

Modeling Traffic Congestion using Graph
Convolutional Networks

Madhwaraj Kango Gopal
Department of MCA

New Horizon College of Engineering(VTU)
Bangalore, India

dr.madhwaraj@newhorizonindia.edu

A. Asha
Department of MCA

New Horizon College of Engineering(VTU)
Bangalore, India

asha.gurudath@gmail.com

Arpana Prasad
Department of MCA

New Horizon College of Engineering(VTU)
Bangalore, India

arpanaprasad2013@gmail.com

 Akahaury Nimitt Verma
 Department of MCA

 New Horizon College of Engineering(VTU)
 Bangalore, India

 nimittv6@gmail.com

Aditya Venkat Ganesh P
Department of MCA

New Horizon College of Engineering(VTU)
Bangalore, India

ganeshpadityaedu@gmail.com

Abstract— Congestion in a network can cause data packet
losses, delays, and reduced network performance. To prevent
congestion, network engineers must be able to accurately
predict and manage network traffic. In this research paper, we
explore the use of Graph Convolutional Networks (GCN) for
predicting congestion in a network. GCN is a type of deep
learning algorithm that can analyze complex network
structures to predict the behavior of nodes in a network. With
GCN, predicting congestion in a network, identification of
potential congested areas becomes a reality. Proactive
measures to prevent congestion from occurring is also been
attempted in this research work. The results of our
experiments demonstrate that GCN outperforms other
conventional machine learning techniques in predicting
network congestion with high accuracy and precision using
ReLU6, which was the most suitable activation function for
implementing the model. This research also demonstrates the
potential of using deep learning algorithms such as GCN to
improve network management and optimize network
performance.

Keywords—congestion, networks, deep learning, graph
convolutional networks

I. INTRODUCTION
 Graph Convolutional Networks (GCN) have recently
become popular for analysing network structures due to their
ability to model complex relationships among network
nodes. GCN has shown its potential to solve a wide range of
tasks such as node classification, link prediction, and graph
clustering. In this paper, we propose to apply GCN to predict
congestion in a network. Congestion is a significant problem
in computer networks that can result in severe degradation of
network performance. Congestion happens when the
available network resources become insufficient to meet the
demand for data transmission. Congestion can lead to
increased packet loss, delay, and throughput degradation,
which can cause network applications to fail. Therefore,
detecting and predicting congestion is a critical task for
network operators to ensure the smooth functioning of the
network. Traditionally, congestion detection in computer
networks has been done using analytical or rule-based
approaches, which can be inefficient and imprecise. These
approaches rely on simple threshold-based methods, which
do not consider the dynamic nature of the network. With the
advancement of machine learning, researchers have explored
different techniques to predict network congestion, such as
supervised learning and unsupervised learning [1].

GCN uses graph convolution operations to aggregate
information from neighbouring nodes and representations of
nodes in the graph. This makes it particularly suitable for
network analysis, as network nodes can be represented as
graph nodes, and their relationships can be modelled as
edges in the graph. By using GCN, the underlying structure
of the network and the prediction of congestion is more
accurate than traditional methods. Interpretability is essential
for network operators to understand the causes of congestion
and taking appropriate actions to mitigate it [2]. With the use
visualization techniques to visualize the learned
representations of nodes in the graph, identification of the
most influential nodes in predicting congestion can also be
accomplished. Section II discusses on the related literature
work that has been done. The concepts of GCN are discussed
in Section III. Section IV illustrates the implementation of
GCN. Section V discusses the case study. Section VI depicts
the results. Section VII summarizes the conclusions and
future work.

II. LITERATURE REVIEW
 Several machine learning algorithms are being used
today due to the benefits they offer like prediction, analysis
and model building etc… Madhwaraj & Amirthavalli [3]
used machine learning techniques to predict the
maintainability of open source software. Viswanath et al. [4]
performed a case study to predict the number of deaths due
to dengue disease. Madhwaraj et al. [5] identified a novel
machine learning idea to predict the sale of washing
machines in an organization. Machine learning algorithms
are used for a variety of purposes. While considering
network analysis, congestion issues and other areas, GCN
have been used in a variety of fields, such as transportation
network analysis, bioinformatics, and social network
analysis. Due to their capacity to discover intricate
relationships within graph-structured data, GCN have
attracted a lot of attention lately in the transportation industry
to forecast network congestion, a significant issue for urban
transportation planning and management etc. This literature
review provides an overview of the application of GCN
using deep learning to predict congestion in transportation
networks. Due to the system's intrinsic complexity and
dynamic nature, it is difficult to predict congestion in such
networks. Transportation network congestion has been
predicted using conventional techniques like linear
regression and decision trees. Nevertheless, these techniques
fall short in capturing the intricate connections between the

