
On Innovation-Based Triggering
for Event-Based Distributed Material
Optimization Dispatching Algorithm

Kaiwei Jia and Jinjing Wang(B)

School of Business Administration, Liaoning Technical University, Fuxin, China
710989402@qq.com

Abstract. This paper investigates the problem of material dispatching for the
logistics system. Traditional optimization algorithms are too costly to establish
clock synchronization when solving large-scale material dispatching problems.
At the same time, small changes in each area can trigger global information inter-
actions, resulting in significant communication costs. For this reason, construct
ETAMD (Event-triggered asynchronous material dispatch) distributed optimiza-
tion algorithm to solve the problem using an asynchronous communication event-
triggered model. This algorithm, firstly, eliminates the reliance on clock synchro-
nization. Secondly, reducesmeaningless communication between participants and
reduces the amount of computation for minimizing the total cost of material dis-
patching. In the end of the thesis, the effectiveness of the proposed algorithm is
verified by simulation results.

Keywords: material dispatching · asynchronous communication · event
triggering · distributed optimization · ETAMD algorithm

1 Introduction

Material dispatching existed in the early stage in a market economy with randomness
in production and sales, which may easily lead to an imbalance between supply and
demand. A centralized and optimal dispatching approach for maintaining a balance
between supply and demand has appeared in order to increase the economic efficiency
of businesses. Guangzhu Zheng [1] employed a genetic algorithm to calculate the ideal
distribution quantity of providers and a dynamic planning method for time sequencing
to achieve the optimization target of lowest total supply chain cost. To reduce the scale
of material distribution, S. Lee [2] devised a model of material distribution in a real-time
setting on the shop floor and separated the workstations into work centers. Xu Zhang
[3] considered the degree of demand matching, built an adaptation function to improve
the genetic algorithm, and robustly optimized to improve the system’s average match-
ing degree. Jinyu Wang [4] improved the genetic algorithm to solve for the optimal
material distribution quantity from the supplier’s perspective, taking into account the
supplier’s proportional supply and the time complexity of production. Lin Y [5] pro-
posed an improved particle swarm optimization algorithm embedded in a deconstruction
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algorithm from the demand point of view, taking into account the urgency of demand
for various emergency supplies. Ke Xu [6] considers a single material supply constraint
and a transshipment balance constraint, and solves the problem with a discrete particle
swarm algorithm with inertia weights. Guofu Zhang [7] created a hybrid optimization
algorithm based on two-dimensional NSGA-II and ant colony optimization, which can
improve the algorithm’s search capability and solve the material multi-objective alloca-
tion and dispatching integration optimization problem. In comparison to the traditional
market economy dispatchingmode, the centralized dispatchingmethod transformsman-
ual dispatching into information processing, transmits information such as production
capacity and distribution capability of each participant to the central node for decision
making, and adjusts the material volume distribution scheme, which not only solves the
problem of supply and demand imbalance, but also improves the efficiency of material
transportation.

The centralized approach requires all information to be concentrated at a single point,
which is too stressful for the control center’s communication computation. In order to
deal with large amounts of data and changing demands, most researchers employ evolu-
tionary class algorithms,whichmakes it difficult to find the best solution. To avoid falling
into local optimality and relieve communication pressure at the central point, research on
distributed optimizationmethods has emerged.Davidsson [8] concluded that the applica-
tion of intelligent body technology to many logistics problems is closely related. Pei Xie
[9] listed several distributed convex optimization algorithms and stated that this class of
algorithms is suitable for model predictive control and large-scale dispatching problems.
Chun Jin [10] combined ant colony algorithms with distributed algorithms to solve vehi-
cle path problems with time windows, overcoming the traditional centralized methods’
trade-off between algorithmic accuracy and speed. Firdausiyah [11] proposed adaptive
dynamic planning based on reinforcement learning for multi-intelligent body simula-
tion to replicate potential behaviors in uncertain environments and improve the accuracy
of intelligent body decisions. Malus [12] implemented real-time order dispatching of
autonomous mobile robots using a multi-intelligent body reinforcement learning app-
roach. To avoid becoming trapped in local optima, Mei-Feng Shi [13] created adaptive
balancing factors to solve distributed constrained optimization problems using parallel
search algorithms. Binetti et al. [14] proposed distributed economic dispatching algo-
rithms with losses that can handle different network sizes and calculate the number of
nodes in a distributed approach. Distributedmethods, as opposed to centralizedmethods,
can find the global optimal solution through local optimization and collaboration among
nodes without sending all data to the central node, which is more economical in terms
of communication costs [15].

