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Abstract. Cyanobacterial blooms are common ecological problems that pose sig-
nificant harm to humans, animals, and the health of lake ecosystems. To cope 
with this problem, we adopt a bio-dynamic model inspired by the invasion spe-
cies and develop an integrated simulation-optimization model (Mixed Integer 
Programming) to effectively minimize the economic losses caused by cyanobac-
teria blooms. Based on the above, we also conduct computational experiments to 
validate the model. Test results have shown that the duration of treatment and 
budget have an impact on the damage, and timely algae removal is necessary to 
prevent further spread of cyanobacteria in the study area. This study represents 
an innovative interdisciplinary research achievement and can provide more ac-
curate decision support to lake water quality managers in terms of algae removal 
site selection, frequency of operations, and operational pathways. 
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1 Introduction 

Cyanobacterial blooms are common ecological problems resulting from eutrophication 
[1], and in the context of water bodies, they are considered as invasive species. Some 
cyanobacteria release microcystin toxins into the water [2,3], posing a threat to human 
health and biodiversity. Due to the urgent need to ensure water safety, cyanobacterial 
control has become one of the current hot topics in academia and the business sector. 

Therefore, exploring the biological characteristics and growth dynamics of cyano-
bacteria is crucial to finding more effective methods for monitoring, predicting, and 
responding to bloom outbreaks. Scholars and practitioners also use mathematical mod-
els [4], deep learning [5], and remote sensing technology [6] to research cyanobacteria 
treatment. 

Different from the existing literature, we describe the cyanobacteria management 
problem as an invasive species management problem [7-9]. Furthermore, in practical 
management, the resources available to managers (such as funding and labor) are typi-
cally limited. Thus, optimizing the allocation of these limited resources in space and 
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time to minimize the economic and environmental damage caused by cyanobacteria 
can be formulated as a combinatorial optimization model for resource allocation. We 
present a novel approach to the management of cyanobacterial blooms by describing it 
as a combined problem of invasive species management and resource allocation opti-
mization. 

2 Model formulation 

2.1 Problem description 

This study divides the complex spatio-temporal mixed-integer optimization model into 
two key components. One is the simulation model, which aims to simulate the dispersal 
and growth processes of cyanobacteria in nature. The other is the optimization model, 
which aims to provide treatment strategies by analyzing the optimal treatment locations 
and paths to minimize economic losses and reduce costs. In this integrated model, there 
is an interactive coupling between the simulation model and the optimization model. 

2.2 Mathematical model 

2.2.1 Simulation model. 
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Eq (1) is the quantity of spores spreading from ( , )h q to ( , )i j . However, a portion of 

the spores does not disperse and remains in the original cell, as shown by Eq (2). The 
spores that stay at the original cell and those that disperse from nearby cells form a 
spore bank, the quantity of which is shown by Eq (3). Eqs (4)-(5) represent the number 
of spores germinating into the first-stage cyanobacteria and continuously progressing 
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to the stagek. Eqs(6)-(7) reflect the environmental carrying capacity in nature, no new 
cyanobacteria can be produced unless high-stage cyanobacteria die out to make room. 

2.2.2 Optimization model. 
The optimization model described in this section is a MIP that determines the opti-

mal search and treatment strategy for the cyanobacteria provided by the simulation 

model. To distinguish the time variable t in the simulation model, let the time variable 

of the optimization model be denoted as t, representing the time steps used for ordering 
site visits. It is assumed that each time step will visit one site, and all visited sites will 
be searched, but the decision to perform treatment depends on the availability of budget. 
The decisions made at each time step involve: (1) which sites to search and visit, (2) 
whether to treat on the visited site. 
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Eq (8) represents the objective function of the model, which aims to minimize the 
damage caused by cyanobacterial blooms. Eq(9) initiates the search and treatment pro-
cess from one of the boundary locations, while Eq(10) requires the manager to exit 
from one of the boundary locations. Eq(11) ensures that the manager, can only search 
one location at a time. Eq(12) ensures that the next step can only visit and search neigh-
boring sites. Eq(13) is used to ensure the continuity of the search path. Eq(14) ensures 
that each site can be visited only once. Eq(15) ensures that only searched sites can be 
treated. Eq(16) is used to calculate the cyanobacteria population after treatment. Eq(17) 
ensures that the cost of search and treatment is under the available budget. 
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3 Computational experiments 