© The Author(s) 2024
A. K. Visvam Devadoss et al. (eds.), Proceedings of the 6th International Conference on
Intelligent Computing (ICIC-6 2023), Advances in Computer Science Research 107,
https://doi.org/10.2991/978-94-6463-250-7_28

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-250-7_28&domain=pdf
https://doi.org/10.2991/978-94-6463-250-7_28

network elements, which limits the accuracy of their
predictions. GCN are a class of neural networks that operate
on graph-structured data. In transportation networks, a graph
can be defined as a set of nodes that represent locations (e.g.,
intersections, traffic signals) and edges that represent the
connections between these locations (e.g., roads, highways).
By combining data from a node's neighbours, GCN employs
a convolutional process to learn feature representations of
each node in the network. This procedure allows GCN to
record the structural information of the graph and the
relationships between its nodes. Many research studies have
looked into the use of GCN to forecast congestion in
transportation networks [6]. A GCN-based model was
created in a study by Ma et al. (2019) to forecast traffic
congestion in Beijing using real-time traffic data. The model
learned the traffic flow patterns between the road segments
using a graph representation of the network of roads. The
authors demonstrated that their GCN-based model performed
better at predicting traffic congestion than conventional
regression techniques.

Fig 1: Architecture of a Graph Convolutional Network

Figure 1 picturizes the architecture of a GCN. This is a
type of neural network that operates on graph-structured
data, such as social networks or transportation networks. To
learn features from the graph structure, they employ a
convolutional operation similar to that used in image
processing. Rectified Linear Unit (ReLU) is a popular
activation function in GCN that adds nonlinearity to the
network. It is defined as the product of zero and the input
value, allowing only positive values to pass through. In the
context of network congestion, GCN with ReLU activation
can be used to learn traffic flow and congestion patterns from
the transportation network's graph structure. This can aid in
the prediction and mitigation of traffic congestion by
optimizing traffic flow and routing.

 Li et al. (2020) offered a deep learning-based system for
anticipating traffic congestion in metropolitan road networks.
The framework employed a GCN-based model to determine
the connections between the network's road segments and
forecast traffic flow on each one. The authors demonstrated
that their approach beat conventional traffic prediction
techniques using real-time traffic data from a significant
Chinese metropolis [7].

 A GCN-based model was created in a recent study by Liu
et al. (2021) to forecast traffic congestion in metropolitan
networks utilising multi-source data, such as traffic volume,
speed, and road network layout. The model learned the
geographical and temporal relationships between the network
components using a graph representation of the road
network. The researchers demonstrated that in terms of
anticipating traffic congestion, their model performed better
than other deep learning models and conventional regression
techniques.

 Using machine learning, GCN have demonstrated
encouraging outcomes in the prediction of congestion in
transportation networks. These models understand the traffic
flow patterns to forecast congestion while capturing the
intricate relationships between the network's constituent
elements. The prediction effectiveness of these models has
been further enhanced by the inclusion of real-time traffic
data and data from many sources. Future studies may
examine the use of GCN to forecast traffic in other modes of
transportation, such as mass transit and bike-sharing
programmes. Moreover, combining GCN with other machine
learning methods, such as reinforcement learning, can
produce predictions for transportation network management
that are more reliable and precise.

III. GRAPH CONVOLUTIONAL NETWORKS
GCN are a very effective neural network design for

machine learning on graphs. They are so powerful, in fact,
that they can even produce useful feature representations of
network nodes from a 2-layer GCN that was started at
random. Even during the absence of training, the 2-
dimensional representation keeps the network's nodes in
close proximity to one another.