Although the distributed methods used in the preceding studies can avoid centralized
data processing in large systems in order to solve the material dispatching problem, they
all use synchronous communication mode. Synchronous communication necessitates
the establishment of synchronous clocks, and all nodes must communicate and inter-
act simultaneously. For logistics systems, node decentralization is strong, synchronous
communication implementation is difficult, and there is a lot of unnecessary communi-
cation due to redundant information. Asynchronous communication is accomplished by
creating event triggers and only interacting with messages when the trigger conditions
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are met. The asynchronous communication mode has a filtering function for massive
communication, which prevents meaningless communication. The triggering between
nodes becomes less and less with the local convergence of results until the global conver-
gence, at which point the triggering ceases, further reducing computation and avoiding
reliance on synchronous clocks. This paper proposes an event-triggered distributedmate-
rial optimization dispatching algorithm based on the inspiration mentioned above. The
following are the study’s main contributions:

1) By using event-triggered asynchronous communication to reduce communication
pressure and cost, the event-triggered conditions are introduced using the distributed
method to calculate the optimal material price and the best material distribution plan.

2) The risk management in the supplier distribution process is considered. Since the
amount of the overdraft and loss is uncertain, to avoid the error between the actual
transportation amount and the demand amount, adding overdraft and loss costs to the
supplier cost function can improve overall risk resistance.

3) The optimality of demand-side storage costs is considered. It is found that the exis-
tence of an optimal storage volume within the storage range in this paper, which
minimizes the storage cost when the optimal storage volume is reached.

2 Problem Description and Modeling

2.1 Problem Description

The material dispatching problem investigated in this paper is formulated as multiple
suppliers supplying multiple materials to one demand side, with the suppliers obtaining
timely information on the demand side’s requirements for multiple materials. To ensure
adequate material distribution, we develop a material dispatching and optimal price
adjustment plan, allocate a certain proportion of total demand to each supplier, and
the same material can also be distributed through multiple suppliers. When production
capacity falls short of the actual allocated transportation volume, suppliers face overdraft
and distribution costs. Furthermore, because vehicles loss during transportation, demand
may not be met in accordance with the original distribution plan, and loss can result in
additional transportation costs as well as decreased customer satisfaction.

This paper proposes a price-oriented material optimization dispatching method to
address the aforementioned issues. The method is to determine the optimal distribution
quantity of each supplier based on the prices ofmultiplematerials thatmust be distributed
and the suppliers’ production capacity, as well as to consider the existence of substitution
relationships between different materials, so that even in the event of an unexpected
situation, thematerials can be replenished and distributed in accordancewith the planned
demand to ensure a balance between supply and demand.

2.2 Modeling

The actual transportation volume of each supplier is determined and the price ofmaterials
is derived based on the demand for multiple materials on the demand side. We develop
a mathematical model with the overall goal of minimizing the total cost of material
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distribution, taking into account supplier transportation costs, overdraft costs, and loss
costs, as well as demand side storage costs.

Parameter description:

i indicates the material number, i = 1, 2, · · · n;
j indicates the participant number,j = 1, 2, · · ·m;
T indicates dispatche cycle;
In which min,max indicates lower bound and upper bound;
x indicates the amount of material transportation;
q indicates the amount of material production;
y indicates the amount of material depletion;
l indicates the amount of material taken out and put in;
w indicates the amount of material stocks at the previous moment;
Q indicates transportation costs;
U indicates overdraft costs;
G indicates loss costs;
O indicates storage costs;
Z indicates total costs;
K indicates total quantity demanded;
k indicates quantity of material distribution;
R indicates[0,1]trust matrix;
pr indicates unit price of materials;
λ indicates trigger factor.

Objective functions.
The supplier and demand-side cost functions are as follows:

1) Transportation cost function

The transportation cost incurred in the process of transportingmaterials is determined
by the transportation volume, which primarily includes distribution vehicle energy costs
and labor costs, among other things. The formula for calculation is:

Q(xij,T ) = aij × (xij,T )2 + bij × (xij,T ) + cij (1)

aij, bij and cij indicate unit cost coefficients, all of them are positive constants, and trans-
portation costs are shown as a convex function. The constraint on the transport volume
is xmin

ij,T ≤ xij,T ≤ xmax
ij,T . The amount of material transported cannot exceed the supplier’s

maximum overdraft, taking into account its own limited production capacity and the
existence of competition among multiple suppliers, as well as meeting the minimum
amount of transport in the case of demand-side distribution.

