
Forecasting Stock Prices using Tweets

Jiacheng Wang

Data Science and Business Analytics Dept. HEC Montreal, Canada

E-mail:jiacheng.wang@hec.ca

Abstract. Stock market price prediction is a challenging problem since the mar-
ket is an immensely complex, stochastic and dynamic environment. There are
many studies from various areas aiming to improve the performance of prediction
and analysis of public emotion has been the focus of one of them. We use infor-
mation shared over Kaggle, an online community of data scientists and machine
learning practitioners, to better understand and predict stock prices of Tesla. This
article studies the methods to preprocess tweets and to tune models so that neural
network models and linear regression can adapt to the preprocessed tweets. Ac-
cording to previous authors, one way to preprocess tweets is to keep the tweets
of smart user, and output can be the next-day close prices or the next-day return.
For that goal, prediction models (CNN-LSTM, LSTM and linear regression)
were built and modified step by step and their results were analyzed by Mean
Square Error and Mean Absolute Error. Finally, the LSTM model, with close
value and weighted labels as input features and return as output feature, wins the
prediction of stock price of Tesla among other candidate models with different
input and output features.

Keywords: CNN-LSTM, LSTM, FinBERT, linear regression, twitter, smart
user, TF-IDF, sentiment analysis

1 Introduction

Stock price predictions have been a study field of high interest to investors as it presents
them with an opportunity to benefit financially by investing their resources in shares
and derivatives of various companies. However, the movement of a stock price is a
chaotic system; meaning the behavioural traits of share prices are unpredictable and
uncertain. To make some sort of sense of this chaotic behaviour, some researchers fo-
cused on finding good factors relating to financial knowledge to explain the stock
movement, such as the Fama French model which is a financial model that calculates
the expected rate of return for an asset or investment. Some researchers such as Li Bing
et al. (2014) focused on using sentiment analysis to explain the effect of public emotion
on stock price prediction[7]. Moreover, Yumo Xu et al. (2018) introduced a new neural
network model called StockNet which was used to predict stock movement with a high
accuracy of 58.23%[18].

© The Author(s) 2024
F. Balli et al. (eds.), Proceedings of the 2023 2nd International Conference on Economics, Smart Finance and
Contemporary Trade (ESFCT 2023), Advances in Economics, Business and Management Research 261,
https://doi.org/10.2991/978-94-6463-268-2_35

https://doi.org/10.2991/978-94-6463-268-2_35
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-268-2_35&domain=pdf

More specifically, the method using sentiment analysis, one popular approach, pro-
posed by Johan Bollen et al. (2011), is based on neural networks to learn from tweets
in score form processed by sentiment analysis tools and historical stock data to predict
future prices[2]. And another method, used by Scott Coyne et al. (2017), is using linear
regression to learn the effect of each word in the form of a TF-IDF vector[4], which will
bed explained in detail later in Section 3. This paper goes in that direction in studying
a method to improve the performance of prediction by using tweets and evaluating their
performances.

The first question is “how to find smart users?”. Scott Coyne et al. (2017) suggest
manually labelling tweets as bullish, bearish, or neutral[4]. After removing the neutral
class, they compared the sentiment to how the stock moved that day to generate each
user's accuracy.

The second question is “how to use public emotion as input?”. Scott Coyne et al.
(2017) concatenate all smart tweets per day for each stock and vectorize daily smart
tweets by term frequency–inverse document frequency (TF-IDF), a numerical statistic
that is intended to reflect how important a word is to a document in a collection or
corpus, which is used as input features of linear regression[4]. Johan Bollen et al. (2011)
convert daily tweets to score form by Opinion Finder or Google-Profile of Mood States,
which is a psychological rating scale used to assess transient, distinct mood states and
use the score as the input of a Self-organizing Fuzzy Neural Network model[2].

In this paper, I contend that Scott, Praveen and Joseph were correct in the method-
ology of finding smart users and the method of using TF-IDF vectors as input to predict
return by linear regression and that Johan, Huina and Xiaojun were correct in the way
of using sentiment scores. I will first focus on the possibility to reduce the time to find
smart users by using machine learning algorithms, in order words, automatically label-
ling all tweets and then test whether by using the adjusted daily sentiment score of smart
tweets as one of the input features can improve the performance of the model with all
tweets as one of the input feature for the prediction of close price of the stock of Tesla.

The remainder of this paper is organized as follows. Section 2 provides a literature
review to summarize related works and Section 3 discusses preliminaries and tools we
use moving forward. This leads into Section 4 where we discuss the result of our meth-
ods and the effect of using smart users' tweets in prediction. Finally, Section 5 provides
our conclusion and ideas for future work.

2 Literature Review

In the field of stock prediction, researchers are mainly interested in two types of pre-
dictions, one is stock movement prediction and the other one is stock value prediction.
However, the approaches to achieve the two types of predictions has some common
feature. Specifically, to improve the performance of prediction, researchers focus on
different aspects such as data processing and machine learning methods.

Sima Siami-Namini et al. (2018) made a comparison of a rolling Autoregressive In-
tegrated Moving Average model (ARIMA) and a rolling Long Short-Term Memory
(LSTM) in Forecasting a historical monthly financial time series from Jan 1985 to Aug

310 J. Wang

2018 from the Yahoo finance Website[14]. The input and output of the experiment are
Adjusted Close of stock indexes for LSTM and ARIMA. The authors' ARIMA model
is built with p (lag order) =5, d (degree of differencing) =1 and q (order of moving
average) =0, without seasonality. For LSTM, the mean squared error and ADAM are
used as the loss function and the optimization algorithm, respectively. The authors men-
tioned their batch size is 1 and the ratio of the size of the training set to validating set
is 7:3, but no details of the architecture of LSTM such as batch size, activation function,
the range of the date of each set, etc. The monthly data included Nikkei 225 index
(N225), NASDAQ composite index (IXIC), Hang Seng Index (HIS), S&P 500 com-
modity price index (GSPC) and Dow Jones industrial average index (DJ). The assess-
ment metric they used was Root-Mean-Square Error. They concluded that the LSTM-
based algorithm improved the prediction by 85% on the average price of these stock
indexes compared to ARIMA.