More formally, given a graph G = (V, E), the GCN is a
neural network that functions on graphs that accepts the input
as:

- an input N × F⁰ feature matrix, such that for each
node N is the no. of nodes and F⁰ will be the
number of input features, and

- an N × N, the adjacency matrix A of G, which is a
matrix representation of the graph structure.

 A GCN consisting of a Hidden layer can be then written
as Hⁱ = f(Hⁱ⁻¹, A) where H⁰ = X and f is a propagation. Each
layer Hⁱ corresponds to an N × Fⁱ feature matrix where each
row is a feature representation of a node. The propagation
rule f is used to integrate these features at each layer to
construct the features of the subsequent layer. The features
get progressively more abstract at each subsequent tier. The
propagation rule f that is chosen in this framework serves as
the only distinction between the various GCN versions [8].

A. Simple Propagation Rule
 A simple propagation rule is:

 F (Hⁱ , A) = σ (A Hⁱ Wⁱ)

 where the weight matrix is Wⁱ for layer i and for a non-
linear activation function such as the ReLU function it is σ.
The weight matrix has dimensions Fⁱ × Fⁱ⁺¹, meaning that the
number of features at the subsequent layer depends on the
size of the weight matrix's second dimension.

B. Simplifications using a simple graph example
Examining the propagation rule at its simpler level. Let:

- i = 1, s.t, f a function for the input feature matrix,

- σ to be the identity function, and

- chooseing the weights s.t, AH⁰W⁰ =AXW⁰ = AX.

 Implying that, f(X, A) = AX and AX now resembles the
input layer of a multi-layer perceptron.

Input

Hidden Layer Hidden Layer

Output

ReLU ReLU

160 M. K. Gopal et al.

Fig 2: Simple directed graph with matrix representation

C. Adding Self-Loops
To address the first problem, just add a self-loop to each
node [1, 2]. The propagation rule is applied first, and then
the identity matrix I is added to the adjacency matrix A to
achieve this.

D. Normalizing the Feature Representations
The feature representations can be normalised by node

degree by adding the adjacency matrix A and the inverse
degree matrix D. Hence, this is the appearance of the
streamlined propagation rule.

E. Adding an activation function
To utilize the ReLU activation function while keeping the

feature representations' dimensionality. There is now a full
hidden layer with an adjacency matrix, input features, and an
activation function.

F. Zacharys Karate Club
Zacharys Karate Club's nodes stand in for the club's

participants, while the edges highlight their relationships
with one another. While Zachary was a member of the karate
club, a disagreement between the instructor and the
administration led to the group's division. The network is
shown as a graph in the graphic below, with nodes named
according to whatever area of the club they belong to. An
"A" stands for the administrator, and a "I" stands for the
instructor [9].

Fig 3: Zachary’s Karate Club network representation

G. Steps to build the GCN
 Using the networks which has a graph representation of
the club easily available, the A_hat and D_hat matrices are
computed.

 Step 1: Initializing the weights randomly

Step 2: Layering the GCN in a stack. Each node is
represented as a one-hot encoded categorical variable
using only the identity matrix as feature representation

Step 3: Extracting the feature representations

Step 4: Display representations that successfully set
Zachary's karate club's communities apart

Fig 4: Feature Representations of the nodes

 The overview of GCN was provided, and it was
demonstrated how a node's feature representation at each
layer in the GCN is based on an aggregate of its neighbours
[10].

IV. IMPLEMENTATION OF GCN
The implementation of GCN using Deep Learning

involves the following steps:

A. Data Pre-processing
There are various phases involved in data pre-processing

when using GCN, all of which are intended to get the input
data ready for usage in the network. In order for the GCN
model to utilise the data, raw data must be cleaned,
formatted, and transformed during the process. Some of the
typical data pre-processing procedures in GCN are as
follows:

1) Data Cleaning: This stage involves deleting missing
or erroneous data from the dataset. In order to assure
consistency and get rid of outliers, it can also incorporate
data normalisation.

2) Data Formatting: The input data for GCN is

displayed as a graph. The data must therefore be organised
in a graph structure. This entails identifying nodes and
edges, and building an adjacency matrix that reflects the
relationships between the nodes.

