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Abstract. The cost of power grid project is a multivariable and highly nonlin-
ear problem. With the continuous expansion of the investment scale, the factors
affecting the project cost are complex, diversified, volatility and other characteris-
tics, and the single prediction model is often not comprehensive enough. In view
of this, this paper excavates out the potential impact factor of project cost based
on artificial neural network learning, which has a certain self-learning, adaptive
ability, is a high accuracy, wide applicability of power grid engineering cost deter-
mination model, has high value, can further improve the efficiency of power grid
enterprises.
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1 Introduction

At present, the analysis of cost influencing factors at home and abroad only stays in a
single control stage, without building a scientific and complete factor library, and has
not yet achieved quantitative analysis of the mechanism and degree of factor influence.
Regarding the characteristics of different types of power grid projects, research on power
grid cost determination techniques that consider the impact of uncertainty factors is even
rarer.

Reference [1] constructed a static cost indicator value prediction model GRA-PSO-
SVRand a dynamic cost indicator value predictionmodelGM (1, 1) - BP. Based on this, a
transmission engineering cost control system based on cost lean management objectives
was constructed, and multiple empirical studies were conducted. Reference [2] uses
the ARIMA model prediction method to train and test historical engineering data, and
ensure that the error is within a reasonable range. Reference [3] used existing distribution
network engineering data to validate the proposed BP neural network prediction model.
The experimental results showed that the proposed prediction model had high accuracy,
good practicality, and feasibility. Literature [4] uses statistical analysis method to prove
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that the probability distribution of unit cost of final settlement of substation project
is similar to normal distribution, and the probability distribution of unit cost of final
settlement of line project is similar to normal distribution. Reference [5] based on actual
cost data of power grid overhead line engineering, proves that the improved PSO-SVM
model can effectively predict the cost of power grid overhead line engineering, with an
average error rate of only 1.23%.

2 The Main Research Ideas of This Article

The power grid engineering cost simulation and determination technology based on
improved Bayesian deep learning network proposed in this article is significantly supe-
rior to other models in terms of cost prediction skills and reliability, and can provide
effective uncertainty estimation and prediction results. The main research ideas of this
article are shown in Fig. 1.

From Fig. 1, it can be seen that in this article, the cost related data of the engi-
neering estimate is taken as the input value and input into the LSTM deep learning
network model; Then, based on random gradient Hamiltonian Monte Carlo sampling,
the expected settlement cost control indicators are obtained.
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Fig. 1. The main research ideas of this article.
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3 Construction of Technical Model of Power Grid Engineering
Cost Simulation Determination Based on Improved Bayesian
Deep Learning Network

This proposed grid engineering cost simulation technology based on improved Bayesian
deep learning network, the model construction process is as follows:

1) Based on the engineering cost database, select the pre estimate cost data x and
settlement cost indicator y to form a new training sample database, represented as
D = {(x1, y1), (x2, y2), ..., (xn, yn)}, where the cost data is constantly updated over
time. When new cost data xn+1 is given, the target obtains the settlement cost control
indicator p(yn+1|xn+1 ;D).

For x1, y1, x2, y2, xn, yn represent the input (cost data before estimate) and output
(settlement cost index) in the training sample data respectively. The yn+1 indicates the
corresponding output settlement cost index given the new cost data xn+1.

2) The cost index prediction model based on the LSTM deep learning network is
adopted to process the cost control index data in a nonlinear way.

3.1 Construction Based on the Bayesian Deep Learning Network Model

In many deep learning models, Long Short Term Memory Network (LSTM) can model
nonlinearly and process data with multiple dimensions in a nonlinear way. The intro-
duced gating mechanism can effectively solve the problem of gradient explosion or
disappearance. Among them, the sender gate i(t) controls how much information of the
candidate state at the current moment needs to be saved, the forgetting gate f (t) con-
trols the internal state of the previous moment c(t−1) how much information needs to
be forgotten, and the output gate o(t) controls the internal state of the current moment
c(t) how much information needs to be output to the external state. The path to control
information transmission is calculated as follows:

i(t) = σ(W (i)x(t) + U (i)h(t−1) + b(i)) (1)

