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Abstract— Congestion in a network can cause data packet 
losses, delays, and reduced network performance. To prevent 
congestion, network engineers must be able to accurately 
predict and manage network traffic. In this research paper, we 
explore the use of Graph Convolutional Networks (GCN) for 
predicting congestion in a network. GCN is a type of deep 
learning algorithm that can analyze complex network 
structures to predict the behavior of nodes in a network. With 
GCN, predicting congestion in a network, identification of 
potential congested areas becomes a reality. Proactive 
measures to prevent congestion from occurring is also been 
attempted in this research work. The results of our 
experiments demonstrate that GCN outperforms other 
conventional machine learning techniques in predicting 
network congestion with high accuracy and precision using 
ReLU6, which was the most suitable activation function for 
implementing the model. This research also demonstrates the 
potential of using deep learning algorithms such as GCN to 
improve network management and optimize network 
performance. 

Keywords—congestion, networks, deep learning, graph 
convolutional networks 

I. INTRODUCTION 
 Graph Convolutional Networks (GCN) have recently 
become popular for analysing network structures due to their 
ability to model complex relationships among network 
nodes. GCN has shown its potential to solve a wide range of 
tasks such as node classification, link prediction, and graph 
clustering. In this paper, we propose to apply GCN to predict 
congestion in a network. Congestion is a significant problem 
in computer networks that can result in severe degradation of 
network performance. Congestion happens when the 
available network resources become insufficient to meet the 
demand for data transmission. Congestion can lead to 
increased packet loss, delay, and throughput degradation, 
which can cause network applications to fail. Therefore, 
detecting and predicting congestion is a critical task for 
network operators to ensure the smooth functioning of the 
network. Traditionally, congestion detection in computer 
networks has been done using analytical or rule-based 
approaches, which can be inefficient and imprecise. These 
approaches rely on simple threshold-based methods, which 
do not consider the dynamic nature of the network. With the 
advancement of machine learning, researchers have explored 
different techniques to predict network congestion, such as 
supervised learning and unsupervised learning [1]. 

GCN uses graph convolution operations to aggregate 
information from neighbouring nodes and representations of 
nodes in the graph. This makes it particularly suitable for 
network analysis, as network nodes can be represented as 
graph nodes, and their relationships can be modelled as 
edges in the graph. By using GCN, the underlying structure 
of the network and the prediction of congestion is more 
accurate than traditional methods. Interpretability is essential 
for network operators to understand the causes of congestion 
and taking appropriate actions to mitigate it [2]. With the use 
visualization techniques to visualize the learned 
representations of nodes in the graph, identification of the 
most influential nodes in predicting congestion can also be 
accomplished. Section II discusses on the related literature 
work that has been done. The concepts of GCN are discussed 
in Section III. Section IV illustrates the implementation of 
GCN. Section V discusses the case study. Section VI depicts 
the results. Section VII summarizes the conclusions and 
future work. 

II. LITERATURE REVIEW 
 Several machine learning algorithms are being used 
today due to the benefits they offer like prediction, analysis 
and model building etc… Madhwaraj & Amirthavalli [3] 
used machine learning techniques to predict the 
maintainability of open source software. Viswanath et al. [4] 
performed a case study to predict the number of deaths due 
to dengue disease. Madhwaraj et al. [5] identified a novel 
machine learning idea to predict the sale of washing 
machines in an organization. Machine learning algorithms 
are used for a variety of purposes. While considering 
network analysis, congestion issues and other areas, GCN 
have been used in a variety of fields, such as transportation 
network analysis, bioinformatics, and social network 
analysis. Due to their capacity to discover intricate 
relationships within graph-structured data, GCN have 
attracted a lot of attention lately in the transportation industry 
to forecast network congestion, a significant issue for urban 
transportation planning and management etc. This literature 
review provides an overview of the application of GCN 
using deep learning to predict congestion in transportation 
networks. Due to the system's intrinsic complexity and 
dynamic nature, it is difficult to predict congestion in such 
networks. Transportation network congestion has been 
predicted using conventional techniques like linear 
regression and decision trees. Nevertheless, these techniques 
fall short in capturing the intricate connections between the 
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network elements, which limits the accuracy of their 
predictions. GCN are a class of neural networks that operate 
on graph-structured data. In transportation networks, a graph 
can be defined as a set of nodes that represent locations (e.g., 
intersections, traffic signals) and edges that represent the 
connections between these locations (e.g., roads, highways). 
By combining data from a node's neighbours, GCN employs 
a convolutional process to learn feature representations of 
each node in the network. This procedure allows GCN to 
record the structural information of the graph and the 
relationships between its nodes. Many research studies have 
looked into the use of GCN to forecast congestion in 
transportation networks [6]. A GCN-based model was 
created in a study by Ma et al. (2019) to forecast traffic 
congestion in Beijing using real-time traffic data. The model 
learned the traffic flow patterns between the road segments 
using a graph representation of the network of roads. The 
authors demonstrated that their GCN-based model performed 
better at predicting traffic congestion than conventional 
regression techniques.  