David M. Q. Nelson et al. (2017) applied LSTM neural networks to predict the price
movement of five stocks that are part of the IBovespa index from the BM&F Bovespa
stock exchange[10]. Except that the target of prediction become price movement, the
input of the LSTM model was also modified. First, a log-return transformation was
performed as means of normalization as well as to stabilize the mean and variance along
the time series[3]. Secondly, exponential smoothing was performed on stock price to
reduce random variation and noise. Finally, with the Technical Analysis Library (TA-
Lib library), which is widely used by trading software developers required to perform
technical analysis of financial market data, price data was used to generate 175 tech-
nical indicators for each period so that there are 180 input features for each period. For
training, it is used the last 10 months of trading before the current day, and the model
performance is validated by using the data of the past week. On the following day, all
the predictions will be done using the most recent model. The assessment metrics were
accuracy, precision, recall, F-measure (a harmonic mean between precision and recall),
rate of return, etc. They conclude that there is a significant improvement in terms of
accuracy when comparing LSTM to Pseudo-random, which predicts stock movement
based on probabilities according to the class distribution, in five datasets of stocks, but
the accuracy of LSTM is only larger than that of random forest in 2 datasets out of 5.

Wenjie Lu et al. (2020) used a Convolutional Neural Networks-Long Short-Term
Memory-based model (CNN-LSTM-based model) to forecast the close value of the
Shanghai Composite Index with a dataset from July 1, 1991, to August 31, 2020[8]. Each
piece of data contains the opening price, highest price, lowest price, closing price, vol-
ume, turnover, ups and downs, and change. In this model, “CNN is used to extract the
time feature of data, and LSTM is used for data forecasting”. The author concluded
CNN-LSTM is more suitable for stock price forecasting than multilayer perceptron
(MLP), CNN, Recurrent Neural Networks (RNN), LSTM and CNN-RNN. Specifically,
the prediction of the CNN-LSTM model has the smallest MAE (27.56) and RMSE
(39.69) and has the largest R square (0.96).

Anshul Mittal et al. (2011) used Twitter sentiment analysis to predict stock value, it
raised the question that is how to process tweets[9]. In Anshul et al.'s paper, they men-
tioned that some sentiment analysis tools such as OpinionFinder and SentiWordnet are

Forecasting Stock Prices using Tweets 311

inadequate and/or inefficient, because “this may however ignore the rich, multi-dimen-
sional structure of human mood” indicated by Johan Bollen et al. (2011)[2]. Thus, they
used a methodology relating to the Profile of Mood States questionnaire. In this meth-
odology, the authors first establish a word list where each word is mapped on one of
the six standard Profile of Mood States (POMS) moods. Based on the authors' equation,
they then calculated the score of each word in a day and use the scores of words to
generate the scores of moods. However, we cannot get access to the authors' word list
and the algorithm and code of POMS are not publicly available online.

Many sentiment analysis tools can detect the polarity (i.e. positivity or negativity) of
a short text. Filipe N Ribeiro et al. (2016) compared several sentiment analysis meth-
ods, where we can see that SentiStrength is the best method among 11 out of 18 datasets
with 2 classes and that Umigon is the best method among 6 datasets among 13 datasets
with 3 classes[12].

However, the sentiment analysis tools above are not designed for financial datasets.
Dogu Tan Araci et al. (2019) introduced a pre-trained NLP model called FinBERT to
analyze the sentiment of financial texts[1]. It is built by further training the BERT lan-
guage model in the finance domain, using a large financial corpus and thereby fine-
tuning it for financial sentiment classification. They achieved state-of-the-art result on
FiQA sentiment scoring and Financial PhraseBank. Moreover, for the classification
task, they increased the state-of-the-art accuracy by 15%.

Yumo Xu and Shay B. Cohen (2018) developed a method called StockNet to predict
the movement of 88 stocks from 9 industries (Basic Materials, Consumer Goods,
Healthcare, Services, Utilities, Conglomerates, Financial, Industrial Goods and Tech-
nology) from January 1st, 2014 to January 1st, 2016[18]. The input features are the Twit-
ter dataset and a historical price dataset. The model comprises three primary compo-
nents which were Market Information Encoder (MIE), Variational Movement Decoder
(VMD) and Attentive Temporal Auxiliary (ATA). In detail, MIE encodes information
from social media and stock prices to enhance market information quality and outputs
the market information input X for VMD, VMD infers and decodes the latent driven
factor Z and the movement y from the encoded market information X, ATA integrates
temporal loss through an attention mechanism for model training. Finally, the authors
concluded that StockNet performs better than a set of baselines, such as ARIMA and
Random Forest on a comprehensive dataset.

Scott Coyne et al. (2017) focused on the idea that the prediction based on tweets of
smart users can be better than that of all users[4]. The authors first labelled every twit as
bullish, bearish, or neutral, then use a multilayer perceptron classifier to predict labels.
Then they removed the neutral class in the forecasted labels, and they compared the
forecasted labels and how the stock moved to generate accuracy for each user. The
users who had at least 80% of posts accurate were labelled smart users. Then the tweets
of the smart users were converted into TF-IDF form to predict the return, of each stock,
which was converted into price movement. The assessment metric is the accuracy of
price movement and the accuracies of the method using smart users of stock movement
of 8 out of 8 stocks are higher than that of the method using all users. However, filtering
smart users will cause a problem from a small sample, where small sample sizes can
cause bias. To overcome the bias caused by a small sample, the authors use random

312 J. Wang

train-test splits and a high number of runs. Specifically, “for each stock, a random hun-
dred days of the year were chosen for testing days and the rest for training. Training
days were used to identify smart users, and then we looked at smart user postings over
the training set. This random split and test were performed twenty-five times per stock,
and we averaged results to calculate accuracy for each”.

3 Literature Review

3.1 Data-Preprocessing

Data.
In this experiment, Tesla stock value[17] and Tweets[15] about Tesla are selected as

the experimental data. Data from 720 trading days from January 1, 2017, to December
31, 2018, are obtained from Kaggle. Each piece of stock value data contains five items,
namely, opening price, highest price, lowest price, closing price and volume. In the
dataset of Tweets, I take the data of the first 438 trading days as the training set and the
data of the next 146 trading days as validating set and the data of the last 146 trading
days as the testing set. The time step of each set will be set to be a number N, in other
words, the data of N consecutive trading days will be used to forecast the close value
at the N+1 day. If the sequence length is less than N days, padding will be applied to
maintain the sequence length by adding multiple first observations of the sequence at
beginning of the sequence. The parameter dictionary for each neural network model is
the one performing with the best MAE in validating set, and these models are used to
predict the next-day close value of the stock of Tesla in the testing set.”.