2) Overtraft cost function

The supplier takes out a certain amount ofmaterials to provide to the demand side, and
the transportation volume taken away is also expressed as the supplier’s own overdraft
volume, which brings risk to the supplier, and the higher the overdraft risk cost, the more
overdraft volume taken out. This part of the cost calculation formula is:

U (xij,T ) = dij × xij,T + pij × efij×xij,T (2)
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dij and pij indicate cost coefficient, fij indicates risk factor. The initial overdraft at the
first moment is the transport volume xij,T . The amount of production per unit of time
is fixed and expressed as qij,T . The overdraft at the next moment is (xij,T − qij,T ), this
value is also used as the initial transport volume for the next moment.

3) Loss cost function

The process of vehicle transportation and loading and unloading, which is influenced
by the material’s properties as well as encountering unexpected situations, may result
in unavoidable material loss. The amount of loss is forecasted to compensate for this
amount ofmaterial. The excess quantity is transported to the demand sidewithin a certain
range to ensure that the demand is met to the greatest extent possible. The following is
the attrition cost function:

G(yij,T ) = αij × yij,T + βij × e
μij

ymax
ij,T −yij,T

ymax
ij,T −ymin

ij,T (3)

αij > 0 and βij > 0 indicate loss coefficient, μij < 0 indicates risk factor. Loss
costs and overdraft costs are both risk costs that are used for risk management during
transportation in an uncertain environment. The less loss and overdraft it has, the more
economical it is. The constraint on the amount of loss is ymin

ij,T ≤ yij,T ≤ ymax
ij,T . To develop

a suitable range of values, consider the past transportation loss situation; if the forecast
loss is too low, it will not play a role in risk reduction; if the forecast loss is too high, it
will not improve economic efficiency.

4) Storage cost function

Given the presence of both take and put of materials in warehousing, a distinction is
made using plus and minus signs for the demand-side warehousing cost problem. The
cost of warehousing varies with the amount of warehouse storage available, and there
is an optimal point in the confidence interval where the cost per unit of inventory is
minimized. The formula for calculating storage costs is:

O(lij,T ) = εij × w2
ij,T−1 + vij × wij,T−1 + θij

− [εij × (wij,T−1 − lij,T )2 + vij × (wij,T−1 − lij,T ) + θij] (4)

εij, vij and θij indicate nonnegative cost coefficient, wij,T−1 indicates optimal storage
volume at the previous moment, (wij,T−1 − lij,T ) indicates the optimal storage volume
at this moment, the difference of the function is the cost of storage at this moment.
The constraint on the amount of taken out and put in is lmin

ij,T ≤ lij,T ≤ lmax
ij,T . The

demand side can mobilize a portion of the supplies for emergency purposes, and the
suppliers adjust their respective transport quantities based on the change, which has
a small fluctuation, with a positive change indicating the amount of supplies taken
out and a negative change indicating the amount of supplies put in. Furthermore, the
optimal storage quantity varies as the take out quantity changes, and the constraint is
(wij,T−1 − lij,T )min ≤ wij,T−1 − lij,T ≤ (wij,T−1 − lij,T )max. The values of w change
from one moment to the next and must be updated.



662 K. Jia and J. Wang

Mathematical model.

min Z =
n∑

i=1

m∑

j=1

Q(xij,T ) +
n∑

i=1

m∑

j=1

U(xij,T )

+
n∑

i=1

m∑

j=1

G(yij,T ) +
n∑

i=1

m∑

j=1

C(lij,T ) (5)

s.t. xmin
ij,T ≤ xij,T ≤ xmax

ij,T (6)

ymin
ij,T ≤ yij,T ≤ ymax

ij,T (7)

lmin
ij,T ≤ lij,T ≤ lmax

ij,T (8)

(wij,T−1 − lij,T )min ≤ wij,T−1 − lij,T ≤ (wij,T−1 − lij,T )max (9)

k1j,T + k2j,T = x1j,T + y1j,T + l1j,T + x2j,T + y2j,T + l2j,T (10)

K =
n∑

i=1

m∑

j=1

xij,T +
n∑

i=1

m∑

j=1

yij,T +
n∑

i=1

m∑

j=1

lij,T (11)

Including transportation cost, overdraft cost, loss cost and storage cost; the relevant
explanations of Eqs. (6) to (9) have been given in the objective function analysis; Eq. (10)
indicates the case of considering substitutes, assuming that there is a mutual substitution
relationship between material 1 and material 2, when one of the materials is out of
stock due to production shortage or unexpected events, it can be replaced by another
material, and the total amount of transportation of the two materials is kept constant to
meet the overall material demand as much as possible; Eq. (11) indicates that the sum
of the total transportation is the demand, and the material allocation always meets the
supply-demand balance condition.

