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Abstract. The development of underground space is vital for urbanization and
infrastructure projects. Prior to construction, comprehensive geological explo-
ration is essential to ensure stability and safety. However, acquiring complete
and accurate statistical data for project management is challenging, necessitat-
ing the handling of missing data to enhance reliability. Interpolation techniques
are an effective way of dealing with incomplete data. This study presents a scal-
able framework for geotechnical data interpolation using machine learning. The
framework employs different regression models to construct estimators and accu-
rately interpolate geotechnical data. Key considerations include model selection
and parameter optimization, with complete data used as the regression target. Five
regression models, Bayesian Ridge Regression (BR), Extreme Gradient Boost-
ing Tree (XGBoost), Support Vector Machine (SVR), Random Forest (RF) and
K-Nearest Neighbour (KNN), were utilised. Estimators are constructed using the
regression models and iterative interpolation is used to estimate missing values
for geotechnical data, with each feature treated as a result of using the different
estimators. The framework is evaluated through k-fold cross-validation, demon-
strating its effectiveness in imputingmissingvalues. The interpolation results using
the SVR model indicate good conformity with the original data, confirming the
method’s effectiveness in capturing underlying patterns. This scalable framework
bridges the gap in geotechnical data interpolation research, providing a reliable
solution. The proposed approach contributes to the accurate and robust interpola-
tion of geotechnical data, facilitating informed decision-making in underground
construction projects.
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1 Introduction

The development and utilization of underground space have gained significant impor-
tance due to the increasing demands of urbanization and infrastructure development
[1]. Prior to the construction of underground works, conducting comprehensive geolog-
ical exploration is crucial to ensure the stability, safety, and long-term performance of
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such projects. Geological exploration data serves as a fundamental reference for vari-
ous aspects of underground construction, including design, construction methodologies,
operation, and maintenance [2]. However, acquiring complete and accurate statistical
data for project construction and management can be challenging in practice. Conse-
quently, dealing with missing data becomes imperative to enhance the reliability and
effectiveness of the implemented program [3].

Missing data in geotechnical engineering can be classified into three categories based
on their underlyingmechanisms: completely randommissing, randommissing, and non-
random missing [4]. Each category poses unique challenges in terms of data analysis
and interpretation. To address these challenges, a wide range of methods for interpo-
lating missing data have been proposed and extensively studied in the literature [5–7].
These methods encompass mean replacement techniques, regression-based approaches,
expectation maximization methods, and more. However, despite the substantial body of
research on data interpolation, the application of geotechnical data interpolation meth-
ods remains an area that requires further exploration and comprehensive investigation
[8].

In this study, we propose a scalable framework for geotechnical data interpola-
tion, utilizing advanced machine learning methods. Machine learning techniques have
shown great promise in handling complex patterns and relationships within data, making
them well-suited for addressing the challenges of geotechnical data interpolation [9].
The framework offers a systematic approach for constructing estimators using various
regression models. By carefully configuring the parameters of these estimators and uti-
lizing complete data as the regression prediction target, the proposed framework ensures
accurate and reliable interpolation of geotechnical data.

The construction of accurate estimators within the framework involves several key
considerations. Firstly, the selection of appropriate regression models plays a crucial
role in capturing the underlying patterns and characteristics of geotechnical data. Dif-
ferent regression models may be more suitable for specific types of data, and their
performance needs to be evaluated within the context of geotechnical engineering. Sec-
ondly, determining the optimal parameter values for the estimators is essential to achieve
accurate interpolation results. The parameter selection process requires careful analysis
and experimentation to strike a balance between overfitting and underfitting. Finally,
leveraging the complete data as the regression prediction target enables the estimators
to capture the true behavior and trends within the geotechnical data, facilitating robust
interpolation.

2 Methodology

This study focuses on the application of iterative interpolation as a method for imputing
missing values. The core principle behind this approach is to utilize each feature as an
output in a round-robin fashion, employing various estimators to perform regression
[10]. To construct the estimators in this study, five regression models, BR, XGBoost,
SVR, RF and KNN, were used.

In order to establish exit conditions for the estimator, we introduced two key param-
eters: the number of iterations and the tolerance. These parameters serve as criteria for
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determining when the estimation process should be terminated. The iterative nature of
the approach allows for refining the imputed values gradually, enhancing their accuracy
over multiple iterations.

Given the inherent imbalanced and insufficient nature of the data, a k-fold cross-
validation (CV) technique was employed in this study. By utilizing this method, we
were able to assess the performance of each estimator. During the k-fold CV, the data
is divided into k subsets, or folds, and the estimation process is repeated k times. This
allows for a comprehensive evaluation of the estimator’s performance across different
subsets of the data. The scores obtained from the k-fold CV provide a robust measure
of the estimators’ effectiveness in imputing missing values.

To provide a visual representation of the specific steps followed in this study, we
present Fig. 1. This figure outlines the sequential process involved in the iterative inter-
polation approach. It serves as a roadmap, guiding the reader through the methodology
employed and facilitating a clear understanding of the experimental setup.

