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Abstract. Modeling inventory demand is critical for businesses to manage re-
sources and ensure customer satisfaction. Traditional economic models, rooted
in utility functions and structural approaches, often face challenges due to strin-
gent assumptions and inability to adapt to real-world data. This research har-
nesses machine learning, specifically the LightGBM algorithm, to enhance de-
mand prediction. Unlike traditional models tied to Gaussian distribution,
LightGBM adapts to actual data distributions, capturing complex, non-linear re-
lationships. The results highlight sales channels and product types as pivotal de-
mand drivers. This study blends traditional econometric techniques with modern
machine learning, offering a roadmap for future demand forecasting research.

Keywords: demand estimation, gradient boosting decision trees, demand analyt-
ics

1 Introduction

Modeling inventory demand is crucial for businesses. Effective inventory management
not only preserves valuable resources but also ensures continuous customer satisfac-
tion. As a result, demand modeling has become a central focus in economic research,
aimed primarily at accurately predicting consumer behavior.

Historically, economists have relied on utility functions to model consumer demand.
They propose that consumers, behaving rationally, aim to maximize their utility or sat-
isfaction, constrained by their budget. To more accurately reflect reality, numerous
studies have modified the utility function to align with established economic principles.
Concurrently, another significant strand of research has focused on introducing refined
budgetary constraints. Structural models, deeply rooted in economic theory, have
gained popularity. They are designed to ensure that the statistical relationships they
reveal align well with theoretical expectations.

However, these conventional economic models, particularly the structural ones, en-
counter inherent challenges. The strict assumptions underpinning many of these models
render empirical validation daunting. One significant drawback of traditional economic
modeling is its unwavering commitment to the normal distribution assumption, both
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for error terms and input features. Often, real-world data deviate from this norm, show-
ing traits like long-tailed distributions and other complexities. These disparities can
compromise a model's predictive accuracy. Moreover, the inclination to simplify these
models for analytical ease may reduce their effectiveness in real-world forecasting sit-
uations. Another major limitation is their inflexibility, often restraining their adaptabil-
ity to fresh, unseen data.

To address these challenges, the predictive power of machine learning has been en-
listed for demand forecasting. Integrating machine learning techniques with conven-
tional economic models can significantly improve demand prediction, surmounting
previously daunting hurdles. In our research, we have utilized the LightGBM algorithm,
a variant of the Gradient Boosting Decision Trees (GBDT) framework. Rather than
being bound to the Gaussian distribution, LightGBM employs feature binning, adapting
more closely to the genuine data distribution. This method enables the model to discern
intricate, non-linear relationships commonly found in real-world datasets. By fusing the
theoretical depth of economic models with the empirical capabilities of machine learn-
ing, LightGBM offers a commendable combination of clarity and precision. Our find-
ings indicate that, for this inventory demand dataset, sales channels and product types
are the two pivotal factors influencing consumer demand. This study provides insights
into how food providers can optimize resource allocation to enhance sales channels and
product quality.

Our research culminates in three main contributions. Firstly, we harness Gradient
Boosting Decision Trees to enhance predictive precision, bypassing the rigid normal
distribution assumptions tied to traditional regression models. Secondly, we explore
feature importance, employing cumulative information gain. Our results emphasize the
crucial roles diverse channels and product categories play in demand forecasting. Fi-
nally, our study bridges machine learning and econometrics. We navigate an innovative
path, merging traditional utility-maximization frameworks with state-of-the-art ma-
chine learning algorithms, laying down a foundation for future research in this arena.

2 Related Work

Our research is related to two distinct streams of literature: (1) economic models for
inventory demand estimation (2) machine learning algorithms for prediction.

2.1 Economical Models for Demand Forecasting

In fundamental terms, the demand for a product tends to decrease as its price increases,
and conversely, it increases as the price decreases. This inverse relationship is often
depicted by a linear demand function, Q = a - bP, where 'Q' stands for the quantity
demanded, 'P' denotes the price of the good, and 'a' and 'b' are constants. The concept
of demand elasticity plays a pivotal role here, gauging how sensitive the quantity de-
manded is to price fluctuations or other external variables. This sensitivity is often vis-
ualized through the slope of the demand curve.
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Within the realm of utility theory, consumer demand is conceptualized via utility
functions. These functions posit that consumers, in their rationality, consistently make
choices to maximize their utility, which can be equated to their level of satisfaction or
happiness, all while adhering to their budgetary constraints.