 
Fig 1: Architecture of a Graph Convolutional Network 

Figure 1 picturizes the architecture of a GCN. This is a 
type of neural network that operates on graph-structured 
data, such as social networks or transportation networks. To 
learn features from the graph structure, they employ a 
convolutional operation similar to that used in image 
processing. Rectified Linear Unit (ReLU) is a popular 
activation function in GCN that adds nonlinearity to the 
network. It is defined as the product of zero and the input 
value, allowing only positive values to pass through. In the 
context of network congestion, GCN with ReLU activation 
can be used to learn traffic flow and congestion patterns from 
the transportation network's graph structure. This can aid in 
the prediction and mitigation of traffic congestion by 
optimizing traffic flow and routing. 

 Li et al. (2020) offered a deep learning-based system for 
anticipating traffic congestion in metropolitan road networks. 
The framework employed a GCN-based model to determine 
the connections between the network's road segments and 
forecast traffic flow on each one. The authors demonstrated 
that their approach beat conventional traffic prediction 
techniques using real-time traffic data from a significant 
Chinese metropolis [7].  

 A GCN-based model was created in a recent study by Liu 
et al. (2021) to forecast traffic congestion in metropolitan 
networks utilising multi-source data, such as traffic volume, 
speed, and road network layout. The model learned the 
geographical and temporal relationships between the network 
components using a graph representation of the road 
network. The researchers demonstrated that in terms of 
anticipating traffic congestion, their model performed better 
than other deep learning models and conventional regression 
techniques.  

 Using machine learning, GCN have demonstrated 
encouraging outcomes in the prediction of congestion in 
transportation networks. These models understand the traffic 
flow patterns to forecast congestion while capturing the 
intricate relationships between the network's constituent 
elements. The prediction effectiveness of these models has 
been further enhanced by the inclusion of real-time traffic 
data and data from many sources. Future studies may 
examine the use of GCN to forecast traffic in other modes of 
transportation, such as mass transit and bike-sharing 
programmes. Moreover, combining GCN with other machine 
learning methods, such as reinforcement learning, can 
produce predictions for transportation network management 
that are more reliable and precise. 

III. GRAPH CONVOLUTIONAL NETWORKS 
GCN are a very effective neural network design for 

machine learning on graphs. They are so powerful, in fact, 
that they can even produce useful feature representations of 
network nodes from a 2-layer GCN that was started at 
random. Even during the absence of training, the 2-
dimensional representation keeps the network's nodes in 
close proximity to one another. 

More formally, given a graph G = (V, E), the GCN is a 
neural network that functions on graphs that accepts the input 
as: 

- an input N × F⁰ feature matrix, such that for each 
node N is the no. of nodes and F⁰ will be the 
number of input features, and 

- an N × N, the adjacency matrix A of G, which is a 
matrix representation of the graph structure.  

 A GCN consisting of a Hidden layer can be then written 
as Hⁱ = f(Hⁱ⁻¹, A) where H⁰ = X and f is a propagation. Each 
layer Hⁱ corresponds to an N × Fⁱ feature matrix where each 
row is a feature representation of a node. The propagation 
rule f is used to integrate these features at each layer to 
construct the features of the subsequent layer. The features 
get progressively more abstract at each subsequent tier. The 
propagation rule f that is chosen in this framework serves as 
the only distinction between the various GCN versions [8]. 

A. Simple Propagation Rule 
 A simple propagation rule is: 

 F (Hⁱ , A) = σ ( A Hⁱ Wⁱ ) 

 where the weight matrix is Wⁱ for layer i and for a non-
linear activation function such as the ReLU function it is σ. 
The weight matrix has dimensions Fⁱ × Fⁱ⁺¹, meaning that the 
number of features at the subsequent layer depends on the 
size of the weight matrix's second dimension. 