The evaluation indicators were calculated using the Mean Squared Error (MSE)
method [11]:

MSE = 1
n

n∑

i=1

(
yi,actual − yi,predicted

)2
(1)

where n is the number of samples, yi,actual is the i-th actual value and yi,predicted is the
predicted value corresponding to the i-th actual value.
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Fig. 1. Flow chart of the geotechnical data interpolation technique.
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Table 1. Percentage of missing values for the characteristics of the fifteen features.

Feature ρ ρd GS ω e n Sr WL Wp Ip IL c ϕ Es Kv

Missing percentage (%) 23 22 22 0 22 22 22 0 0 0 0 54 54 22 22

3 Case Study

3.1 Datasets

The effectiveness of the proposed method in predicting and interpolating geotechnical
engineering data is verified through practical engineering cases. The dataset used in
this study comprises fifteen features, namely: natural density (ρ); dry density (ρd); spe-
cific gravity of solid particles (GS); natural moisture content (ω); natural porosity (e);
porosity (n); saturation (Sr); liquid limit (WL); plastic limit (Wp); plasticity index (Ip);
liquidity index (IL); cohesion (c); angle of internal friction (ϕ); compression modulus
(Es); coefficient of vertical subgrade reaction (Kv), as detailed in Table 1.

Among these features, ω, WL, Wp, Ipand IL were recorded as complete, with
no missing values. However, both c and ϕ exhibited a significant amount of miss-
ing data, with 52.43% of their values unavailable. These two parameters represent the
most severely affected features in the dataset. This study refines the missing values in
the geotechnical data using data interpolation techniques. To verify the validity of the
scheme, two complete data were selected as prediction targets, namely WL and IL. The
remaining data, ω, Wp, Ip and other data after interpolation were selected as inputs. The
predictive ability for WL and IL reflects the performance of the constructed interpolated
estimator for geotechnical data.

To visualize the distribution ofmissing values across the 100 samples,Fig. 2 displays
the dataset with missing value markers. In the figure, white areas indicate the regions
where data is missing or recorded as incomplete. This visualization highlights the extent
and pattern of missing values within the geotechnical dataset.

3.2 Missing Value Interpolation and Prediction Results Analysis

To validate the approach proposed in this study, two complete data were selected as
prediction targets, i.e. WL and IL. The remaining data, i.e. the complete ω, Wp, Ip and
other data after interpolation, were selected as inputs.The predictive performance of
the interpolation estimator is shown in the following table. The 10-fold cross-validated
prediction results for WL and IL are shown in Figs. 3 and 4. Looking at Figs. 3 and 4,
it is evident that there are differences in the mean and error (standard deviation) of the
MSE scoring indices across the prediction results produced by the five models.

Specifically, as shown in Fig. 3, the SVR model showed the smallest mean MSE
of 2.57, while the BR model showed the highest mean MSE of 3.54. The SVR model
showed the smallest error of 1.09, while the BR model showed the highest error of 3.54.
Overall, the interpolated estimator of geotechnical parameters constructed using SVR
predicted WL better and showed better robustness.
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Fig. 2. Missing value markers from 1 to 100 samples.

Furthermore, Fig. 4 shows that for the IL model predictions, the RFmodel shows the
smallest mean MSE of 0.1457 and XGBoost shows the highest mean MSE of 0.3005.
SVR shows the smallest error of 0.0123 and XGBoost shows the highest error of 0.028.
This indicates that the geotechnical data estimator constructed using SVR is able to
accurately predict IL data and exhibits excellent robustness.

When considering a specific target output, it is essential to select an appropriate
model to achieve better interpolation of geotechnical data. Eachmodel possesses distinct
strengths and limitations, making careful consideration necessary to ensure optimal
performance for a given target variable.

Given the satisfactory stability of the SVR model, it was selected to construct an
estimator for the interpolation of geotechnical data. The results of this interpolation pro-
cess are presented in Fig. 5, where the red points represent the original data, and the
blue points represent the interpolated data. The conformity between the interpolated and
original data points in Fig. 5 serves as evidence supporting the effectiveness of the pro-
posed geotechnical data interpolation method. The absence of pronounced anomalies or
irregularities in the interpolated data suggests that the SVR-based estimator successfully
captures and reproduces the underlying patterns of the geotechnical data.

4 Conclusions

This study proposes a framework for interpolation of geotechnical data and validates the
interpolation using complete data.The main results of which are as follows:

(1) The proposed scalable framework based on machine learning methods success-
fully addresses the challenge of geotechnical data interpolation. Quantitatively, the
SVR model demonstrates superior performance with the smallest MSE, while the
KNN model exhibits low error. This indicates the reliability and accuracy of the
interpolation results.
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Fig. 3. WL’s predicted results.
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Fig. 4. IL’s predicted results.

(2) The qualitative analysis reveals that the interpolated data aligns well with the dis-
tribution of the original data, indicating the ability of the framework to capture the
underlying patterns of geotechnical data. The absence of pronounced anomalies or
irregularities further supports the effectiveness of the proposed geotechnical data
interpolation method.
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Fig. 5. Original geological data and interpolated geological data.

(3) The framework provides a systematic approach for constructing estimators using
different regressionmodels and setting appropriate parameters. Leveraging complete
data as the regression prediction target ensures accurate and robust interpolation of
geotechnical data. This framework can enhance the reliability and effectiveness of
geotechnical projects by providing accurate estimations for missing data.
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