Historic data preprocessing.

a) Sentences Preprocessing.
I lower all letters, remove all web links, tickers(@ and $), digits, symbols and punc-

tuations, and retrieve some abbreviations(n't to not, etc.). Finally, I drop duplicate sen-
tences

b) Filtering Tweets.
The number of preprocessed tweets relating to Tesla from 2017 to 2018 is 415398.

It takes about 1 second to label 10 tweets by FinBert and 12 hours to label 415398
tweets, which costs too much time. Thus, I keep tweets which has more than 1 com-
ment, 1 retweet and 1 like, so that the number of filtered tweets is 51232. Table I is an
example of the tweets being kept.

Forecasting Stock Prices using Tweets 313

Table 1. A example of keeping tweets

Comment
number

Comment
number

Comment
number

Is kept?

Tweet 1 1 1 1 Yes

Tweet 2 1 1 0 No

c) Weighted Labels and Scores.
To generate daily emotion labels and scores, we should generate the weight,

weighted score and weighted label for each tweet in order. Then generate daily
weighted scores and labels by weighted scores and labels of each tweet. The formulas
to get daily weighted scores and labels are shown below:

𝑖: 𝑡𝑤𝑒𝑒𝑡 𝑖

𝑤𝑒𝑖𝑔ℎ𝑡𝑠௜ = 𝑐𝑜𝑚𝑚𝑒𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟௜ + 𝑟𝑒𝑡𝑤𝑒𝑒𝑡𝑠 𝑛𝑢𝑚𝑏𝑒𝑟௜ + 𝑙𝑖𝑘𝑒 𝑛𝑢𝑚𝑏𝑒𝑟௜

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑐𝑜𝑟𝑒𝑠௧ = 𝐸[𝑠𝑐𝑜𝑟𝑒௜ ×
𝑤𝑒𝑖𝑔ℎ𝑡𝑠௜], 𝑓𝑜𝑟 𝑑𝑎𝑦, 𝑤ℎ𝑒𝑟𝑒 𝐸[𝑋] 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑜𝑓 𝑋

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙𝑠_𝑡 = 𝐸[𝑙𝑎𝑏𝑒𝑙_𝑖 × 𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑖], 𝑓𝑜𝑟 𝑑𝑎𝑦 𝑡

d) Target variable (Price or Return).
If the target variable is close price, standardization will be applied to it which will

be described in the next section. If it is return, then 𝑒𝑡𝑢𝑟𝑛_𝑡 = (𝑃௧ − 𝑃(௧ିଵ))/𝑃(௧ିଵ) ,
where P_t is the close price of the stock of Tesla at time t.

e) Standardization on predictor variables.

𝑋௧ =
௑೟ି ௑ത

௦௧ௗ(௑)
 ∀ 𝑡, 𝑤ℎ𝑒𝑟𝑒 𝑠𝑡𝑑 𝑚𝑒𝑎𝑛𝑠 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

Standardization is performed on each predictor variable to make them contribute
equally and to help the training of our neural networks as the different features are on
a similar scale, which helps to stabilize the gradient descent step, allowing us to use
larger learning rates or help models converge faster for a given learning rate.

f) Technical Analysis Library.
Technical Analysis Library (TA-Lib) is a market analysis tool which includes 200

functions used to generate technical indicators such as ADX, MACD, RSI, Stochastic,
Bollinger Bands etc. Himanshu Sharma (2023) wrote a blog named Exploring the Best
Indicators in TA-Lib: Technical Analysis of Stocks using Python- Part 1 , and men-
tioned that the effectiveness of these indicators may vary depending on the asset and
market conditions, so I randomly choose the following 5 indicators, mentioned by
Himanshu Sharma, which are the 5-day Exponential Moving Average (ema), the 5-day
Simple Moving Average(sma), the 20-day Bollinger Bands(low band, mid band, up
band), the 14-day Relative Strength Index(rsi) and the 20-day Average Directional

314 J. Wang

Movement Index (adx) as inputs of neural network models by TA-Lib[13]. Their formu-
las are shown below:

sma୲(x, N) =
∑ ୶౪ష౟శభ

ొ
౟సభ

୒
, where x is the sequence on which the simple moving aver-

age algorithm is applied, and N is the number of days in the smoothing period.

ema୲(x, N) = ൫x୲ − ema୲ିଵ(x, N)൯ ×
ଶ

୒ାଵ
+ ema୲ିଵ(x, N), where x is the sequence

on which the exponential moving average algorithm is applied, and N is the number of
days in the smoothing period.

𝑙𝑜𝑤 𝑏𝑎𝑛𝑑௧(𝑁) = 𝑠𝑚𝑎௧(𝑇𝑃, 𝑁) − 2 × 𝜎௧(𝑇𝑃, 𝑁)

𝑚𝑖𝑑 𝑏𝑎𝑛𝑑௧(𝑁) = 𝑠𝑚𝑎௧(𝑇𝑃, 𝑁)

𝑢𝑝 𝑏𝑎𝑛𝑑௧(𝑁) = 𝑠𝑚𝑎௧(𝑇𝑃, 𝑁) + 2 × 𝜎௧(𝑇𝑃, 𝑁)

where TP୲ =
ୌ୧୥୦ ୴ୟ୪୳ୣ౪ା୐୭୵ ୴ୟ୪୳ୣ౪ାେ୪୭ୱୣ ୴ୟ୪୳ୣ౪

ଷ
, and σ୲(TP, N) is the standard deviation

of the sequence TP୲ି୒ାଵ, … , TP୲, and N is the number of days in the smoothing period.

𝑟𝑠𝑖௧(𝑥, 𝑁) = 100 −
ଵ଴଴

ଵାோௌ೟(௫,ே)
 , where 𝑅𝑆௧(𝑥, 𝑁) =

∑ ଵ[೎೓ೌ೙೒೐೟(ೣ)ಭబ]
ಿ
೔సభ

∑ ଵ[೎೓ೌ೙೒ ೟(ೣ)ಬబ]
ಿ
೔సభ

 and

ℎ𝑎𝑛𝑔𝑒௧(𝑥) =
௫೟ି௫೟షభ

௫೟షభ
 .