The overarching theory of utility maximization has, over time, bifurcated into two
distinctive research trajectories. One path has been the exploration and design of vari-
ous utility functions that align with specific economic theories. Notable contributions
in this vein include Cobb and Douglas's (1928) utility function, which elucidates the
interplay between labor, capital, and product. [l Subsequent endeavors by Wales and
Woodland (1983) ) shaped the utility in a quadratic mold, while Pollak and Wales
(1992) Bland Du and Kamakura (2008) ™! articulated a CES utility function. On another
front, Lee and Pitt (1986) ! and Millimet and Tchernis (2008) ! adopted the indirect
log utility in a dualistic approach to decipher demand equations.

Concurrently, a different school of thought placed its emphasis on delving deeper
into budget constraints. This line of inquiry, bolstered by works such as those by van
Soest et al. (1993) ! and Tamer (2003), sought to unravel the intricate dynamics of
financial limitations on demand. [*

In more recent times, a trend has emerged wherein economists are leaning towards
structural models. These models aim to weave economic theory seamlessly into empir-
ical analyses. The end goal is to unearth the foundational structural parameters steering
our economic systems. Pioneers in this domain include notable works by Millimet and
Tchernis (2008) [, Allenby et al. (2010) !, Honka (2014) ['%), and Hastings and Shapiro
(2018). 111

2.2 Machine Learning for Forecasting

The recent boom in machine learning technology has ignited a substantial interest in its
potential for demand forecasting. Renowned for its versatility, machine learning can
detect complex patterns and relationships within extensive historical datasets. Algo-
rithms such as the Support Vector Machine (SVM) 2], Random Forest (RF), and Neu-
ral Networks (NN) have established themselves as cornerstones in demand forecasting.
Their ability to handle high-dimensional data, identify non-linear data relationships,
and swiftly adapt to market changes is unmatched. Recent innovations are now merging
traditional economic models with machine learning techniques, boosting both precision
and forecasting acumen.

Demand forecasting has traditionally toggled between two primary methodologies:
classic economic models and machine learning techniques. Lately, an increasing num-
ber of studies have fused machine learning with econometric models. For example,
Berry et al. (1993) employed a Logit model to predict product choices. ['*! Breiman in
his works from 1996 and 2001 introduced the random forest through a simulation ex-
periment. " Bajari et al. (2015) [3 leveraged Lasso regression for variable selection
and controlled the fixed effect of demand estimation. Adma et al. (2020) formulated a
two-stage regression method, incorporating machine learning predictions to refine de-
mand forecasting. [' Furthermore, Gandhi et al. (2017) developed an objective cen-
tered around inequality to rectify prediction bias. [!7]
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Our research augments existing machine learning studies by integrating them with
economic models. By leveraging cutting-edge machine learning algorithms, we aim to
sidestep the stringent assumptions embedded in economic theoretical structures con-
cerning demand prediction.

3 Methodology

3.1 Data

We gathered our data from Grupo Bimbo, a food provider in Mexico. The dataset cap-
tures the weekly demand and sales of specific food items. It offers a unique ID for each
product and client, details of individual sales depots and sales channels, and information
on the number of returns. The dataset calculates demand by taking the number of sales
and subtracting the number of returns. Consequently, the inventory demand is deter-
mined by subtracting return units from sales units.

Table 1. Descriptive statistics

Sales Return Adjust Demand
N 74,180,464 74,180,464 74,180,464
mean 7.31 0.13 7.22
std 21.97 29.32 21.77
min 0.00 0.00 0.00
median 3.00 0.00 3.00
max 7200.00 250000.00 5000.00

As depicted in Table 1, both the average return unit and amount are zero. This sug-
gests that our target demand estimation aligns closely with sales predictions. Conse-
quently, understanding the factors influencing sales becomes crucial. Figure 1 reveals
that both sales and returns exhibit a pronounced left-skewed distribution. Such a devi-
ation from the normal distribution assumption could compromise the performance of
traditional economic models.
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3.2 Gradient Boosting Decision Trees (GBDT)

GBDT, or Gradient Boosted Decision Trees ['$11°], is a machine learning technique that
constructs an ensemble of shallow decision trees sequentially. These trees are then com-
bined to produce a final prediction. Essentially, GBDT comprises multiple "weak
learner" trees, trained one after the other. Once a tree is trained, the residuals are deter-
mined and subsequently used as the target for the succeeding tree. Each tree in the
sequence aims to rectify the errors of its predecessor, employing gradient descent to
minimize the target. In the end, the predictions of all the trees are aggregated.

