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Abstract. Cloud manufacturing (CMfg) is an advanced networked intelligent
manufacturing model, which includes a large number of new product customiza-
tion services. Since many products lack historical data on service time, there
is uncertainty about CMfg product service time, thus, CMfg service platforms
need to perform robust scheduling of CMfg services for new products. In this
paper, a CMfg scheduling model considering service time uncertainty and non-
predefined service paths is constructed, and its robust equivalent is derived. In
order to effectively solve the above model, this paper proposes a reinforcement
learning-variable neighborhood search algorithm (rVNS) based on the variable
neighborhood search algorithm, in which the upper confidence bound algorithm
(UCB1) is used to adaptively select the neighborhood operator. To solve the prob-
lem of insufficient historical data at its cold start, the SARSA (lambda) method is
used in this paper. In addition, this paper leverages adaptive windows to estimate
and detect changes in rewards in data streams to obtain more accurate reward
estimates. A large number of experiments prove that the algorithm designed in
this paper has high accuracy and speed advantages in solving this problem.

Keywords: CMfg scheduling · robust optimization · non-predefined service
paths · variable neighborhood search algorithm · upper confidence bounds
algorithm · reinforcement learning

1 Introduction

CMfg is an advanced networked intelligent manufacturingmodel, which includes a large
number of new product customization services [1]. In the past few years, the research on
the optimization of CMfg services has mainly focused on service combination and the
scheduling of CMfg tasks, Lim et al. [2] studied the service combination and optimiza-
tion selection problem considering the interests of service demanders, cloud platform
operators and resource providers. Laili [3] studies the multi-stage integrated scheduling
of hybrid tasks in the CMfg environment. Variable neighborhood search (VNS) is a
well-known meta-heuristic originally proposed by mladenovic and Hansen in 1997 [4],
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VNS has evolved to solve various optimization problems. VNS is well scalable and can
be extended to various optimization problems. In the field of intelligent optimization,
scholars have demonstrated that more promising techniques can be obtained using a
mixture of reinforcement learning and intelligent algorithms [5, 6].

Through the above analysis, the traditional scheduling and service combination
research has not fully studied customized products. Since many customized products
such as mobile phone models [7] lack historical service data, and service time estima-
tion can only be based on similar products, we use robust optimization to solve such
problems. In addition, different decomposition methods will produce different service
paths, increasing the flexibility of CMfg systems by considering non-predefined path
approaches. Therefore, this paper decomposes the task into subtasks through differ-
ent service paths. In terms of the solution method, the effect of combining the upper
confidence bounds (UCB1) algorithm [8] and meta-heuristics are studied for the first
time. The reinforcement learning-variable neighborhood search algorithm (rVNS) is
designed, which utilizes the upper confidence bounds algorithm (UCB1) for adaptive
neighborhood selection. To solve the problem of insufficient historical data, the SARSA
(λ) method is used [9], in addition, the adaptive window is utilized for detecting sudden
changes in reward distribution and restarting UCB tasks [10], which is a state-of-the-art
algorithm to estimate and detect changes in reward in data streams.

2 Optimization Model

2.1 Problem Description

We build a robust optimization model for CMfg scheduling with uncertain service time
in new customized products. In the CMfg environment, N service providers with Kman-
ufacturing services located in different geographical regions are considered. There are
alternative service paths in the CMfg system. Each service provider may offer multiple
service types. The service demander submits T tasks to the cloud platform, and each
CMfg order can be split into several CMfg subtasks, each subtask is served by different
CMfg service providers with same service type, we assume that there is a linear process-
ing sequence between the suborders of the same order. Each task must be completed by
a given due date. Different service providers provide different unit costs and required
service times for specific subtasks. This article is from the perspective of a cloud man-
ager who has the authority to choose an appropriate service path to minimize the total
duration. In addition, we considers balancing the load of service providers so that CMfg
services can be carried out smoothly.

2.2 Mathematical Model

The robust optimization model of CMfg scheduling under uncertain machining time
constructed in this paper uses the following symbols as shown in Table 1.

The objective function of the model is to minimize the makespan and reduce the load
on the CMfg service, as shown in Eq. (1):

min f = 1 − α
(
maxCijl

)+α

n∑

i=1

m∑

j=1

l∑

t=1

h∑

k=1

P̃ijtkXijtk (1)
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Table 1. Variables and parameters of the CMfg task scheduling model

Symbol Description Symbol Description

n The number of CMfg tasks Tji The set of CMfg subtasks of the path
j of CMfg task i

m The number of CMfg task paths Ktji The set of service providers for the t
CMfg subtask of the path j of CMfg
task i

l The number of CMfg subtasks p̃ktji The service time for the CMfg
subtask t of the path j of CMfg task i
is provided by CMfg service
provider k.

h The number of CMfg service
providers

Okk ′ The distance between Service
Provider k and Service Provider k ′

I The set of CMfg tasks
i ∈ I , I = {1, 2, · · · , n}

di The latest delivery date for the task i.

