technology at present,
which plays an important role in protecting software security. AFL (American Fuzzy
Lop) [1] is the most successful representative work in the CGF field, and academia and
industry have formed an ecosystem based on AFL. Existing studies AFLFast [2] and
EcoFuzz [3] show that when fuzzing target program with AFL, most test cases do not
cover new path. UnTracer [4] also notes that very few test cases cover new path, so it
discards most test cases that do not increase coverage. However, no work has been done
on an experimental basis to quantify the percentage of test cases that execute duplicate
paths (For the sake of presentation, we'll call it repetition rate for short). Therefore, we

© The Author(s) 2024
A. Rauf et al. (eds.), Proceedings of the 3rd International Conference on Management Science and Software
Engineering (ICMSSE 2023), Atlantis Highlights in Engineering 20,
https://doi.org/10.2991/978-94-6463-262-0_54

https://doi.org/10.2991/978-94-6463-262-0_54
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-262-0_54&domain=pdf

designed and implemented an experimental framework GSPR (get same path rate) for
counting repetition rate. Importantly, our experimental framework can be integrated
into the AFL extension based coverage-guided fuzzers. We integrated the experimental
framework into AFL and AFLFast, and fuzzed 7 real applications. According to the
statistics, the average repetition rate is as high as 70%, which also indicates that most
hash collisions are repeated.

Coverage information guides the exploration direction and its accuracy has become
the key to measure the success of a fuzzer. AFL uses edge coverage, which provides
more accurate coverage information than the basic block coverage adopted by
Honggfuzz [5] and LibFuzzer [6]. AFL uses a 64KB shared bitmap to record the edge
coverage information, and each byte in the bitmap records the hit count for one edge.
The ID of one edge is calculated by a specific hash function, and also as the offset in
the shared bitmap. However, there is hash collision in the calculation of the offset. Dif-
ferent edges may have the same offset in the shared bitmap, so they share a same byte
to store the hit count. Hash collision leads to inaccurate edge count and hides new
paths. Further, inaccurate coverage information may affect the exploration direction of
fuzzers.

Aiming at the hash collision issue in AFL, we analyzed various situations that cause
hash collision, and analyzed the probability of various collisions quantitatively. On the
basis of the above repetition rate experiment and collision analysis, we divided the pro-
grams into large programs and small programs according to the number of edges. For
different programs, we use different methods to resolve hash collision. We extended
AFL to implement BitAFL and evaluated BitAFL on 7 applications. The results show
that our method can completely eliminate hash collisions in small programs. In large
programs, the number of collision bytes decreased by an average of 83.05%, and the
number of collisions per test case decreased by an average of 97.31%. In addition, on
average, BitAFL found 8.87% more paths than AFL, and covered 6.33% more edges
than AFL.

2 Hash Collision in AFL

2.1 Hash Algorithm in AFL

Algorithm 1: Hash algorithm in AFL

1. MAP_SIZE = 2H

2. BBID = compile_time_random(MAP_SIZE)

3. EdgeID = (srcBBID >> 1) ^ desBBID

4. Bitmap[EdgeID]++

Next, we will introduce how AFL records edge coverage information. In Algorithm
1, Bitmap represents the shared bitmap, which stored in bytes. MAP_SIZE indicates the
size of shared bitmap. Each byte in the shared bitmap stores the hit count for an edge.
For each basic block of the target program, AFL randomly assigns it an ID at compile
time. For one edge, srcBBID is the ID of the source basic block, desBBID is the ID of
the destination basic block, and [srcBBID, desBBID] is a tuple. The hash function is

522 H. Xu et al.

applied to the tuple to calculate the edge ID, EdgeID, which is also used as the offset
in the shared bitmap. The hit count of EdgeID is stored in the corresponding offset byte
in the bitmap.

Because of the randomness of the basic block ID, different edges may get the same
edge ID (that is, the same offset in bitmap) after calculation by hash function. Then
they share a same byte to store the hit count, so the fuzzer cannot distinguish between
these two edges, which is called a hash collision.