B. Simplifications using a simple graph example 
Examining the propagation rule at its simpler level. Let: 

- i = 1, s.t, f a function for the input feature matrix, 

- σ to be the identity function, and 

- chooseing the weights s.t, AH⁰W⁰ =AXW⁰ = AX. 

 Implying that, f(X, A) = AX and AX now resembles the 
input layer of a multi-layer perceptron. 

Input 

Hidden Layer Hidden Layer 

Output 

ReLU ReLU 
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Fig 2: Simple directed graph with matrix representation 

C. Adding Self-Loops 
To address the first problem, just add a self-loop to each 
node [1, 2]. The propagation rule is applied first, and then 
the identity matrix I is added to the adjacency matrix A to 
achieve this. 
 

D. Normalizing the Feature Representations 
The feature representations can be normalised by node 

degree by adding the adjacency matrix A and the inverse 
degree matrix D. Hence, this is the appearance of the 
streamlined propagation rule.  

E. Adding an activation function 
To utilize the ReLU activation function while keeping the 

feature representations' dimensionality. There is now a full 
hidden layer with an adjacency matrix, input features, and an 
activation function. 

F. Zacharys Karate Club 
Zacharys Karate Club's nodes stand in for the club's 

participants, while the edges highlight their relationships 
with one another. While Zachary was a member of the karate 
club, a disagreement between the instructor and the 
administration led to the group's division. The network is 
shown as a graph in the graphic below, with nodes named 
according to whatever area of the club they belong to. An 
"A" stands for the administrator, and a "I" stands for the 
instructor [9].  

 
Fig 3: Zachary’s Karate Club network representation 

G. Steps to build the GCN 
 Using the networks which has a graph representation of 
the club easily available, the A_hat and D_hat matrices are 
computed. 

 Step 1: Initializing the weights randomly 

Step 2: Layering the GCN in a stack. Each node is 
represented as a one-hot encoded categorical variable 
using only the identity matrix as feature representation 

Step 3: Extracting the feature representations 

Step 4: Display representations that successfully set 
Zachary's karate club's communities apart 

 
Fig 4: Feature Representations of the nodes 

 The overview of GCN was provided, and it was 
demonstrated how a node's feature representation at each 
layer in the GCN is based on an aggregate of its neighbours 
[10]. 

IV. IMPLEMENTATION OF GCN 
The implementation of GCN using Deep Learning 

involves the following steps: 

A. Data Pre-processing 
There are various phases involved in data pre-processing 

when using GCN, all of which are intended to get the input 
data ready for usage in the network. In order for the GCN 
model to utilise the data, raw data must be cleaned, 
formatted, and transformed during the process. Some of the 
typical data pre-processing procedures in GCN are as 
follows: 

1) Data Cleaning: This stage involves deleting missing 
or erroneous data from the dataset. In order to assure 
consistency and get rid of outliers, it can also incorporate 
data normalisation. 

 
2) Data Formatting: The input data for GCN is 

displayed as a graph. The data must therefore be organised 
in a graph structure. This entails identifying nodes and 
edges, and building an adjacency matrix that reflects the 
relationships between the nodes. 

 
3) Feature Extraction: Finding pertinent elements that 

are essential to predicting the model's output is known as 
feature extraction. Techniques like Principal Component 
Analysis (PCA) or clustering can be used to accomplish this. 

 
4) Feature Scaling: This step involves scaling the 

features to ensure that they are on a similar scale. This is 
important because some features may have a larger impact 
on the model than others. 

5) Data Partitioning: To do this, the data must be 
divided into training, validation, and test sets. In order to 

A = np.matrix([ 
[0, 1, 0, 0], 
[0, 0, 1, 1], 
[0, 1, 0, 0], 
[1, 0, 1, 0]], 
dtype = float 
) 
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prevent overfitting, this makes sure that the model is trained 
on one set of data, validated on a different set, and tested on 
a different set. 

 
6) Data Augmentation: In this process, new data are 

created from the old data by adding noise, undergoing 
changes, or including additional samples [11]. 