J The set of CMfg task paths
j ∈ J , J = {1, 2, · · · ,m}

Stji The start time of the processing of
the subtask t of the path j of the task
i.

T The set of CMfg subtasks
t ∈ T ,T = {1, 2, · · · , l}

Ctji The end time of the processing of the
subtask t of the path j of the task i.

K The set of CMfg service providers
k ∈ K,K = {1, 2, · · · , h}

xktji 1 if the subtask t of the path j of task
i is processed by service provider k,
otherwise 0

Ji The set of CMfg task paths of
CMfg task i.

yji 1 if the task i is processed by the path
j, otherwise 0

s.t.
∑

k∈h
xktji = 1 ∀i ∈ I , j ∈ J , t ∈ T (2)

Stji − S(t−1)ji ≥
∑

k∈K
P̃k ′(t−1)jixk ′(t−1)ji +

∑

k,k ′∈K
Okk ′Xij(t−1)k ′Xijtk∀j ∈ J ,∀t ∈ T (3)

∣
∣Stji − St′j′i′

∣
∣ ≥ xktjixkt′j′i′θ, where θ =

{
pkt′j′i′ , if Stji − St′j′i′ ≥ 0

pktji, otherwise
,∀i ∈ I ,∀k ∈ K

(4)
∑

j≤Ji

yji = 1 ∀i (5)

Sktji ≤ di ∀i, j ∈ Ji, t ∈ Tji, k ∈ Ktji (6)

Ctij = stij +
∑

k∈K
P̃ktijxktij, ∀i ∈ I ,∀j ∈ J , ∀t ∈ T (7)
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s(t+1)ij − Ctij ≥ Okk ′xk ′(t+1)ijxktij ∀i ∈ I ,∀j ∈ J , ∀t ∈ T ,∀k ∈ K (8)

Constraints (2) Ensure that each CMfg task can only be assigned to one available
CMfg service provider. Constraint (3) is a subtask prioritization constraint, that is, a
subtask belonging to the same CMfg task must start after the subtask that precedes it
completes. Constraints (4) ensure that the service provider handles only one subtask at a
time. Constraint (5) means that only one route can be selected for each task. Constraint
(6) ensure that manufacturing tasks must be completed before due dates. Constraint (7)
specifies the completion time of the CMfg subtask. Constraint (8) means that if the task
is assigned to different CMfg service providers to service, transportation is required.

2.3 Scheduling Model Based on Robust Optimization.

Due to the uncertain processing time of service providers, this paper considers the use
of budget set and box uncertain set to characterize service time.

For uncertain parameters ξij, The uncertain set is expressed as Formula (9).

U =
⎧
⎨

⎩
ξij

∣
∣∣∣∣∣

∑

j

∣
∣∣∣∣∣

∣∣ξij
∣∣ ≤ �i,

∣∣ξij
∣∣ ≤ 1,∀i, j ∈ Ji

⎫
⎬

⎭
(9)

The robust dual transformation yields the Eqs. (10)–(13), where μij and zi are the
auxiliary decision-making variable.

f −
ni∑

i

nj∑

j=1

ns∑

t=1

[
nk∑

k=1

(
P̂ijtk + �kzk

)
xijtk + μijt

]

≥ 0 (10)

Stji − S(t−1)ji ≥
∑

k∈K

(
P̂k(t−1)ji + �kzk + μijt

)
xk(t−1)ji (11)

∣∣Stji − St′j′i′
∣∣ ≥ xktjixkt′j′i′θ,where θ =

{
P̂kt′j′i′+�kzk+μt′j′i′ ,if Stji − St′j′i′30

P̂ktji+�kzk+μtij, otherwise
(12)

Ctij = stij +
∑

k∈K

(
P̂ktij + �kzk + μijt

)
xktij, ∀i ∈ I ,∀j ∈ J , ∀t ∈ T (13)

(2), (5), (6), (8).

3 A Reinforcement Learning-Variable Neighborhood Search
Algorithm

3.1 General Variable Neighborhood Search Algorithm

General variable neighborhood search is a local search algorithm, which is achieved by
systematically changing the neighborhood structure in the search process, the general
variable neighborhood search algorithm includes shaking and variable neighborhood
descent (VND). Shaking is used to jump out of the local optimum, VND is used to find
the local optimal through the neighborhood transformation of the system.
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3.2 Encoding and Decoding

In this paper, a three-layer coding method is used to encode the CMfg service provider
and processing path corresponding to each CMfg subtask of each CMfg task [2].