In the execution of AFL, hash collision will occur within a single test case, which
we call local collision, and also between test cases, which we call global collision.
Local collision causes the coverage of test case to be lower than the real value, which
leads to the lower score of the test case, and ultimately affects the decision in the mu-
tation stage. The impact of global collision is more serious. For example, if a test case
covers a new edge, but conflicts with the previously covered edge, the fuzzer will not
regard it as a new coverage. Then the opportunity to further explore the new path will
be missed.

2.2 Three Types of Hash Collision

C
ID=8

D
ID=5

A
ID=7

B
ID=2

ID=1 ID=1

C
ID=1

D
ID=2

A
ID=1

B
ID=2

ID=2 ID=2

① ②

A
ID=7

B
ID=7

ID=4

ID=4

③

C
ID=5

A
ID=4

B
ID=7

C
ID=5

D
ID=7

A
ID=4

B
ID=7

ID=5 ID=5

① ②

(1) (2) (3)

C
ID=3

A
ID=3

B
ID=7

Fig. 1. Three types of hash collision

According to the hash algorithm in AFL, we analyzed the collision types and took
the similarities and differences between srcBBID and desBBID as the classification ba-
sis. Since the basic block ID is randomly allocated, hash collisions can be divided into
the three types, as shown in Fig. 1. Where H is the size of the hash space, that is the
bitmap size, and n is the number of existing edges.

Type 1. The srcBBIDs and desBBIDs of both edges are same, so their hash values
are same.

1) One edge from A to B, and another edge from C to D, the basic block ID of A and
C are same, the basic block ID of B and D are same. The collision probability is 𝑛 𝐻⁄ .

2) In particular, when two basic blocks A and C with the same ID are passed into the
same basic block, hash collision will occur. The collision probability is 1 𝐻⁄ .

3) Basic blocks A and B both have self-cyclic edges, and the IDs of A and B are same.
The collision probability is 1 𝐻⁄ .

Type 2. The srcBBIDs and desBBIDs are different.
Because of the particularity of exclusive or operation, two different values may get

the same value. As shown in Fig. 1, although the IDs of basic blocks A, B, C, and D are
all different, the calculated hash values are the same. The collision probability is 𝑛 𝐻⁄ .

Type 3. While srcBBID is different, desBBIDs are same.

BitAFL: Provide More Accurate Coverage Information 523

1) We notice that there is a shift operation in the hash operation (srcBBID >> 1),
where two numbers with different lowest bit move to the right one bit will get the same
value. As shown in Fig. 1, the IDs of A and C differ only in the lowest bit, and when
they are passed into the same base block B, the hash value are same. The collision
probability is 1 𝐻⁄ .

2) When they pass to different basic blocks B and D, since the basic block ID of B
and D are same, the ID of two edges are same. The collision probability is 𝑛 𝐻⁄ .

Through static analysis, we can get that the collision situation in type 2 will occupy
the vast majority. For example, with the default bitmap size (64KB) in AFL, when there
are 100 edges, the probability of the next collision edge being type2 is 97%. When there
are 1000 edges, the probability that the next collision edge is type2 is 99.7%. The more
edges, the greater the probability of collision due to the type2. There are almost no
target programs with fewer than 1000 edges in the fuzzing. Therefore, if we can solve
the type2, we can avoid most collisions.

3 Method and Implementation

3.1 GSPR and Repetition Rate

As mentioned earlier, the mutation-based fuzzers use a bit or byte level mutation strat-
egy. When the seed size is 100KB, 819200 bit flips and 102400 byte flips are required
in AFL. For the target program, when the mutation occurs in the data area, the mutated
test case is no different from the seed, so the covered path is no different. Furthermore,
most hash collisions are repetitive.