𝑎𝑑𝑚௧(𝑁) =
௔ௗ௠೟షభ(ே)×(ேିଵ)ା஽௑೟(ே)

ே
 , where 𝐷𝑋௧(𝑁) =

ห஽ூశ೟(ே)ି஽ூష೟(ே)ห

ห஽ூశ೟(ே)ା஽ூష೟(ே)ห
× 100

𝐷𝐼ା௧
(𝑁) = 100 ×

௦௠௔೟(஽ெశ,ே)

஺்ோ೟

𝐷𝐼
௧
(𝑁) = 100 ×

௦௠௔೟(஽ெష,ே)

஺்ோ

N is the number of days in the smoothing period

𝐴𝑇𝑅௧: 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑢𝑒 𝑅𝑎𝑛𝑔𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝐷𝑀ା௧
= 𝑀𝑎𝑥(𝑈𝑝𝑀𝑜𝑣𝑒௧ , 0) 𝑖𝑓 𝑈𝑝𝑀𝑜𝑣𝑒௧ > 𝐷𝑜𝑤𝑛𝑀𝑜𝑣𝑒௧

𝐷𝑀ି௧
= 𝑀𝑎𝑥(𝐷𝑜𝑤𝑛𝑀𝑜𝑣𝑒௧ , 0) 𝑖𝑓 𝐷𝑜𝑤𝑛𝑀𝑜𝑣𝑒௧ > 𝑈𝑝𝑀𝑜𝑣𝑒௧

𝑈𝑝𝑀𝑜𝑣𝑒௧ = 𝐻𝑖𝑔ℎ௧ − 𝐻𝑖𝑔ℎ௧ିଵ

𝐷𝑜𝑤𝑛𝑀𝑜𝑣𝑒௧ = 𝐿𝑜𝑤௧ିଵ − 𝐿𝑜𝑤௧

𝐻𝑖𝑔ℎ௧: 𝐻𝑖𝑔ℎ 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝐿𝑜𝑤௧: 𝐿𝑜𝑤 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

Forecasting Stock Prices using Tweets 315

TF-IDF.
TF-IDF is a statistic which evaluates how relevant a word is to its body of text. It is

done by multiplying two metrics, which are term frequency and inverse document fre-
quency. Its formula is shown below[16]:

𝑡𝑓(𝑡, 𝑑) = log൫1 + 𝑓𝑟𝑒𝑞(𝑡, 𝑑)൯

𝑖𝑑𝑓(𝑡, 𝐷) = log ൬
𝑁

𝑐𝑜𝑢𝑛𝑡(𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑)
൰

𝑡𝑓 𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) × 𝑖𝑑𝑓(𝑡, 𝐷) 1

where t is the index of a word, d is the index of a document, and D is a collection of all
documents.

In the formula, the TF score is larger if the frequency of the word t in the document
(tweets at one day) d is higher, while the IDF score is larger if the number of documents
(tweets at one day) d including word t in document set(tweets all times) D is small
compared to the total number of document (tweets at one day) d in document set (tweets
all times) D. Scott Coyne et al. (2017) used TF-IDF as a method of pre-processing of
text[4]. They mentioned that TF-IDF can eliminate stop words automatically. Finally,
the vectorized tweets will be used as the input of a machine learning method to predict
the percentage change of stock value.

Smart users.
In the same paper, Scott Coyne et al. (2017) concluded that at least some limited

number of twits have predictive power on the stock price[4]. The author manually la-
belled tweets which cost time, so to avoid spending time on manually labelling tweets,
I import the FinBERT. I will test the effectiveness of the method to automatically label
tweets.

Sentiment Analysis.
Sentiment analysis is an approach relating to natural language processing (NLP) that

identifies the emotion of a text. The first reason why to use sentiment analysis is that
some machine learning methods which is used to predict stock price cannot understand
text directly, and the second reason is that the number of daily tweets is too large to be
used as input of the machine learning methods that can understand text directly such as
neural networks with word embedding layer. Therefore, by sentiment analysis tweets
can be transferred into numeric vectors and the process to train a machine learning
method is speeded up.

FinBERT.
Supervised methods require the step to train models, and it is often not easier to get

labelled data. However, it allows us to be very specific about the definition of the labels

1 https://monkeylearn.com/blog/what-is-tf-idf/

316 J. Wang

and we can determine the number of classes. In the literature, there is one article using
supervised methods to do sentiment analysis. Scott Coyne et al. (2017) labelled tweets
as three moods (bullish, bearish, or neutral), and they use MLP to classify tweets[4].
Because the tweets in my dataset are not labelled, a pre-trained model called FinBERT
is used. I will use Transformer on Hugging Face, which is a platform that provides the
community with APIs to access and use state-of-the-art pre-trained models available
from the Hugging Face hub, to implement it.

3.2 Assessment Metric

The Mean-Square Error (MSE) and Mean-Absolute Error (MAE) are selected to assess
the performance of the prediction of the close value of Tesla. They compare prediction
errors of different models for particular data. The difference between them is that MSE
penalizes each large single residual but MAE does not. The formulas for computing
them are as follows:

𝑀𝑆𝐸 =
1

𝑁
෍(𝑦௜ − 𝑦పෝ)ଶ

ே

௜ୀଵ

𝑀𝐴𝐸 =
1

𝑁
෍|𝑦௜ − 𝑦పෝ|

ே

௜ୀଵ

Where N is the total number of observations, y_i is the actual value, and (y_i) ̂ is
the predicted value.

3.3 Stock prediction models

The code and the results of all models are available in the link in the Appendix.

Benchmark.
My benchmark is a naïve method which takes the close price at day t as the predicted

close price at day t+1. Its MSE is 105.69 and its MAE is 6.05.

Linear Regression.
Linear Regression is a basic machine learning method which is easier to interpret the

output coefficients, and I use scikit-learn, which is a free software machine learning
library for the Python programming language, to implement it. To ensure the accuracy
of linear regression, its assumptions should be satisfied in the prediction of stock price.
Its formula is shown below: 𝑦௧ = 𝛽଴ + 𝛽ଵ𝑋ଵ + ⋯ + 𝛽௡𝑋௡ + 𝜖 where each X_i is the
TF-IDF vector of the word i in the document(day) t and y_t is the return of close price
of the stock of Tesla. Therefore, then we can transfer the predicted return into predicted
close price.

Forecasting Stock Prices using Tweets 317

Neural Network Models.
The framework I used to construct neural network models is PyTorch which is based

on the Torch library, used for applications such as computer vision and natural language
processing, originally developed by Meta AI and now part of the Linux Foundation
umbrella[11].

LSTM.

Fig. 1. Architecture of LSTM[5]

Unlike linear regressions, LSTM is a type of Recurrent Neural Network (RNN), that
can handle the sequence of dependence among the input variables. LSTM differ from
traditional feed-forward networks in the sense that they don't only have neural connec-
tions in a single direction, in other words, neurons can pass data to a previous or the
same layer. LSTM was introduced by solving the vanishing gradient problem that re-
current networks would suffer when dealing with long time series. In other words, it
has both long-term and short-term memory of the important information of inputs,
which can provide better performance than RNN. In Figure 1, it achieves this through
two special units called "gates" which are forget gate, controlling what information
should be forgotten and input gate, identifying important elements that need to be added
to the cell state.