3 Algorithm Design

3.1 The ETAMD Distributed Optimization Algorithm

The basic logistics activities require dealing with a variety of information, such as mate-
rial transportation and storage, and the transportation network and variousmaterial distri-
bution nodes comprise a complex logistics network, whereas the distributed optimization
method is to assign the complex network large-scale optimization problem to a single
node for distributed computation, and examine the local interaction relationship, which
is suitable for solving the informa. Each participant in the distributed system must be
able to communicate, but continuous communication is difficult to achieve andmust rely
on synchronous clocks. To address this issue, event-triggered conditions are introduced
into the distributed optimization process in order to avoid reliance on global clocks via
asynchronous communication.
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To avoid infinite triggers in a limited time, a trust matrix is built between suppliers,
and a cooperative relationship exists between them prior to information interaction.
The price difference of the same material is compared to the triggering factor, and the
information interaction between two participants is triggered only when the difference is
greater. Each participant triggers only when necessary, resulting in a faster convergence
speed, and maximizes the common benefit by coordinating the trust relationship of
suppliers and the needs of customers.

3.2 Algorithm Steps

Based on the above description,the specific steps for implementing the ETAMD
distributed optimization algorithm designed in this paper are as follows:

Step 1 Initialize the base data. Based on the value of total demand K , set the initial
shipping volume of multiple materials for participants kij,T , set the optimal storage
volume at the previous moment wij,T−1. Construct a m ∗m [0,1] trust matrix R between
participants;
Step 2 Determine the cost of material. If there is a mutual substitution relationship
between materials 1 and 2, where the demand side does not take substitutes into account,
derive the functions of the participants so that the derivatives are consistent. The con-
straint is x1j,T + x2j,T + y1j,T + y2j,T = k1j,T + k2j,T , and then export prices of different
materials Q′ = U ′ = G′ = C ′ = prij,T .
Step 3 The first trigger condition. Every two participants interact and there is a trust
relationship, the output value of the matrix R is 1, and the next trigger judgment is
performed. Two participants do not have a trust relationship, the matrix R output value
is 0, then the two participants do not trigger.
Step 4 The second trigger condition. The difference between the prices of the first
material of the two participants is determined whether the square of the difference is
greater than the square of the trigger factor λ, and the condition is met so that all
derivatives of the two participants are the same, and the sum of the two participants k is
satisfied. Consider the mutual replacement relationship between materiel 1 and materiel
2, and output the new price prij,T with the new k value of the two participants, so that the
total amount of transportation of the two materiel remains unchanged. If the difference
between the first and second materials is less than the trigger factor, compare the prices
of the third and fourth materials, and so on, keeping track of the number of triggers.
Step 5 Update the data. After all triggers are completed, update the material prices and
material quantities for each participant as the initial values for the next iteration and
record the data.
Step 6 Determine whether the algorithm ends. Multiple material prices converge to the
same, the trigger count is 0. At this time, the algorithm ends, and the optimal result is
output, while it is used as the initial value for the next moment. If the price difference
of the material is still greater than the trigger factor, then continue to iterate for event
triggering.
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4 Simulation Results

In order to verify the effectiveness and feasibility of the algorithm, this paper conducts
simulation analysis on a material dispatching system containing six suppliers and one
demand side, where the suppliers jointly distribute three kinds ofmaterials, amongwhich
there is a mutual substitution relationship between material 1 and material 2. In addition,
this paper writes the running program of the proposed algorithm in Matlab environment
with a uniform trigger factor λ = 0.5 yuan/ton, specific data are shown in Tables 1, 2,
3, 4, and 5.

4.1 Simulation Results of Asynchronous Communication

From Fig. 1(a)–(c), the unit prices of the three supplies from the six suppliers converge
to the same price for each of the three supplies, yielding the optimal price for each of the
three supplies. The multiple suppliers and the demand side adopt an asynchronous com-
munication mode in information processing, which converges only within ten iterations.
Considering the total demand for the three materials on the demand side, the material
prices and material allocation schemes are adjusted by combining the trust relationship
among suppliers and the substitution relationship among materials. There is a substi-
tution relationship between material 1 and material 2, which can be expressed as the
same type of product, and the prices of the two are closer, 73.7789 yuan/ton and 81.2561
yuan/ton, respectively. Material 3 is different from the first two types of materials and
cannot produce substitution with the first two materials, and the final material unit price
of material 3 here is RMB 14.8645/ton.