To date, no work has systematically measured the percentage of test cases that exe-
cute duplicate paths. Stefan Nagy et al. [4] have only experimentally measured the per-
centage of test cases that increase coverage, considering only coverage, not execution
path. Our target is execution path, that is, to consider the order in which basic blocks
are executed. We count the relative order in which basic blocks are executed, that is,
the order in which each basic block is first executed.

The basis for determining the execution of duplicate paths is as follows: (1) The test
case generated by mutation is little different from its parent seed. Therefore, we com-
pare the execution path of the current test case to the execution path of its parent seed.
(2) When the mutation occurred in the metadata area and new path was covered, deter-
ministic mutation would cause next mutation to occur in the adjacent location of the
metadata area, so we compare the execution path of the current test case with the exe-
cution path of last test case.

We implemented an experimental framework, GSPR, which can be used in conjunc-
tion with the popular coverage-guided fuzzers. Algorithm 2 shows the workflow of
integrating the framework into the AFL. We first use LLVM to instrument the target
program at compile time, statically insert the code of recording relative execution se-
quence of the basic blocks to get the instrumented target program. Then fuzzer sets up
the fuzzing environment (line 1). Save the execution path of each initial seeds (line 2).
In the main cycle (lines 3-20), a seed s is selected according to the scheduling strategy
(line 4). A large number of test cases were generated by mutation, and the test cases are

524 H. Xu et al.

successively input into the target program for execution (lines 5,6). Check the execution
result of test case t to see if it covers new path, and if so, add it to the seed queue and
save the new path (lines 7-9). Otherwise, check whether the execution path is the same
as the execution path of the last test case, and if so, set the flag isSame to true (lines
11,12). If not, update the execution path LP of the last test case (line 14). Determine if
the execution path is the same as that of the parent seed, and if so, set the flag isSame
to true (lines 15,16). Finally, if the flag isSame is true, the current test case executes a
duplicate path, and the result is recorded (lines 17-19).

Algorithm 2: Algorithm of GSPR-AFL

 Data:

 LP: path of last test case

 Prog: instrumented target binary

fuzzerSetup()

LP = saveInitialPath()

While True do

s = selectOneSeedFromQueue()

t = mutate(s)

runTarget(t, Prog)

If hasNewCoverage()

addToQueue(t)

LP = savePath()

Else

If sameAsLast()

isSame = True

Else

LP = updateLastPath(t)

If sameAsParent()

isSame = True

If isSame is True

record()

isSame = False

End While

We integrated GSPR into two popular coverage-guided fuzzers, AFL and AFLFast,
which we chose because they are representative of coverage-guided fuzzers. They are
frequently adopted by other works [4][9-12]. We evaluated 7 real open-source applica-
tions. As shown in the Table 1. The result shows an average repetition rate of 68% in
the AFL, 64% with last test case and 33% with parent seed. The average repetition rate
of 72% in AFLFast, 69% with last test case, and 43% with parent seed. Taken together,
about 70% of test cases execute duplicate paths, which also means that more than 70%
of hash collisions are repetitive.

BitAFL: Provide More Accurate Coverage Information 525

Table 1. Repetition rate in AFL and AFLFast

Applications
AFL AFLFast

rate last parent rate last parent

cflow 0.51 0.42 0.29 0.58 0.51 0.42

pngfix 0.38 0.37 0.01 0.70 0.69 0.35

tiffset 0.82 0.8 0.38 0.82 0.80 0.45

pdffonts 0.79 0.77 0.25 0.79 0.76 0.47

tcpdump 0.87 0.84 0.58 0.84 0.80 0.51

readelf 0.77 0.75 0.36 0.74 0.72 0.41

xmllint 0.64 0.56 0.45 0.61 0.54 0.40

Average 0.68 0.64 0.33 0.72 0.69 0.43

3.2 Implementation of BitAFL

If we assign a unique ID to each edge, we can completely avoid hash collisions, but this
is not always possible. Our idea is to assign a unique ID to each edge as far as is feasible,
otherwise rehashing is used, which is a standard hash collision resolution. When the
number of edges is less than the threshold T, we assign a unique ID to each basic block
and use bit operation to ensure the uniqueness of each edge ID. Otherwise, we rehash
and reassign ID to the collision edge. The specific process of our method is shown in
Algorithm 3.