I applied LSTM models with a different number of input features. The structures of
the LSTM models are shown in Table II.

Table 2. Architecture of LSTM

Parameters Value Input Layer Input (64,L,C)
Number of LSTM layers 1 output (64,L,C)
Number of hidden units in
LSTM

64 LSTM Input (64,L,C)

318 J. Wang

LSTM layer activation func-
tion

tanh output (64,64)

Time step 10 Dense Input (64,64)
Batch size 64 output (64,1)
learning rate 0.001
Optimizer Adam
Loss function MAE
Where L is the length of the sequence and C is the number of input features.

CNN.
CNN has many layers and parameters including convolutional layers, pooling layers,

fully connected layers, number of filters in each layer, dropout rate, size of filters in
each layer and initial representation of input data which should be chosen wisely to get
the desired outcomes[6]. In detail, convolutional layers simplify complex problems and
reduce the number of parameters by filters, pooling layers introduce invariance to local
translations and reduce the number of hidden units in hidden layers and fully connected
layers convert extracted features in the previous layers, such as convolutional layers or
pooling layers, to the final output. Moreover, to avoid overfitting, dropout can be im-
plemented during the training phase. The structures of the CNN model I implemented
are shown in Table III.

Table 3. architecture of CNN

Convolution layer filters 32
Input
layer

Input (64,L,C)

Convolution layer kernel size 1 Output (64,I,C)

Convolution layer activation function tanh ConvID Input (64,I,C)

Convolution layer padding Same Output (64,I,32)

Pooling layer pool size 1
Maxpool-
ing1D

Input (64,L,32)

Pooling layer padding Same Output (64,I,32)

Pooling layer activation function Relu Dense Input (64,I*32)

 Output (64,1)
Where L is the length of the sequence and C is the number of input features.

CNN-LSTM.

Forecasting Stock Prices using Tweets 319

Fig. 2. Architecture of CNN-LSTM

CNN has the characteristic of paying attention to the most obvious features in the
line of sight, so it is widely used in feature engineering. LSTM has the characteristic of
expanding according to the sequence of time, and it is widely used in time series[8]. To
test the findings of Wenjie Lu et al and explore more about the effect of architecture of
CNN-LSTM, in Figure 2, on the result of prediction, I tried to modify parameters in
their CNN-LSTM model, while their architectures are shown in Table IV.

Table 4. architecture of CNN-LSTM

Parameters
CNN-ISTM
in paper

CNN-LSTM in paper

Convolution layer filters 32 Input (64, L, C)

convolutionlayer 1 kernel size 1 Input Layer Output (64, L, C)

convolution layer activation f tanh Input (64, L, C)

Convolution layer 1 padding Same Conv1D Output (64, L,32)

Pooling lawer pool size 1 Input (64, L,32)

Poolinq layer padding Same
Maxpool-
ing1D

Output (64, L,32)

Pooling layer activation funct Relu Input (64, L,32)

Number of LSTM lawers Unknown LSTM Output (64, 64)

Number of hidden units in each 64 Input (64,64)

LSTM layer activation function tanh Dense Output (64,1)

Time step 10

Batch size 64

Learning rate 0.001

Optimizer Adam

Loss function MAE

Epochs 100
Where L is the length of the sequence and C is the number of input features.

320 J. Wang

Batch size and Epochs.
The batch size used in this paper is 64 which is large enough to speed up training

steps. Instead of using the whole dataset to compute gradients, minibatch can avoid
local minimum by adding noise. The number of epochs is 150 which is selected after
checking the MAE vs epoch figure for all neural network models. The MAEs of vali-
dating set of all models stop decreasing at about 100 epochs.

4 Results

4.1 Granger Causality Test

A granger causality test, which is a statistical hypothesis test for determining whether
a time series is useful for forecasting another, is performed on each predictor variable.
Anshul Mittal et al. (2021) tested whether the mood values returned can be used to
predict the future stock movements by granger causality test[9], so I applied it on close
prices and all predictor variables. For neural network models, in the dataset including
all users, 16 variables including weighted labels among 19 variables are selected as the
candidates of the input features for forecasting the close prices on the next days. The
three abandoned variables are weights, weighted scores and volumes. In the dataset
including only smart users, both weighted labels and weighted scores are not signifi-
cantly useful for forecasting the close values of Tesla on the next day. Because
weighted labels represent the mood of public and it is the only difference between full
dataset and dataset including only smart users, weighted labels, and the rest 15 technical
indicators are selected as the candidates of the input features of models for dataset in-
cluding only smart users. For the linear regression model, the candidates of input fea-
tures are 15 technical indicators and all words in vocabulary list of TF-IDF vector form.
The number of words in vocabulary is 28650 and 9063 for full dataset and dataset in-
cluding smart tweets only respectively. The detail of each model will be abbreviated as
(model name)_(input feature index)_(output feature)_(optimizer)_(dataset), where the
corresponding combination of input feature to input feature index is shown in Table V.

4.2 Result of Models

Because the result of neural network models is not constant after each training-validat-
ing-testing procedure, I repeat the procedure for each neural network model 20 times
and use average MSEs, average MAEs, standard deviations of 20 MSEs and standard
deviation of 20 MAEs to evaluate their performance. For linear regression, the result is
constant, so one round of the training-validating-testing process is enough. All results
are reported in Table VI and Table VII.