Table 1. Initial correlation data.

Participant Number Material 1
distribution volume

Material 2
distribution volume

Material3
distribution volume

Supplier1 126 223 590

Supplier2 214 186 380

Supplier3 152 179 625

Supplier4 145 278 450

Supplier5 207 184 859

Supplier6 185 298 645

Material 1
warehouse storage
volume

Material 2
warehouse storage
volume

Material 3
warehouse storage
volume

Demand side7 880 2000 1300
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Table 2. Supplier transport function correlation coefficient and constraints.

Material 1 Participant Number aij bij cij xmin
ij,T xmax

ij,T

Supplier1 0.040 14.5 25 30 150

Supplier2 0.011 20.5 31 66 180

Supplier3 0.023 24.5 28 30 166

Supplier4 0.054 11.9 27 50 130

Supplier5 0.031 28.0 33 50 150

Supplier6 0.026 26.5 23 40 180

Material 2 Supplier1 0.032 36 32 40 180

Supplier2 0.015 24 36 58 326

Supplier3 0.021 22 34 49 285

Supplier4 0.010 18.5 26 80 450

Supplier5 0.041 11 43 77 376

Supplier6 0.035 30 26 63 350

Material 3 Supplier1 0.043 4 50 100 1500

Supplier2 0.013 3 80 80 1400

Supplier3 0.015 9 40 60 1500

Supplier4 0.022 3 35 45 1350

Supplier5 0.028 5 50 80 1650

Supplier6 0.019 4 60 40 1260

Influenced by the constraints related to the storage cost function, when thewarehouse
storage volume reaches the maximum value of the range of values, the material price
is no longer affected by the trigger conditions and changes, Fig. 1(d) indicates the
convergence prices of three materials on the demand side, which are 63.9979 yuan/ton,
75.5408 yuan/ton and 16.1584 yuan/ton, respectively. Compared with the convergence
results of the material prices of the six suppliers, although they cannot reach complete
agreement, the direction of change of the material prices is the same, which meets the
basic requirements of the optimal theory when the prices are consistent.

The amount ofmaterial transported in the firstmoment is the supplier’s overdraft, and
the overdraft risk ofmaterial 3 is small; only the overdraft risk costs ofmaterial 1 and 2 are
considered here. Figure 2 represents the re-dispatching of two materiel by six suppliers,
which converges at the same price, and the materiel overdraft volume/transportation
volume tends to be smooth. Based on the change of the material volume of each supplier,
it can be seen that the cooperation between suppliers with trust relationship exists, and
the best distribution plan is derived by comparing the price difference of the material
and the overdraft risk cost to improve the risk resistance in general.
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Table 3. Supplier overdraft function correlation coefficient and constraints

Material 1 Participant Number dij pij fij xmin
ij,T xmax

ij,T

Supplier1 99 50 0.010 30 150

Supplier2 85 45 0.021 66 180

Supplier3 110 45 0.008 30 166

Supplier4 50 28 0.013 50 130

Supplier5 60 35 0.008 50 150

Supplier6 30 30 0.010 40 180

Material 2 Supplier1 150 45 0.011 40 180

Supplier2 124 40 0.009 58 326

Supplier3 250 35 0.010 49 285

Supplier4 167 35 0.022 80 450

Supplier5 146 40 0.018 77 376

Supplier6 155 60 0.003 63 350

4.2 Simulation Results of Synchronous Communication

The traditional distributed algorithm uses a synchronous communication mode for
information interaction, where multiple nodes need to communicate simultaneously,
independent of the trigger factor, until the prices are fully aligned to output the final
results. To demonstrate the superiority of asynchronous communication, the results of
the distributed optimal dispatching algorithm are compared with those of synchronous
communication.

As can be seen from Fig. 3, the number of convergence iterations and price changes
for the three supplies in the synchronous communication mode, the convergence results
are 73.2527 yuan/ton, 80.7936 yuan/ton and 14.9586 yuan/ton, respectively. Compared
with the simulation results of the asynchronous communication mode, the final pricing
of the materials by the six suppliers achieves complete consistency, and the results are
closer to the theory of consistent optimal prices. The difference between the calculated
results of the two modes is not large, but the difference in calculation volume is huge,
which is analyzed as follows.