f (t) = σ(W (f )x(t) + U (f )h(t−1) + b(f )) (2)

o(t) = σ(W (o)x(t) + U (o)h(t−1) + b(o)) (3)

where σ(•) is the sigmoid function, its output interval is (0, 1), x(t) is the input of
the current moment, and h(t−1) is the external state of the previous moment, namely
the hidden layer state at time t − 1. W (i), W (f ), and W (o) are the corresponding input
weights of the input gate, forgetting gate, and output gate respectively. U (i), U (f ), U (o)

are the weights of the input gate, forgetting gate, and output gate corresponding to the
previous moment. The words b(i), b(f ) and b(o) are the deviations corresponding to the
input, forgotten and output gates respectively.

The dependency relationship of the entire network is represented as:

c̃(t)
t = tanh(W (c)x(t) + U (c)h(t−1) (4)
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c(t) = f (t) ⊗ c(t−1) + i(t) ⊗ c(t) (5)

h(t) = o(t) ⊗ tanh(c(t)) (6)

wherein, ⊗ is the product of vector elements, c(t) represents the long-term memory
state at time t, which is a candidate state obtained through nonlinear functions, and h(t)

represents the hidden layer state.

3.2 Optimization of Bayesian Deep Learning NetworkModel Based on Stochastic
Gradient Hamilton Monte Carlo Probability Method

After training the model in Sect. 3.1, there is a hidden relationship between the cost
control sample data and the control index, which is expressed by the hidden variable
z. The probability prediction of the cost control index in the settlement link can be
expressed as follows:

p(y|x ) =
∫

p(y|x, z)p(z|D )dz (7)

where: z = {ω, b}, ω = [
ω1, ω2, . . . , ωL

]
is theweight vector of each layer of themulti-

layer neural network, b = [
b1, b2, . . . , bL

]
is the bias of each layer of the multilayer

neural network. The project settlement cost control index of to network output is y =
fz(x, ω, b).

The result of stochastic gradient Hamiltonian Monte Carlo sampling is designed to
obey the p(z|D) distribution of the LSTM deep learning network, which is difficult to
achieve in practice. Therefore, the approximate distribution q(ω, b) is adopted, and the
sampling results are indicated as follows:
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Formula (8) represents a set of weights and bias parameters used for random gradient

Hamiltonian Monte Carlo sampling (
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Formula (9) represents the corresponding sampled output y1, y2, . . . , yM .
Based on formulas (8) and (9), the predicted power grid cost control indicators are:

E(ŷ) ≈ 1

M

M∑
n=1

Y n (10)

In the formula, M is the number of samples, and Y n is the output corresponding to

the sampled (
�
ω
n
,
�

b
n
).
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Build a deep learning network, and assume that the maximum likelihood function
of the network output obeys the Gaussian distribution, its mean value is related to D,
determined by determining the trained network, and its variance is σ 2

y .

p(y|fz (x, ω, b) = N (y|fz (x, ω, b), σ 2
y ) (11)

where p(y|fz (x, ω, b)) in the cost control index for fz(x, ω, b), the probability distribution
of the output y, the output y obey mathematical expectation for fz(x, ω, b) variance for
the Gaussian distribution.

Similarly, the prior probability distribution for setting the weights w and the prior
probability distribution of the paranoid b are chosen as Gaussian, in the form of:

p(ω) = N (ω

∣∣∣0, σ 2
ω I) (12)

p(b) = N (b
∣∣∣0, σ 2

b I) (13)

In the formula, N (ω
∣∣0, σ 2

ω I) and N (b
∣∣0, σ 2

b I) represent Gaussian distribution, and
I represent identity matrix.

For N independent identical distribution, the likelihood function is:

p(D|z ) =
N∏
n−1

p(yn|fz(xn,w, b)) (14)

where, fz(xn,w, b) is the corresponding cost control index when the input is xn, and
p(yn|fz(xn,w, b) is the conditional probability when the output is yn under this condition.