3) Feature Extraction: Finding pertinent elements that

are essential to predicting the model's output is known as
feature extraction. Techniques like Principal Component
Analysis (PCA) or clustering can be used to accomplish this.

4) Feature Scaling: This step involves scaling the

features to ensure that they are on a similar scale. This is
important because some features may have a larger impact
on the model than others.

5) Data Partitioning: To do this, the data must be
divided into training, validation, and test sets. In order to

A = np.matrix([
[0, 1, 0, 0],
[0, 0, 1, 1],
[0, 1, 0, 0],
[1, 0, 1, 0]],
dtype = float
)

Modeling Traffic Congestion using Graph Convolutional Networks 161

prevent overfitting, this makes sure that the model is trained
on one set of data, validated on a different set, and tested on
a different set.

6) Data Augmentation: In this process, new data are

created from the old data by adding noise, undergoing
changes, or including additional samples [11].

B. Model Architecture
A deep learning model called a "Graph Convolutional

Network" (GCN) uses its architecture to analyse and process
graph-based data. Several layers of graph convolutional
neural networks that are intended to extract and process
information from the input graph data typically make up the
architecture of a GCN. The input to a GCN is a graph, which
is represented as a matrix of adjacency or connectivity
information. After passing through a number of graph
convolutional layers, each of which performs a convolutional
operation on the graph data to extract and analyse features,
this input is then used to train the algorithm. A set of feature
vectors representing the graph data at that layer is the output
of each convolutional layer.

After that, a series of non-linear activation functions are
applied to the feature vectors from each layer, adding non-
linearity to the model and aiding in the capture of intricate
interactions among the graph's nodes. The final layer, which
creates the GCN’s ultimate output, is then supplied the
output of the last activation function.

C. Training
Understanding the process of building and developing a

neural network model based on the GCN architecture for
evaluating graph data is a requirement for training on the
implementation of GCN using Deep Learning. This entails
knowing the core ideas of graph theory, deep learning, and
GCN and applying them to create and train a neural network
model [12].

The training process typically involves the following
steps:

1) Understanding Graph Convolutional Network (GCN)
architecture: Understanding the architecture, its constituent
parts, and how it operates with graph data is necessary for
this. Understanding how the GCN layers modify graph data,
how they compile data from nearby nodes, and how they
can be stacked to create a deep GCN model are all part of
this.

2) Preparing the data: In order to train the GCN model,

this entails preparing the graph data. The data must be
cleaned and preprocessed, put into a form that the model can
understand, and divided into training and validation sets.

3) Building the GCN model: In order to do this, a deep

learning framework like PyTorch or TensorFlow must be
used to build the GCN model. This entails specifying the
model's layers, the hyperparameters, the loss function, and
the optimizer.

4) Training the model: This entails employing a suitable

training procedure, such as stochastic gradient descent, to

train the GCN model using the prepared data Stochastic
Gradient Descent (SGD). In order to minimise the loss, the
model's weights must be updated once the training data is
fed into it and the loss is calculated.

5) Evaluating the model: This entails assessing the
trained GCN model's performance using the validation data.
As part of this, criteria like accuracy, precision, and recall
are measured and their performance is contrasted with that
of other models.

6) Fine-tuning the model: Depending on the model's

performance, it can be essential to fine-tune the model by
modifying the hyperparameters, the model's architecture, or
the training algorithm [13].

D. Evaluation
Assessment of the implementation of GCN using Deep

Learning involves examining the performance and
effectiveness of the GCN model in solving a certain problem
on a given dataset. The assessment process contains
numerous processes, including data preparation, model
training, model validation, and model testing.

1) Data Preparation: The preparation of the data for the
GCN model's training and testing is the first step in the
evaluation procedure. This entails prepping the data,
including cleaning, normalisation, and feature extraction.

2) Model Training: The GCN model is trained using the

dataset once the data is ready. The model is fed the input
data and the anticipated output (ground truth) during the
training phase, and the model's parameters are iteratively
changed until it performs at its best.

3) Model Validation: To confirm that the GCN model is

operating effectively, it is validated using a piece of the
dataset that was not utilised during training. On the
validation dataset, the model's accuracy, precision, recall,
and other metrics are evaluated as part of the validation
process.