3.3 Reinforcement Learning Strategy

It is very important to balance exploration and development in heuristic algorithms,
which have a significant impact on both accuracy and convergence speed, and the GVNS
chooses the appropriate neighborhood structure at a certain point in the search or after
improvement depends on many factors and determines the performance of the algorithm
framework. Decisions are made based on the knowledge that intelligent algorithms
have gained from previous actions. The agent needs to discover strategies to minimize
expected regret or maximize its reward. We select the UCB1 algorithm in the UCB
family, which is derived from the Hoeffding inequality. This paper applies UCB1 to
the GVNS metaheuristic, the agent’s strategy is to select a neighborhood action in each
iteration t that maximizes the following criteria:

At = argmax
j={1...l}

[ ∧
pt(aj) + c

√√√√√√
2 log

L∑

l=1
nl

nt(aj)
] (14)

The right part of Eq. (14) consists of two distinct parts. The first part represents
the average experience reward obtained, aj is the jth neighborhood action with a total
of L neighborhoods, t is the number of iterations, and the number of iterations of the
lneighborhood action l is nl . Thus, the first part represents the expected reward for the
response to the chosen neighborhood action. The second part represents exploration,
nt(aj) indicating the number of times the jth neighborhood action are used before the t
moment, andC is the scaling factor required to balance the trade-off between exploitation
and exploration. Traditional Q learning and SARSA only update the Q value of the
previous step at a time. However, the choice of each action has a real impact on the final
reward. Therefore, this study combines Q-learning and SARSA and historical tracking
(ET) in the rVNS algorithm.

3.4 Neighbourhood Actions

We defines four neighborhood actions for the above coding methods. (1) Relocate. This
operator deletes and replaces a node from one code, and then inserts it into the same
code. (2) Exchange. The exchange operator swaps the positions of two nodes. (3) Swap
(λ1, λ2). This operator swaps λ1 consecutive indexes in one code with λ2 consecutive
indexes in the same code. (4) Shift (λ1, 0). This operator removes λ1 consecutive indexes
and inserts them into another position in the same code.
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3.5 Reward Data Detection

Over time, the underlying relationships in the data change unexpectedly. This phe-
nomenon is known as conceptual drift. TheUCB algorithmmakes decisions based partly
on rewards. In dynamically changing and non-static environments, the expected reward
distribution may change, so the UCB algorithm must dynamically adjust its estimates.
We uses ADWIN [11] to reset the learning process in a major conceptual drift event. The
algorithmic pseudocode as shown in algorithm 1, where W is the time window length.
∧
μ
W0

and
∧
μ
W1

is the estimated mean of the segmented fragment, the value of ε as shown in

the Eq. (15).

ε =
√√
√√√

1

2 1
1/n0

+ 1
1/n1

× ln
4n

δ
(15)

where n0 and n1 are the length of the two fragments of data after splitting the time
window, n is the total time window length, δ is the confidence value.

3.6 RVNS Algorithm Process

The pseudo code of the rVNS algorithm designed in this paper is shown in algorithm 2.
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4 Simulation Experiments

4.1 Experiments Design

In order to verify the effectiveness of the proposedmethod, two comparative experiments
are designed, Table 2 describes the data values and distributions used by the algorithm,
and some parameters are taken from uniform distributions, so 10 experimental data are
generated. These simulation experiments of different scales are selected to evaluate the
processing time to find the best scheduling plan in each case, and the genetic algorithm,
ant colony algorithm and simulated annealing algorithm are compared.The simulation
environment in this article is a 2GHz Inter®Core™i7CPUand8GBRAM,programmed
using MATLAB.
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Table 2. Parameters used by the algorithm

Contents Value/distribution

Number of paths for each task U(1,10)

Number of sub-tasks for each task U(4,20)

Subtasks service time matrix U(4,20)

Logistics time matrix U(1,5)

time window length w 10

tasks due date matrix U(30,600)

c U(1,2)

α U(0,1)

4.2 Experimental Results Analysis

In each example, each algorithm runs 10 times in this section to solve themodel proposed
in this article, the solution time of each algorithm is limited to 1h, and in 10 runs, all
algorithms obtain the understanding set in a limited time, indicating that all algorithms
have good feasibility. Table 3 compares the optimization results of five algorithms. It can
be seen from the experimental results that the rVNS algorithm proposed in this paper
is better than GA, ACO, SA and VNS in terms of solution performance, and with the
increase of the scale of the study, the solution performance advantages of the proposed
rVNS algorithm in this paper become more obvious. The above experimental results
show that the rVNS algorithm has a better optimization effect for solving the robust
optimization problem of CMfg scheduling.

5 Conclusions

Because CMfg products have a high degree of personalization, the manufacturing
resources and service history data required by different parts of these customized prod-
ucts are insufficient, we build a robust optimization model for CMfg scheduling with
uncertain service time, and design a rVNS algorithm to slove the problem, in which the
upper confidence bounds algorithm (UCB1) is used. In order to solve the problem of
insufficient historical data at algorithm start, we use the SARSA (λ) method, in addition,
adaptive window, adaptive window algorithm is used to estimate and detect changes in
rewards in data streams.We prove the advantages of the algorithm designed in this paper
in accuracy and speed through a large number of experiments.
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