Forecasting Stock Prices using Tweets 321

Table 5. Index of Input features combination

Index of Input fea-
tures combination

input features

1 close_value
2 close_value, weighted_label
4 close_value, high_value, low_value, open_value
5 close_value, high_value, low_value, open_value, volume

5_no_vol
close_value, high_value, low_value, open_value,
weighted_label

6
close_value, high_value, low_value, open_value, volume,
weighted_label

16
adm, close_value, ema_close, ema_high, ema_low, high_value
, low_band, low_value, ma_close, ma_high, ma_low,
mid_band, open_value, rsi, up_band, weighted_label

16_tfidf

adm, close_value, ema_close, ema_high, ema_low, high_value
, low_band, low_value, ma_close, ma_high, ma_low,
mid_band, open_value, rsi, up_band, weighted_label, tf-idf
vectors of all words

tfidf tf-idf vectors of all words

Table 6. Average MSE, Average MAE, Standard deviation of MSEs and Standard deviation of
MAEs of neural network models with input feature index of 5, two types of outputs and full da-

tasets

Fea-
ture
index

Tar-
get

Opti-
mizer

Da-
taset

Aver-
age
MSE

Aver-
age
MAE

STD
MSE

STD
MAE

Benchmark None None None None 105.69 6.05 0 0

LSTM 5 close adam fu11 113.95 6.96 3.91 0.17

CNN_LSTM 5 close adam fu11 121.09 7.40 8.22 0.32

LSTM 5 return adam fu11 113.04 6.94 3.75 2.00

CNN LSTM 5 return adam fu11 107.78 6.70 4.40 0.19

LSTM 5 return adam fu11 105.51 6.42 2.00 0.09

CNN LSTM 5 return adam fu11 103.82 6.35 0.94 0.10

Table 7. 95% Confidence Interval of MSEs and MAES of neural network models with input
feature index of 5, two types of outputs and full datasets

Fea-
ture
in-
dex

Tar-
get

Opti-
mizer

Da-
taset

95%
lower
bound

95%
upper
bound

95%
lower
bound

95 up-
per

bound

Benchmark None None None None 105.69 105.69 6.05 6.05
LSTM 5 close adam fu11 106.29 121.61 6.62 7.29

CNN_LSTM 5 close adam fu11 104.97 137.20 6.78 8.03

LSTM 5
re-
turn

adam fu11 105.68 120.40 6.55 7.33

322 J. Wang

CNN LSTM 5
re-
turn

adam fu11 99.16 116.40 6.32 7.08

LSTM 5
re-
turn

adag-
rad

fu11 101.60 109.42 6.24 6.60

CNN LSTM 5
re-
turn

adag-
rad

fu11 101.97 105.67 6.15 6.54

Table 8. Average MSE, Average MAE, Standard deviation of MSEs and Standard deviation of
MAEs of neural network models with all input feature index, return as output and all datasets

Feature
index

Tar-
get

Opti-
mizer

Da-
taset

Average
MsE

Average
MAE

STD
MSE

STD
MAE

Bench-
mark

None None None None 105.69 6.05 0 0

CNN
LSTM

1 return
adag-
rad

fu11 105.98 6.05 0.30 0.05

CNN
LSTM

2 return
adag-
rad

fu11 107.32 6.48 2.69 0.13

CNN
LSTM

4 return
adag-
rad

fu11 105.90 6.06 0.34 0.03

CNN
LSTM

5 return
adag-
rad

fu11 103.82 6.35 0.94 0.10

CNN
LSTM

5_no_vol return
adag-
rad

fu11 103.36 6.18 1.80 0.05

CNN
LSTM

6 return
adag-
rad

fu11 102.10 6.33 4.04 0.19

CNN
LSTM

16 return
adag-
rad

ful1 105.29 6.27 3.83 0.12

LSTM 1 return
adag-
rad

fu11 106.00 6.03 0.11 0.01

LSTM 2 return
adag-
rad

fu11 99.85 6.17 2.57 0.11

LSTM 4 return
adag-
rad

fu11 105.65 6.06 0.42 0.02

LSTM 5 return
adag-
rad

fu11 105.509964 6.422391 1.99653 0.09142

LSTM 5_no_vol return
adag-
rad

fu11 100.221305 6.202569 3.41496 0.15039

LSTM 6 return
adag-
rad

fu11 98.92637 6.436547 6.62267 0.30707

LSTM 16 return
adag-
rad

fu11 107.658646 6.594156 9.61233 0.34739

LSTM 2 return
adag-
rad

smart 112.2514 6.341884 2.32763 0.04798

LSTM 5_no_vol return
adag-
rad

smart 111.203904 6.314734 3.29082 0.05656

Table 9. 95% Confidence Interval of MSEs and MAES of neural network models with all input
feature index, return as output and all datasets

 Feature in-
dex

Target Opti-
mizer

Da-
taset

95%
lower
boun

95% up-
per
bounc

95%
lower
bouni

95 up-
per
boun

Bench-
mark

None None None None 105.69 105.69 6.05 6 05

CNN
LSTM

1 return adag-
rad

fu11 105.39 106.56 5.95 6.15

CNN
LSTM

2 return adag-
rad

fu11 102.05 112.55 6.23 6.73

Forecasting Stock Prices using Tweets 323

CNN
LSTM

4 return adag-
rad

fu11 105.23 106.56 6.00 6.11

CNN
LSTM

5 return adag-
rad

fu11 101.57 105.67 6.16 6.54

CNN
LSTM

5_no_vol return adag-
rad

fu11 99.83 106.88 6.08 6.27

CNN
LSTM

6 return adag-
rad

fu11 94.19 110.01 5.96 6.69

CNN
LSTM

16 return adag-
rad

ful1 97.79 112.78 6.04 6.50

LSTM 1 return adag-
rad

fu11 105.79 106.21 6.01 6.05

LSTM 2 return adag-
rad

fu11 94.82 104.88 5.55 6.35

LSTM 4 return adag-
rad

fu11 104.82 106.05 6.01 6.11

LSTM 5 return adag-
rad

fu11 101.60 109.42 6.24 6.60

LSTM 5_no_vol return adag-
rad

fu11 93.53 106.91 5.91 6.46

LSTM 6 return adag-
rad

fu11 86.01 111.97 5.83 7.04

LSTM 16 return adag-
rad

fu11 88.82 126.46 5.91 7.28

LSTM 2 return adag-
rad

smart 107.69 116.81 6.25 6.44

LSTM 5_no_vol return adag-
rad

smart 104.75 117.65 6.20 6.43

Result of Neural Network Models.
Because many articles and blogs treat close prices as the output of neural networks,

I first use all candidate models to predict close prices on the next day directly. However,
after I run training-validating-testing one time for all neural network models, their
MAEs and MSEs are all larger than the benchmark especially CNN with an MSE of
141.01 and an MAE of 8.06, so I exclude CNN from later implementation.

Then, I repeat the training-validating-testing procedure for the LSTM model and the
CNN-LSTM model with input feature index 5 (LSTM_5_close_adam_full) and see
whether it is true that neural network models with close value as input is worse. In
Table VI, average MSEs and average MAEs of LSTM_5_close_adam_full which are
113.951383 and 6.957606 are worse than those of benchmark and those of LSTM
model with input feature index 5 and return as output feature
(LSTM_5_return_adam_full). This phenomenon also happens between
CNN_LSTM_5_close_adam_full and CNN_LSTM_5_return_adam_full. Thus, I tried
to use the neural network models to predict the return first and then convert it into the
predicted close price. Although the results neural network model, predicting return first,
were still worse than that of the benchmark, I keep predicting returns at first and convert
them into close prices in later implementation.