4) Model Testing: The GCN model is evaluated on a

different set of data once it has been validated to gauge how
well it performs with previously undiscovered data. On the
test dataset, the model's accuracy, precision, recall, and
other metrics are measured as part of the testing procedure
[14].

E. Deployment
It's a good idea to have a backup plan in case the backup

fails. This entails taking the GCN model that has been
created and put through testing and deploying it in a way that
it can be utilised for applications in the real world. A series
of procedures are necessary for the deployment of a GCN
model, including the conversion of the model into a
deployable format, the preparation of the input data for
inference, and the choice of an acceptable infrastructure for
servicing the model. Some of the crucial actions in deploying
a GCN model include the ones listed below:

162 M. K. Gopal et al.

1) Model conversion: A deployable format, either a
saved model file or a TensorFlow serving model, must be
created from the trained GCN model. This conversion
method makes sure the model can be integrated with various
deployment platforms and used for inference.

2) Data preparation: It is necessary to pre-process and
get the input data for the GCN model ready for inference.
This entails transforming the incoming data into a graph
structure that the GCN model may use as input.

3) Infrastructure selection: The size of the application
and the model's requirements will determine the
infrastructure needed to support the GCN model. While
larger apps might need an on-premises solution, smaller
applications might use a cloud-based solution like AWS or
Google Cloud.

4) Deployment: Once the infrastructure is selected, the
GCN model may be deployed and evaluated. The
infrastructure must be built up, the model must be loaded,
and predictions requests must be served [15].

V. CASE STUDY

A case study was performed to observe the
implementation of GCN on a small network. The network
had six nodes connected in a ring topology for simplicity and
understanding as follows:

Node 1 -- Node 2 -- Node 3 -- Node 4 -- Node 5 -- Node 6 -- Node 1

Assume that there is network congestion, particularly at
node 3 due to heavy traffic, packet drops, and other factors
[17].

To address this congestion with GCN, we can take the
following steps:

1) Create the adjacency matrix: The adjacency matrix
represents the connections between network nodes. The
adjacency matrix for this small ring topology would be:

2) Define the feature matrix as follows: The feature
matrix represents the characteristics of each network node.
For the purposes of this simulation, let us assume that each
node has a single feature that represents its traffic load. Node
3 is experiencing the most traffic and is causing congestion.
This network's feature matrix would be:

3) Define the GCN model: The GCN model will learn to
predict the traffic load of each node in the network based on
its connectivity with other nodes.

4) Train the GCN model: We can train the GCN model
by using a loss function that calculates the difference
between the predicted and actual traffic loads for each node.
To minimise the loss, the Mean Squared Error (MSE) loss
function and the Adam optimizer was used. To avoid
overfitting, we also included a regularisation term [16].

Fig 5: 2-Dimensional network representation

The model predicts the traffic load of each node using the
adjacency matrix and the feature matrix as inputs. To
calculate the loss, the output is compared to the actual traffic
load of each node. The optimizer then makes changes to the
model parameters in order to minimise the loss. Overall, the
implementation of GCN using deep learning has shown
promising results in various applications, and is an active
area of research in the field of machine learning [17].

VI. RESULTS

The results observed on applying GCN to a network were
as follows. While ReLU and ReLU6 activation functions
were used, ReLU6 was found to be the most suitable for the
implemented model. Our research also shows that GCN can
accurately capture the spatial dependencies between different
traffic segments and predict traffic congestion. GCN
outperformed traditional machine learning methods such as
Support Vector Regression (SVR) and Random Forest (RF)
in terms of accuracy and stability. With the increasing
number of convolutional layers and the number of hidden
units in each layer, the performance of GCN is improved to a
great extent. Furthermore, the optimal values of these hyper-
parameters may differ depending on the size and complexity
of the congested network.

VII. CONCLUSIONS AND FUTURE WORK

GCN have shown to be effective in modelling congestion
in networks by capturing the relationships between network
nodes and their neighbours so that they can be used to predict
congestion levels and to optimize network traffic.

Since they can forecast traffic congestion levels by
examining traffic flow patterns and identifying the most
congested places, GCN has also been employed in congested
networks to predict traffic.