Algorithm 3: Hash algorithm of BitAFL

EdgeCount = get edges()
If EdgeCount < T

MAP_SIZE = 22H
For BB in BBs:

BBID = compile_time_unique(2H);
EdgeID = (srcBBID <<H) ^ (desBBID); // runtime
Bitmap[EdgeID]++

Else
MAP_SIZE = 2H
For BB in BBs:

BBID = compile_time_random(2H)
EdgeID = (srcBBID >> 1) ^ (desBBID | 2H-1) // runtime
If collision:

EdgeID = srcBBID >> 1
Bitmap[EdgeID]++

Bit operation. We determine the size of the bitmap according to the number of edges
or basic blocks, which must be a power of 2 (line 3). Assign a unique ID for each basic
block at compile time, and ensure that the ID in [0, 2H) (lines 4,5). Calculate the edge
ID at run time, specifically, srcBBID moves H bit left, then xor with desBBID, to ensure
that the edge ID is unique. Update the hit count of the corresponding byte in the bitmap
(lines 6,7).

526 H. Xu et al.

Rehashing. We determine the size of the bitmap according to the number of edges
or basic blocks, which must be a power of 2 (line 9). Randomly assign an ID to each
basic block at compile time (lines 10,11). Calculate the edge ID at run time, specifically,
let 2H-1 or with desBBID, ensure that the highest bit must be 1. The operation srcB-
BID >> 1 ensures that the highest bit must be 0. Then the highest bit must be 1 after
xor operation, which ensure that the edge ID in [2H-1, 2H) (line 12). If a collision
occurs, rehash the edge ID as srcBBID >> 1, ensuring that the edge ID in [0, 2H-1)
(lines 13,14). Update the hit count of the corresponding byte in the bitmap (line 15).

Next, we will show the stored process for the hit count. Fig. 2 (a) shows an example
of storage when the number of edges is less than the threshold T. First, the source basic
block ID is stored in the high H bit and the destination basic block ID is stored in the
low H bit to obtain the unique edge ID, which can be realized by simple shift and xor
operation. The hit count for the corresponding byte is then updated based on the edge
ID.

Fig. 2 (b) shows an example of storage when the number of edges is greater than the
threshold T. For any edge, the edge ID obtained for the first time must be within the
range of [2H-1, 2H). If there is no collision, the updated hit count is directly stored at the
current byte. If there is a collision, the new edge ID is calculated using the pre-defined
formula, and the hit count is updated at the new byte.

BBC BBD

high H bit

ECD=X

0 0 0 0 1 0 0

low H bit

0 0

0 2HX

0 0 0 0 0 0 0 0 0 1 0 0 0 0

2H-1 2H0 X

0 0 0 1 0 0 0 0 0 1 0 0 0 0

2H-1 2H0 X

no
collision

collision
Y

ECD=XE*CD=Y

EAB=X

(a) Bit operation (b) Rehashing

Fig. 2. Store process of hit count

It is worth mentioning that hash collision is inevitable if the number of edges exceeds
the bitmap size, so we must determine the bitmap size based on the number of edges.
Secondly, the rehashing method described above does not solve the situation in which
collision occur at one byte more than twice. According to our early experiments, the
probability of this happening is very low, less than 2% on average, which is almost
negligible. Therefore, it is not worthwhile to deal with this situation in a special way.
In addition, the rehashing formula we designed can ensure that the two hash values
must be different, and the result of the second hash is included in the process of the first
hash, so as to overcome the shortcomings of the rehashing method which increases the
computation cost.

According to the ball in the box algorithm, the collision rate is about 7% when there
are 10,000 edges, about 14% when there are 20,000 edges, and about 30% when there
are 50,000 edges [8]. Considering the limitation of shared memory and avoiding the
waste of hash space by rehashing, we finally set the threshold T to 213, which is 8192.