However, all the MAE vs epoch graphs of the current LSTM and CNN-LSTM mod-
els show an unstable and divergent trend and their MAE reduces to around 0.0225.
Their MAE vs epoch graphs are shown in Figure 3 and Figure 4 where ‘valid’ is the
result of validating set and ‘test’ is the result of testing set:

324 J. Wang

Fig. 3. MAE vs Epoch of CNN_LSTM_5_return_adam_full

Fig. 4. MAE vs Epoch of LSTM_5_return_adam_full

Thus, I use Adagrad instead of Adam as the optimizer of the models. Adagrad (short
for adaptive gradient) penalizes the learning rate for parameters that are frequently up-
dated, instead, it gives more learning rate to sparse parameters, parameters that are not
updated as frequently. In other words, the learning rate will be reduced after each iter-
ation and the MAE will not fluctuate as epochs increase. In Figure 5 and Figure 6, of
the LSTM and the CNN-LSTM model with 5 input features and adagrad as the opti-
mizer, the volatilities of the lines decrease as the number of epochs increases and the
line of validating set is more likely to be parallel to the line of the testing set.

In Table VI, average MSEs, average MAEs, standard deviation of MSEs and stand-
ard deviation of MAEs of LSTM_5_return_adagrad_full, which are 105.51, 6.42, 2.00
and 0.09, are smaller than those of LSTM_5_return_adam_full respectively. The aver-
age MSEs, average MAEs, standard deviation of MSEs and standard deviation of
MAEs of CNN_LSTM_5_return_adagrad_full, which are 103.82, 6.35, 0.94 and 0.10,
are smaller than those of LSTM_5_return_adam_full respectively.

Forecasting Stock Prices using Tweets 325

Fig. 5. CNN_LSTM_5_return_adagrad_full

Fig. 6. LSTM_5_return_adagrad_full

Therefore, I get average MSEs, average MAEs, the standard deviation of MSEs,
standard deviation of MAEs and 95% confidence interval of MSEs and MAEs for
CNN_LSTM and LSTM with all combinations of input features which are shown in
Table VIII and Table IX, and find that none of the models can have both average MSE
and average MAE less than the MSE and MAE of benchmarks respectively. If MSE is
the only evaluation metric, based on the 95% confidence interval, we can conclude that
there is significant evidence that the average MSEs of LSTM_2_return_adagrad_full
and CNN_LSTM_5_return_adagrad_full are lower than the constant MSE of Bench-
mark and that the average MAEs of LSTM_1_return_adagrad_full is lower than the
constant MAE of Benchmarks. Moreover, for LSTM models, the average MSE of
LSTM_6_return_adagrad_full is lowest and the average MAE of
LSTM_1_return_adagrad_full is lowest; for CNN-LSTM models, the average MSE of
CNN_LSTM_6_return_adagrad_full is lowest and the average MAE of
CNN_LSTM_1_return_adagrad_full is lowest. So adding several technical indicators
which even though pass Granger Causality test, in input features, cannot guarantee an

326 J. Wang

improvement in the performance of LSTM and CNN-LSTM. Besides, the weighted
label also cannot guarantee an improvement. For example,
CNN_LSTM_2_return_adagrad_full has one more input feature (weighted label) than
CNN_LSTM_1_return_adagrad_full, and the former has a larger average MSE and a
larger average MAE, but LSTM_1_return_adagrad_full has larger average MSE and
average MAE than LSTM_2_return_adagrad_full. In conclusion, the performance of
CNN-LSTM models predicting the return first of the stock of Tesla does not dominate
that of LSTM models, which is not consistent with the performance of CNN-LSTM in
the paper of Wenjie Lu et al, even if predicting the return first.

Table 10. average mses, average maes, standard deviation of mses and standard deviation of
maes of linear regression with all input feature index, two types of outputs and all datasets(lin-

ear regression has no randomness so std mses and std maes are zero)

 Feature in-
dex

Tar-
get

Opti-
mizer

Dataset Average
MSE

Average
MAE

STD
MSE

STD
MAE

Bench-
mark

None None None None 105.69 6.05 0 0

linear re-
gression

tfidf return None full 111.48 6.96 0 0

linear
reqres-
sion

16 return None full 107.57 6.82 0 0

linear
reqres-
sion

16 _tfidf return None full 110.49 7.32 0 0

linear
reqres-
sion

tfidf return None smart 128.12 7.61 0 0

linear re-
gression

16 return None smart 109.90 6.89 0 0

linear re-
gression

16 _tfidf return None smart 128.76 7.84 0 0

linear
reqres-
sion

tfidf close None full 1147.12 28.62 0 0

linear re-
gression

16 close None full 107.06 6.79 0 0

linear re-
gression

16 _tfidf close None full 109.44 7.23 0 0

linear re-
gression

tfidf close None smart 1264.37 29.54 0 0

linear
reqres-
sion

16 close None smart 109.47 6.85 0 0

linear re-
gression

16 _tfidf close None smart 126.52 7.70 0 0

Result of Linear Regression.
In Table X, I compared the result of linear regression with different combinations of

output feature and input features, where the best one for the full dataset was linear re-
gression with 16 technical indicators as inputs and close value as output (Linear regres-
sion_16_close_full) even though Scott et al. used TF-IDF vectors as inputs. The MSE

Forecasting Stock Prices using Tweets 327

and MAE of the best ones are 107.06 and 6.79 which are worse than those of the bench-
mark. Furthermore, the smart tweets strategy based on FinBERT does not work for each
type of input and output combination, which suggests FinBERT cannot be an automatic
labelling tool to distinguish bearish, bullish or neutral emotions.

4.3 Result of Smart Tweets Strategy

According to Table X, by filtering out smart tweets, the MSE and MAE of linear re-
gression are reduced from 113.26 and 7.02 to 104.39 and 6.64 respectively. Although
its MAE is higher than that of Benchmarks, its MSE is lower. However, based on Table
VIII it makes the prediction of the LSTM model worse, while MSE and MAE of
LSTM_2 increase from 99.85 and 6.17 to 112.25 and 6.34 respectively.