Table 1. Parameter setting 

Model parameter Symbol Value Reference 

Number of spores produced per cyanobacteria kL  [40,80,20] Estimated 

Loss rate from stage 1k  to stagek k  [0.06,0.17] [10] 

Survival rate of spores   85% Estimated 

Germination rate of spores   16.8% Estimated 

Probability of becoming first-stage cyanobacte-   80% Estimated 

Maximum carrying capacity per cell ijK  6,000,000 Estimated 

Effectiveness rate of treatment for cell ( , )i j  i j  90% [11] 

Treatment cost ijC  500 Estimated 

Search cost ijH  15 Estimated 

Expected revenue in cell ( , )i j  at time t  ijR E  3,000 Estimated 

Using the parameter values in Table 1, we simulate the population growth of cyano-
bacteria over 60 days (every time step is 10days). As shown in Figure 1., neighboring 
sites are affected initially, and then the spread grows radially outward over the time. 

 

 

Fig. 1. Simulation model output for cyanobacteria over 60 days 

We also study the relationship between budget, time, and damage. The results are 
presented in Table 2, where the columns represent the budget (RMB), search and treat-
ment time(days), expected damage (RMB), gap (%), and solving time (seconds), re-
spectively. 

Table 2. Total damage based on different budget and search time 

Budget Search and treatment time Damage Gap Solving time 

10,000 20 0.8335 0.69 110.44 
10,000 22 0.7966 0.07 129.31 
10,000 24 0.7934 0.03 139.34 
10,000 26 0.7933 0.01 427.19 
10,000 28 0.7933 0.02 947.18 
15,000 28 0.7777 0.14 1748.73 
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15,000 32 0.7684 0.13 1800 
15,000 36 0.7676 0.03 1800 
15,000 40 0.7676 0.03 1800 
15,000 44 0.7679 0.06 872.89 
20,000 42 0.7495 0.02 670.02 
20,000 44 0.7495 0.02 1438.25 
20,000 46 0.7495 0.02 1489.58 
20,000 48 0.7496 0.03 1345.92 
20,000 50 0.7498 0.08 1207.12 

1. Regardless of whether the budget is 10,000, 15,000, or 20,000, there are consistent 
laws in the damage, gap, and solving time. As the search and treatment time increases, 
the damage caused by cyanobacterial blooms decreases because more cells may be 
searched. Thus, it will lead to a reduction in the gap. However, as time continues to 
increase, the damage no longer decreases. This is because the budget is limited, and the 
increasing search cost will reduce the treatment cost, resulting in fewer cells be treated 
and ultimately leading to an increase in the cyanobacteria population. 

2. As the budget increases, both the damage and gap decrease, but the solving time 
increases. When the budget increases from 10,000 to 15,000, the damage decreases. 
This is because more cells can be treated under a sufficient budget. Simultaneously, 
there are more possible paths to choose from, and the software needs to select the short-
est path, leading to an increase in solving time. The same laws apply when the budget 
increases from 15,000 to 20,000. 

Then, we reconstruct the search and treatment path at each time step and show the 
changes in cyanobacteria population before and after treatment in Figure 2. 
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Fig. 2. The search and treatment path, cyanobacteria population before and after treatment 

From the Figure 2, it can be observed that the search and treatment paths revolve 
around cells with high invasion abundance. Although the entry and exit cells may differ, 
the paths exhibit a high level of similarity. As time progresses, the paths gradually 
shorten. Timely treatment can prevent the further spread of cyanobacteria, thereby mit-
igating greater damage. 

4 Conclusions 

(1) The duration of treatment and budget have an impact on the damage. Longer treat-
ment time and sufficient treatment budget provide more opportunities to control the 
spread of cyanobacteria, reducing their impact on ecosystems and human health. 

(2) Timely and frequent treatment can effectively suppress the outward expansion 
of cyanobacteria and prevent greater economic losses. 
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