The variational Bayes approximation of the prior distribution, according to the
Bayesian formula, the probability density of hidden variables p(z|D ) is expressed as
follows:

p(z|D ) =
N∏
n−1

p(yn|fz(xn,w, b)) (15)

p(z|D ) = p(z)p(D|z)∫
p(D)d(D)

(16)

where p(z) represents the prior probability of the hidden variable, p(D|z) represents the
probability of the sample being D when the hidden variable is z, and p(D) represents
the prior probability of the sample D.

The integration function is very difficult to solve. Variational inference is used to find
a simple distribution q∗(z) to approximate the conditional probability density p(z|D) .
In this way, the inference problem transforms to a functional optimization problem.

q∗(z) = argmin
q(z)∈�

KL(q(z)‖p(z|D)) (17)

The KL(q(z)‖p(z|D)) divergence is the relative entropy, which is used to measure
the difference between the two probability distributions, q(z) and p(z|D) .� Is the family
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of the probability distribution of the candidates. Where � is the family of probability
distributions of the candidates. KL divergence cannot be directly optimized, the log
marginal likelihood function logp (D) is decomposed:

q∗(z) = argmin
q(z)∈�

KL(q(z)‖p(z|D)) (18)

The optimal q∗(ω, b) can be used to approximate the posterior probability dis-
tribution. When given with a new input, the probability of a new cost control index
is

q∗(z) = argmin
q(z)∈�

KL(q(z)‖p(z|D)) (19)

The optimal q∗(ω, b) can be used to approximate the posterior probability dis-
tribution. When given a new input, the probability of a new cost control indicator
is:

p
(�
y |x

)
=

∫
p(y|z (xnD, ω, b))p(ω, b|D)dω

=
∫

p(y|z (xnD, ω, b))q∗(ω, b)dω (20)

4 Empirical Analysis

This example uses the cost database of a certain provincial power grid company to select
240 representative new substation project data; 200 of them will be used as the training
sample set, and 40 of them will be used as the test set for monitoring and verifying the
accuracy of the model.

In order to verify the accuracy of the prediction model, the root mean square error
(RMSE) and the absolute mean error (MAE) are used. The RMSE root mean square
error is the arithmetic square root of the mean square error, and the mean square error
(MSE) is the expected value of the difference between the estimated estimate and the
true value; MSE can evaluate the degree of change of the data, the smaller the value of
MSE, the better accuracy of the prediction model to describe the experimental data. The
mean absolute error (MAE) is the mean of the absolute error; the mean absolute error
can better reflect the actual situation of the prediction value error. The RMSE and MAE
are calculated as follows:

RMSE =
√∑t=N

t=1 (
�
y t − �

y )2

N
(21)

MAE = 1

N

∑t=N

t=1

∣∣∣�y t − �
y
∣∣∣ (22)

where N is the number of samples and is the output value. Training samples of different
sizes are used for learning, and then the settlement cost of the test set is predicted. The
errors of the prediction results are shown in Table 1.

From the prediction results in Table 1, it can be seen that a suitable training set
sample size is very important. To ensure prediction accuracy, it is necessary to use 60 or
200 samples for learning to achieve good prediction accuracy.
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Table 1. RMSE and MAE indicators.

Error indicator Countable learning samples

20 40 60 90 120 150 180 200

RMSE 0.338 0.0337 0.0083 0.0619 0.0286 0.0362 0.041 0.0162

MAE 0.465 0.162 0.0866 0.0178 0.0157 0.0355 0.0162 0.1002

5 Conclusion

This paper proposes the technical method of power grid engineering cost determination
based on variational Bayesian deep learning. This method uses Bayesian probability
theory to consider the uncertainty of parameters in deep learning, which makes the pre-
diction model uncertain and more in line with the real engineering situation. According
to the characteristics of high-dimensional small sample of the cost data of power trans-
mission and transformation projects, the model can provide effective estimation and
prediction results of the uncertainty index of power grid project cost control, and the
error between the settlement cost and the actual cost through the model pre-prediction
is small, which can meet the needs of the actual project cost evaluation. It can strive
for active time for power engineering construction, improve the review efficiency of
project capital investment and the quality of the project, and guide the cost of new power
construction project.
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included in the chapter’s Creative Commons license and your intended use is not permitted by
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