4.4 Result of FinBERT

From the perspective of sentiment analysis tools, FinBERT, joining as weighted labels,
improves the average MSE of tweets sentiment for LSTM with return as output and
some CNN-LSTM such as CNN_LSTM_4_return_adagrad_full, according to Table
VIII. Although it reduces the average MSE for some inputs combinations, it always
increases the standard deviation of MSE for LSTM and CNN-LSTM, such as the pairs
of (LSTM_1_return_adagrad_full, LSTM_2_return_adagrad_full),
(CNN_LSTM_4_return_adagrad_full, CNN_LSTM_5_no_vol_return_adagrad_full)

5 Conclusion

Among all combinations of models, inputs and outputs, LSTM_1_return_adagrad_full
and LSTM_2_return_adagrad_full are the only two which are significantly better than
benchmarks in MAE and MSE respectively. Wenjie Lu et al.'s method of using CNN-
LSTM to predict close returns, of the Shanghai Composite Index, is worse for the da-
taset of Tesla with the candidates of input features. Even if the output feature of CNN-
LSTM is changed to return, its average MSE is larger than that of
LSTM_2_return_adagrad_full and benchmark, and its average MAE is larger than that
of LSTM_1_return_adagrad_full and benchmark. Also, Scott et al.'s method of using
TF-IDF vectors of tweets to predict returns, of the stock price of Apple, cannot be ap-
plied to the dataset of Tesla because its performance on the dataset of Tesla is even
worse than that of the benchmark. For weighted label, a public emotion variable, the
result of LSTM with close value as input is improved by adding it in input significantly
because the 95% confidence lower bound of LSTM_1_return_adagrad_full is larger
than the 95% confidence upper bound of LSTM_2_return_adagrad_full.

All the conclusion above is based on the limited candidate input features. When the
input feature index is 16, the average MSE, average MAE, the standard deviation of
MSE and standard deviation of MAE of CNN-LSTM is better than LSTM, so CNN-
LSTM can perform best with a particular combination of input features. With Turnover,
Ups and downs and Change used by Wenjie Lu, but with no explanation, which cannot

328 J. Wang

be generated for my dataset, CNN-LSTM might be a better model to predict stock price
than LSTM. Moreover, the tweets of Tesla from Kaggle do not provide good infor-
mation as TF-IDF vector for linear regression. It even includes some useless tweets
such as "happy new year". However, Scott et al.'s datasets are from StockTwits which
is a social media service for traders, investors and entrepreneurs to share ideas regard-
ing stock information. Most importantly, StockTwits granted them partner-level access
to their database, which might include a higher quality of information on tweets.

The limitations of this research point toward topics to be addressed in the future. The
most important two are finding a good and comprehensive dataset with all necessary
variables and testing the models on more datasets so that the conclusion of this paper
can be generalized to all datasets.

References

1. Araci, Dogu. (2019). FinBERT: Financial Sentiment Analysis with Pre-trained Language
Models.

2. Bollen J, Mao H, Zeng X. Twitter mood predicts the stock market[J]. Journal of computa-
tional science, 2011, 2(1): 1-8.

3. Chng, Z. M. (2022, June 19). Using normalization layers to improve deep learning models.
MachineLearningMastery. https://machinelearningmastery.com/using-normalization-lay-
ers-to-improve-deep-learning-models/

4. Coyne S, Madiraju P, Coelho J. Forecasting stock prices using social media analy-
sis[C]//2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th
Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence
and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech). IEEE, 2017: 1031-1038.

5. Dobilas, S. (2022, March 5). LSTM Recurrent Neural Networks — How to Teach a Network
to Remember the Past. Medium. https://towardsdatascience.com/lstm-recurrent-neural-net-
works-how-to-teach-a-network-to-remember-the-past-55e54c2ff22e

6. Hoseinzade E, Haratizadeh S. CNNpred: CNN-based stock market prediction using a di-
verse set of variables[J]. Expert Systems with Applications, 2019, 129: 273-285.

7. Bing L, Chan K C C, Ou C. Public sentiment analysis in Twitter data for prediction of a
company's stock price movements[C]//2014 IEEE 11th International Conference on e-Busi-
ness Engineering. IEEE, 2014: 232-239.

8. Lu W, Li J, Li Y, et al. A CNN-LSTM-based model to forecast stock prices[J]. Complexity,
2020, 2020: 1-10.

9. Mittal A, Goel A. Stock prediction using twitter sentiment analysis[J]. Standford University,
CS229 (2011 http://cs229. stanford. edu/proj2011/GoelMittalStockMarketPredictionUs-
ingTwitterSentimentAnalysis. pdf), 2012, 15: 2352.

10. Nelson D M Q, Pereira A C M, De Oliveira R A. Stock market's price movement prediction
with LSTM neural networks[C]//2017 International joint conference on neural networks
(IJCNN). Ieee, 2017: 1419-1426.

11. PyTorch - Wikipedia. (2016, September 1). PyTorch - Wikipedia. https://en.wikipe-
dia.org/wiki/PyTorch

12. Ribeiro F N, Araújo M, Gonçalves P, et al. Sentibench-a benchmark comparison of state-of-
the-practice sentiment analysis methods[J]. EPJ Data Science, 2016, 5: 1-29.

Forecasting Stock Prices using Tweets 329

13. Sharma, H. (2023, January 23). Exploring the Best Indicators in TA-Lib: Technical Analysis
of Stocks using Python- Part 1. Medium. https://medium.com/mlearning-ai/exploring-the-
best-indicators-in-ta-lib-technical-analysis-of-stocks-using-python-part-1-b7ad731aeeb2

14. Siami-Namini S, Tavakoli N, Namin A S. A comparison of ARIMA and LSTM in forecast-
ing time series[C]//2018 17th IEEE international conference on machine learning and appli-
cations (ICMLA). IEEE, 2018: 1394-1401

15. Tweets about the Top Companies from 2015 to 2020. (2020, November 26). Kaggle.
https://www.kaggle.com/datasets/omermetinn/tweets-about-the-top-companies-from-2015-
to-2020

16. Understanding TF-IDF: A Simple Introduction. (2019, May 10). MonkeyLearn Blog.
https://monkeylearn.com/blog/what-is-tf-idf/

17. Values of Top NASDAQ Companies from 2010 to 2020. (2020, November 26). Kaggle.
https://www.kaggle.com/datasets/omermetinn/values-of-top-nasdaq-copanies-from-2010-
to-2020

18. Xu Y, Cohen S B. Stock movement prediction from tweets and historical prices[C]//Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers). 2018: 1970-1979.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

330 J. Wang

http://creativecommons.org/licenses/by-nc/4.0/

	Forecasting Stock Prices using Tweets