4.3 Contrast Analysis

Table 6 lists the comparison results under the two communication modes, and it can be
seen that the number of convergence iterations of event-triggered asynchronous com-
munication mode is significantly less than the case of synchronous communication, and
the asynchronous communication mode avoids a large number of meaningless com-
munications and reduces the computation in terms of information interaction between
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Table 4. Supplier loss function correlation coefficient and constraints.

Material 1 Participant Number αij βij μij ymin
ij,T ymax

ij,T

Supplier1 0.11 748 -1.1 84.3 103.5

Supplier2 0.15 1200 -1.2 76.2 84.5

Supplier3 0.11 1215 -1.5 71.3 88.4

Supplier4 0.10 1550 -0.5 56.4 72.4

Supplier5 0.20 1800 -1.4 78.6 111.6

Supplier6 0.16 1060 -1.3 60.5 98.7

Material 2 Participant Number αij βij μij ymin
ij,T ymax

ij,T

Supplier1 0.12 534 -1.3 133.2 148.2

Supplier2 0.15 526 -1.1 68.1 98.5

Supplier3 0.18 1263 -1.9 44.5 69.5

Supplier4 0.11 1030 -1.2 55.6 88.2

Supplier5 0.22 925 -1.7 49.7 74.6

Supplier6 0.17 1155 -1.5 72.4 99.1

Material 3 Supplier1 0.23 625 -0.5 100.8 150.5

Supplier2 0.13 384 -1.8 83.2 108.2

Supplier3 0.15 951 -1.4 48.9 83.6

Supplier4 0.25 397 -1.3 45.5 84.4

Supplier5 0.28 526 -1.5 64.1 96.7

Supplier6 0.19 431 -1.6 37.8 73.6

Table 5. Demand-side storage function correlation coefficient and constraints.

εij νij θij lmin
ij,T lmax

ij,T
(wij,T−1 − lij,T )min (wij,T−1 − lij,T )max

Material 1 0.98 0.028 535 -100 100 450 1500

Material 2 0.95 0.021 721 -60 60 820 3500

Material 3 0.84 0.032 636 -45 45 660 2300

participants. Therefore, the introduction of event-triggered asynchronous communica-
tion mode on the distributed optimal dispatching algorithm in this paper can effectively
reduce the communication pressure and communication cost, and improve the economic
efficiency as a whole.
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(a () b)

(c () d)

Fig. 1. Asynchronous communication material prices consistent. (a) represents the unit price of
material 1; (b) represents the unit price of material 2; (c) represents the unit price of material 3;
(d) represents the unit price of materials on the demand side.

(a () b)

Fig. 2. Overdraft volume / transport volume of material. (a) represents the volume of material 1;
(b) represents the volume of material 2.
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(a () b)

(c)

Fig. 3. Synchronous communication materials prices are consistent. (a) represents the unit price
of material 1; (b) represents the unit price of material 2; (c) represents the unit price of material 3.

Table 6. Asynchronous communication and synchronous communication

Communication
Category

Trigger factor
(yuan/ton)

Convergence
iterations

Total number of
triggers

synchronous
communication

0 200 4800

asynchronous
communication

0.5 10 240

5 Conclusions

The problem of optimal dispatching of materials with constraints for multiple suppliers
was addressed in this paper. The ETAMD distributed optimization algorithm is pro-
posed to realize collaborative optimal dispatching among each participant in the mode
of event-triggered asynchronous communication by designing the trust relationship
between participants, the comparison relationship between price difference and trigger
factor as the event trigger condition. The ETAMD distributed optimal dispatching
algorithm is based on a distributed algorithm with asynchronous collaboration, which
significantly reduces unnecessary triggers and delays. The synchronous clock constraint
was avoided, and the global computational pressure was reduced. Finally, the proposed
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algorithm was applied to a multi-supplier single-demand-side material dispatching
model, and simulation results show that prices of multiple materials converge to the
same level and can converge to the global optimal solution. The material optimization
dispatching model in this paper considered only the case where the cost functions
are all convex, and the non-convex problem was ignored. On the basis of this paper,
non-convex optimization can be considered in the future to solve the large-scale material
dispatching problem with non-convex cost functions.

Fund Projects. Liaoning Provincial Education Department Key Research Project
(LJ2019ZL006); Social Science Planning Fund of Liaoning Province (L22BJY031).
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