BitAFL: Provide More Accurate Coverage Information 527

4 Evaluation

4.1 Experimental Environment

The experiment in this paper is carried out on a 64-bit virtual machine equipped with
4-core Intel i7-10710U@1.10GHz processor, 4G memory, Ubuntu20.04.1. We provide
one initial seed for each program, and the seeds required for the experiment are all
provided by AFL. Seven popular open-source Linux applications were selected as the
test set to verify the validity and universality of our approach. As shown in Table 2.

We did a comparative trial with the AFL because the AFL is one of the most suc-
cessful fuzzer in academia and industry. Although CollAFL [7] solves hash collision,
it is unfortunately not open source, we only compare BitAFL with native AFL to show
the effectiveness of BitAFL.

Table 2. Statistics of applications

Applications basic block edge collision ratio version input format

cflow 6216 5505 4.08% 1.7.0 c

pngfix 5035 6625 4.89% 1.6.38 png
tiffset 8903 8504 6.22% 4.4.0 tiff

tcpdump 37914 18154 12.66% 4.9.0 pcap
pdffonts 39747 26148 17.54% 4.0.4 pdf

readelf 67306 28082 18.67% 2.39 elf
xmllint 64792 52146 31.04% 2.9.11 xml

4.2 Evaluation Criteria

Collision statistics. Effective hash collision resolution can eliminate hash collisions or
greatly reduce hash collisions. Therefore, the number of collisions is the most intuitive
hash collision measurement scheme. Seven target programs were fuzzed for 24 hours
using AFL and BitAFL respectively. The result is shown in Table 3, where bytes rep-
resents the number of bytes that generated hash collision in the bitmap, frequency rep-
resents the average number of hash collisions per test case and #dec represents the rate
of decrease. In small programs (cflow, pngfix), our scheme can completely eliminate
hash collisions. In large programs (the rest), collision bytes are reduced by 83.05% on
average, and the average number of hash collisions per test case has been reduced by
97.31%, which can effectively reduce collisions.

Table 3. Statistics of collision and coverage

Applica-

tions
AFL BitAFL AFL BitAFL AFL BitAFL AFL BitAFL
bytes #dec frequency #dec paths #inc edges #inc

cflow 38.67 100% 18.67 100% 1572 -4.71% 2150 1.4%
pngfix 28 100% 13.14 100% 825 9.09% 1973 2.18%
tiffset 163 84.87% 9.82 93.79% 2129 6.9% 5193 5.87%

528 H. Xu et al.

tcpdump 110.33 72.81% 1.45 99.31% 7814 15.2% 12465 4.8%
pdffonts 58 90.81% 565.24 99.96% 1062 20.43% 2123 22.61%
readelf 194.67 77.74% 2.31 94.37% 18201 8.61% 13140 3.58%
xmllint 188.33 89.02% 93.94 99.11% 2829 6.54% 6315 3.9%

Average 111.57 87.89% 100.65 98.08% 4918 8.87% 6194 6.33%
Code coverage. Code coverage is one of the most common criteria to evaluate the

performance of a fuzzer. The more code coverage, the higher the probability of trigger-
ing vulnerability. Since the AFL only stores test case into the seed pool when it discov-
ers new path, we use the number of seeds in the seed pool to represent the number of
paths discovered by the fuzzer. In addition, we use the number of bytes occupied in the
bitmap to represent the number of edges covered. We compare the code coverage of
different fuzzers in terms of the number of paths found and the number of edges cov-
ered. Seven target programs were fuzzed for 100 hours using AFL and BitAFL respec-
tively. Each target program was fuzzed three times and the data was averaged. As
shown in Table 3, paths represents the number of the paths found, edges represents the
number of edges covered and #inc represents the increased rate. The result shows that
BitAFL outperforms AFL by 8.87% in terms of the number of paths found and 6.33%
in terms of the number of edges covered. Overall, it shows that BitAFL can find more
paths and cover more target codes.