B. Model Architecture 
A deep learning model called a "Graph Convolutional 

Network" (GCN) uses its architecture to analyse and process 
graph-based data. Several layers of graph convolutional 
neural networks that are intended to extract and process 
information from the input graph data typically make up the 
architecture of a GCN. The input to a GCN is a graph, which 
is represented as a matrix of adjacency or connectivity 
information. After passing through a number of graph 
convolutional layers, each of which performs a convolutional 
operation on the graph data to extract and analyse features, 
this input is then used to train the algorithm. A set of feature 
vectors representing the graph data at that layer is the output 
of each convolutional layer.  

After that, a series of non-linear activation functions are 
applied to the feature vectors from each layer, adding non-
linearity to the model and aiding in the capture of intricate 
interactions among the graph's nodes. The final layer, which 
creates the GCN’s ultimate output, is then supplied the 
output of the last activation function.  

C. Training 
Understanding the process of building and developing a 

neural network model based on the GCN architecture for 
evaluating graph data is a requirement for training on the 
implementation of GCN using Deep Learning. This entails 
knowing the core ideas of graph theory, deep learning, and 
GCN and applying them to create and train a neural network 
model [12]. 

The training process typically involves the following 
steps: 

1) Understanding Graph Convolutional Network (GCN) 
architecture: Understanding the architecture, its constituent 
parts, and how it operates with graph data is necessary for 
this. Understanding how the GCN layers modify graph data, 
how they compile data from nearby nodes, and how they 
can be stacked to create a deep GCN model are all part of 
this. 

 
2) Preparing the data: In order to train the GCN model, 

this entails preparing the graph data. The data must be 
cleaned and preprocessed, put into a form that the model can 
understand, and divided into training and validation sets. 

 
3) Building the GCN model: In order to do this, a deep 

learning framework like PyTorch or TensorFlow must be 
used to build the GCN model. This entails specifying the 
model's layers, the hyperparameters, the loss function, and 
the optimizer. 

 
4) Training the model: This entails employing a suitable 

training procedure, such as stochastic gradient descent, to 

train the GCN model using the prepared data Stochastic 
Gradient Descent (SGD). In order to minimise the loss, the 
model's weights must be updated once the training data is 
fed into it and the loss is calculated. 

5) Evaluating the model: This entails assessing the 
trained GCN model's performance using the validation data. 
As part of this, criteria like accuracy, precision, and recall 
are measured and their performance is contrasted with that 
of other models. 

 
6) Fine-tuning the model: Depending on the model's 

performance, it can be essential to fine-tune the model by 
modifying the hyperparameters, the model's architecture, or 
the training algorithm [13]. 

 

D. Evaluation 
Assessment of the implementation of GCN using Deep 

Learning involves examining the performance and 
effectiveness of the GCN model in solving a certain problem 
on a given dataset. The assessment process contains 
numerous processes, including data preparation, model 
training, model validation, and model testing.  

1) Data Preparation: The preparation of the data for the 
GCN model's training and testing is the first step in the 
evaluation procedure. This entails prepping the data, 
including cleaning, normalisation, and feature extraction. 

 
2) Model Training: The GCN model is trained using the 

dataset once the data is ready. The model is fed the input 
data and the anticipated output (ground truth) during the 
training phase, and the model's parameters are iteratively 
changed until it performs at its best. 

 
3) Model Validation: To confirm that the GCN model is 

operating effectively, it is validated using a piece of the 
dataset that was not utilised during training. On the 
validation dataset, the model's accuracy, precision, recall, 
and other metrics are evaluated as part of the validation 
process. 

 
4) Model Testing: The GCN model is evaluated on a 

different set of data once it has been validated to gauge how 
well it performs with previously undiscovered data. On the 
test dataset, the model's accuracy, precision, recall, and 
other metrics are measured as part of the testing procedure 
[14]. 

 

E. Deployment 
It's a good idea to have a backup plan in case the backup 

fails. This entails taking the GCN model that has been 
created and put through testing and deploying it in a way that 
it can be utilised for applications in the real world. A series 
of procedures are necessary for the deployment of a GCN 
model, including the conversion of the model into a 
deployable format, the preparation of the input data for 
inference, and the choice of an acceptable infrastructure for 
servicing the model. Some of the crucial actions in deploying 
a GCN model include the ones listed below: 
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1) Model conversion: A deployable format, either a 
saved model file or a TensorFlow serving model, must be 
created from the trained GCN model. This conversion 
method makes sure the model can be integrated with various 
deployment platforms and used for inference. 