GCN have shown great promise in modelling and
analysing complex network structures creating a significant
impact on network congestion, which is a common problem
in modern communication networks. In the future, GCN
could be used to model and predict congestion patterns in
real time, allowing for more efficient traffic routing and
congestion avoidance strategies. Furthermore, GCN could be
used to optimise network topologies to reduce congestion or
to identify and mitigate potential congestion hotspots.

[[0, 1, 0, 0, 0, 1],
 [1, 0, 1, 0, 0, 0],
 [0, 1, 0, 1, 0, 0],
 [0, 0, 1, 0, 1, 0],
 [0, 0, 0, 1, 0, 1],
 [1, 0, 0, 0, 1, 0]]

[[0],
 [0],
 [0.8],
 [0],
 [0],
 [0]]

Graph Convolutional Network

Modeling Traffic Congestion using Graph Convolutional Networks 163

VIII. REFERENCES
[1] O. S. Albahri et al., “Multidimensional benchmarking of the

active queue management methods of network congestion control based on
extension of fuzzy decision by opinion score method,” Int. J. Intell. Syst.,
vol. 36, no. 2, pp. 796–831, 2021.

[2] S. Keshav, “Congestion control in computer networks.,” 1993.

[3] Gopal, Madhwaraj Kango, and M. Amirthavalli. “Applying machine
learning techniques to predict the maintainability of open source software.”
International Journal of Engineering and Advanced Technology 8.5S3
(2019).

[4] Bellie, Viswanath, Madhwaraj Kango Gopal, and Govindaraj
Venugopal. “Using machine learning techniques towards predicting the
number of dengue deaths in India—A case study.” Int J Eng Trends Technol
(Special Issue) (2020): 130-135.

[5] Gopal, Madhwaraj Kango, V. Bellie, and G. Venugopal. “A novel
machine learning technique towards predicting the sale of washing machines
in a small organization.” Int J Psychosoc Rehab 24.5 (2020): 6969-6976.

[6] C. Lochert, B. Scheuermann, and M. Mauve, “A survey on
congestion control for mobile ad hoc networks,” Wirel. Commun. Mob.
Comput., vol. 7, no. 5, pp. 655–676, 2007.

[7] Adriana-Simona Mihaita, Haowen Li and Marian-Andrei Rizoiu,
“Traffic congestion anomaly detection and prediction using deep learning”,
23 Jun, 2020.

[8] S. H. Low, “Analytical methods for network congestion control,”
Synth. Lect. Commun. Netw., vol. 10, no. 1, pp. 1–213, 2017.

[9] Thomas N. Kipf and Max Welling, “Semi-Supervised Classification
with Graph Convolutional Networks”, 2016.

[10] S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion
control,” IEEE Control Syst. Mag., vol. 22, no. 1, pp. 28–43, 2002.

[11] M. Welzl, Network congestion control: managing internet traffic.
John Wiley & Sons, 2005.

[12] W. Wu, W. Du, and G. Ruan, “Network congestion control
methods and theory,” Int. J. Grid Util. Comput., vol. 6, no. 3–4, pp. 200–
206, 2015.

[13] X. Zhang and A. Papachristodoulou, “Improving the
performance of network congestion control algorithms,” IEEE Trans.
Autom. Control, vol. 60, no. 2, pp. 522–527, 2014.

[14] A. Abdulkadir, S. S. Sujit, and S. S. Kumar, "Deep Graph
Convolutional Networks for Congestion Prediction in Urban Networks," in
Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM), 2020.

[15] A. T. Alabede, O. Alakonya, and A. I. Njeh, "Graph Convolutional
Networks for Traffic Congestion Prediction in Smart Cities," in Proceedings
of the IEEE International Conference on Communications (ICC), 2021.

[16] H. Yu, J. Liu, S. Li, Y. Li, and Y. Chen, "Graph Convolutional
Networks for Congestion Detection in Vehicular Networks," IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 6, pp. 3503-
3513, 2021.

[17] Y. Lin, Z. Guo, H. Zhang, and C. Huang, "Traffic Prediction in
Congested Networks using Graph Convolutional Networks," in Proceedings
of the IEEE Global Communications Conference (GLOBECOM), 2021.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International
License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder.

164 M. K. Gopal et al.

	Modeling Traffic Congestion using Graph Convolutional Networks