5 Conclusion

In this paper, we studied the hash collision issue in AFL, and designed an experimental
framework GSPR to count the rate of test cases executing duplicate paths. The result
shows that about 70% of test cases executing duplicate paths, that is, most of the hash
collisions generated in AFL are also repeated. In addition, we proposed the concepts of
local collision and global collision for the first time, and systematically discussed sev-
eral situations that cause hash collision. Based on experimental results and quantitative
analysis, we designed a solution to hash collision, and extended AFL to achieve
BitAFL. Our evaluation of BitAFL on seven open source applications showed that our
method can completely eliminate hash collisions in small programs and significantly
reduce hash collisions in large programs. At the same time, BitAFL can discover more
paths and cover more codes. For large programs, our scheme does not completely elim-
inate hash collisions. In the future work, we will continue to optimize our method, and
orthogonal integration of the method in this paper with more AFL optimization
schemes, so as to more efficient fuzzing.

References

1. Michal Zalewski. (2019) american fuzzy lop. https://github.com/google/AFL.
2. Böhme, M. Pham, V. T. Roychoudhury A. (2016) Coverage-based Greybox Fuzzing as Mar-

kov Chain. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security. Vienna Austria. pp. 1032–1043. doi:10.1145/2976749.2978428.

BitAFL: Provide More Accurate Coverage Information 529

3. Yue, T. Wang, P. Tang, Y. et al. (2020) EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing
as a Variant of the Adversarial Multi-Armed Bandit. In: 29th USENIX Security Symposium
(USENIX Security 20). Boston. pp. 2307-2324. https://www.usenix.org/conference/usenix-
security20/presentation/yue.

4. Stefan, N. and Matthew, H. (2019) Full-Speed Fuzzing: Reducing Fuzzing Overhead
through Coverage-Guided Tracing. In: 2019 IEEE Symposium on Security and Privacy. San
Francisco. pp. 787–802. doi:10.1109/sp.2019.00069.

5. Google. (2019) Honggfuzz. https://github.com/google/honggfuzz.
6. Kosta, S. (2016) Continuous Fuzzing with libFuzzer and AddressSanitizer. In: 2016 IEEE

Cybersecurity Development. Boston. pp. 157–157. doi:10.1109/SecDev.2016.043.
7. Gan, S. Zhang, C. Qin, X. et al. (2018) CollAFL: Path Sensitive Fuzzing. In: 2018 IEEE

Symposium on Security and Privacy. San Francisco. pp. 679–696.
doi:10.1109/SP.2018.00040.

8. Michal Zalewski. (2019) Technical whitepaper for afl-fuzz.
https://github.com/google/AFL/blob/master/docs/technical_details.txt.

9. Zhu, X. Feng, X. Meng, X. et al. (2020) CSI-Fuzz: Full-speed Edge Tracing Using Coverage
Sensitive Instrumentation. IEEE Transactions on Dependable and Secure Computing, pp. 1–
1. doi:10.1109/TDSC.2020.3008826.

10. Zhu, X. Feng, X. Jiao, T. et al. (2019) A Feature-Oriented Corpus for Understanding, Eval-
uating and Improving Fuzz Testing. Auckland, New Zealand. pp. 658–663.
doi:10.1145/3321705.3329845.

11. She, D. Abhishek S. and Suman J. (2022) Effective Seed Scheduling for Fuzzing with Graph
Centrality Analysis. In: 2022 IEEE Symposium on Security and Privacy. San Francisco. pp.
2194–2211. doi: 10.1109/sp46214.2022.9833761.

12. Pham, V.T. Boehme, M. Santosa, A. E. et al. (2019) Smart Greybox Fuzzing. IEEE Trans-
actions on Software Engineering. pp. 1–1. doi:10.1109/tse.2019.2941681

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

530 H. Xu et al.

http://creativecommons.org/licenses/by-nc/4.0/

	BitAFL: Provide More Accurate Coverage Information for Coverage-guided Fuzzing