2) Data preparation: It is necessary to pre-process and 
get the input data for the GCN model ready for inference. 
This entails transforming the incoming data into a graph 
structure that the GCN model may use as input. 

3) Infrastructure selection: The size of the application 
and the model's requirements will determine the 
infrastructure needed to support the GCN model. While 
larger apps might need an on-premises solution, smaller 
applications might use a cloud-based solution like AWS or 
Google Cloud. 

4) Deployment: Once the infrastructure is selected, the 
GCN model may be deployed and evaluated. The 
infrastructure must be built up, the model must be loaded, 
and predictions requests must be served [15]. 

 

V. CASE STUDY 

A case study was performed to observe the 
implementation of GCN on a small network. The network 
had six nodes connected in a ring topology for simplicity and 
understanding as follows: 

Node 1 -- Node 2 -- Node 3 -- Node 4 -- Node 5 -- Node 6 -- Node 1 

Assume that there is network congestion, particularly at 
node 3 due to heavy traffic, packet drops, and other factors 
[17].  

To address this congestion with GCN, we can take the 
following steps: 

1) Create the adjacency matrix: The adjacency matrix 
represents the connections between network nodes. The 
adjacency matrix for this small ring topology would be: 

 

 

 

 

2) Define the feature matrix as follows: The feature 
matrix represents the characteristics of each network node. 
For the purposes of this simulation, let us assume that each 
node has a single feature that represents its traffic load. Node 
3 is experiencing the most traffic and is causing congestion. 
This network's feature matrix would be: 

 

 

 

 

 

3) Define the GCN model: The GCN model will learn to 
predict the traffic load of each node in the network based on 
its connectivity with other nodes. 

4) Train the GCN model: We can train the GCN model 
by using a loss function that calculates the difference 
between the predicted and actual traffic loads for each node. 
To minimise the loss, the Mean Squared Error (MSE) loss 
function and the Adam optimizer was used. To avoid 
overfitting, we also included a regularisation term [16]. 

 
Fig 5: 2-Dimensional network representation 

The model predicts the traffic load of each node using the 
adjacency matrix and the feature matrix as inputs. To 
calculate the loss, the output is compared to the actual traffic 
load of each node. The optimizer then makes changes to the 
model parameters in order to minimise the loss. Overall, the 
implementation of GCN using deep learning has shown 
promising results in various applications, and is an active 
area of research in the field of machine learning [17]. 

 

VI. RESULTS 

The results observed on applying GCN to a network were 
as follows. While ReLU and ReLU6 activation functions 
were used, ReLU6 was found to be the most suitable for the 
implemented model. Our research also shows that GCN can 
accurately capture the spatial dependencies between different 
traffic segments and predict traffic congestion. GCN 
outperformed traditional machine learning methods such as 
Support Vector Regression (SVR) and Random Forest (RF) 
in terms of accuracy and stability. With the increasing 
number of convolutional layers and the number of hidden 
units in each layer, the performance of GCN is improved to a 
great extent. Furthermore, the optimal values of these hyper-
parameters may differ depending on the size and complexity 
of the congested network. 

 

VII. CONCLUSIONS AND FUTURE WORK 

GCN have shown to be effective in modelling congestion 
in networks by capturing the relationships between network 
nodes and their neighbours so that they can be used to predict 
congestion levels and to optimize network traffic.  

Since they can forecast traffic congestion levels by 
examining traffic flow patterns and identifying the most 
congested places, GCN has also been employed in congested 
networks to predict traffic. 

GCN have shown great promise in modelling and 
analysing complex network structures creating  a significant 
impact on network congestion, which is a common problem 
in modern communication networks. In the future, GCN 
could be used to model and predict congestion patterns in 
real time, allowing for more efficient traffic routing and 
congestion avoidance strategies. Furthermore, GCN could be 
used to optimise network topologies to reduce congestion or 
to identify and mitigate potential congestion hotspots. 

 

[[0, 1, 0, 0, 0, 1], 
 [1, 0, 1, 0, 0, 0], 
 [0, 1, 0, 1, 0, 0], 
 [0, 0, 1, 0, 1, 0], 
 [0, 0, 0, 1, 0, 1], 
 [1, 0, 0, 0, 1, 0]] 
 

[[0], 
 [0], 
 [0.8], 
 [0], 
 [0], 
 [0]] 

Graph Convolutional Network 
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