The primary hurdle in inventory demand estimation for economic models lies in the
stringent assumption of data features following a normal distribution. In contrast, real-
world large-scale datasets often exhibit sparsity. For instance, Table 1 illustrates that
the majority of returns are zero. To address this, we employ LightGBM (see algorithm
1), an extension of the GBDT framework. Firstly, continuous feature values are cate-
gorized into discrete bins. For example, a feature vector [0,0,0.1,0,0.7,0,0,0.9] can be
divided into two bins: 0 to 0.5 (bin 1) and 0.5 to 1 (bin 2). This approach is agnostic
and indifferent to specific distribution assumptions.

Next, the model constructs a series of decision trees in sequence to enhance predic-
tion accuracy. In each iteration (individual tree), it identifies the optimal feature split to
reduce the cumulative loss across child nodes:

1 N2 . 2
l= ﬁ [ZiERleﬂ (yl - leeﬂ) + ZiERright (yl - eright) ] (1)

Where 5, . and erigm denote the current tree prediction on the data instances of the

left branch and right branch, respectively. Notably, LightGBM employs regularization
techniques to each tree, such as limiting tree depth, capping the number of leaves, and
introducing randomness in feature selection. Successive trees focus on the residual, or
prediction error, of the preceding tree. By aggregating predictions from all trees, the
combined model significantly diminishes prediction error. While individual trees might
offer weak accuracy without overfitting, the boosting process ensures the overall model
exhibits robust generalization.

Ultimately, LightGBM leverages the Gradient-based One Side Sampling (GOSS)
technique for optimal performance in sparse feature spaces. Specifically, the model
keeps the top N, samples with the most significant gradients and randomly downsam-
ples N, instances from the remaining N — N; dataset. Given that data instances with
larger gradients indicate inadequate training (non-zero values), this strategy emphasizes
underrepresented samples, largely overlooking zero instances.
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Algorithm 1. LightGBM Implementation of GBDT

Algorithm 1 LightGBM Algorithm

1: procedure LIGHTGBM(D, T, F)

2 Input: Dataset D, Number of trees 7', Features F'

3 Initialize fo(z) = argming Y ., L(¥i, 9)

4 Discretize continuous feature values of D into bins to form histograms

5: fort=1to T do

6 Compute the negative gradients g; = — [()l(g‘f(—ﬁ(f)‘))] for all 7

7 Build a tree using the pre-computed histograms:

8: - Construct histograms using the gradients g;

9: - Determine best splits using histogram information

10: Update the model f;(z) = fi—1(z) + aihi(x) where «; is the learning
rate and h,(z) is the tree structure.

11: Employ Gradient-based One-Side Sampling (GOSS) to:

12: - Retain top instances with largest gradients

13: - Randomly downsample instances with small gradients

14: end for

15: Output: Final model fr(z)
16: end procedure

Our method leverages several advantages to address previously mentioned chal-
lenges:

e LightGBM discretizes continuous feature values into discrete bins, forming histo-
grams wherein each bin denotes a range of feature values. During tree growth,
LightGBM relies on these bins rather than the actual continuous values. As a result,
even long-tailed distributions are quasi-uniformly handled.

e The ensemble models are adept at identifying complex non-linear relationships
amongst features.

e LightGBM incorporates various regularization techniques. These include limiting
tree depth, shrinkage (scaling down the predictions of each tree), and randomization
(sampling features randomly). Such measures counteract overfitting and bolster the
model's generalization capabilities with out-of-sample data.

4 Empirical Results

4.1 Benchmarks

To align with models in the fields of economic and machine learning, we employ typi-
cal benchmarks to illustrate our model performance. We adopt linear price elasticity
demand (PED), regularized price elasticity demand (Lasso and Ridge Regression), De-
cision Tree and Random Forest as our baselines. These models are widely used and
discussed in current research literature.

4.2  Experiment Setup

We randomly divide our dataset into training, validation, testing set by a split ratio of
0.8, 0.1, 0.1. For regularized regression Lasso and Ridge, we set the penalty parameter
A=1. For decision tree, we limit the maximum depth to 5 and maximum number of
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leaves to 64. For random forest, we keep the parameter same as the decision tree and
set number of trees to 100. For LightGBM, we set the learning rate to 0.2, column and
row sample fraction to 0.6, regularization parameter A=100, number of trees to 300.

4.3 Results

We report the results in Mean Squared Error (MSE) and Root Mean Squared Error
(RMSE). Lower values of MSE and RMSE indicate better model performance.

MSE = (y — 9)? @)

n

Table 2. Demand Prediction Error

Metric MSE RMSE
Linear PED 348.33 18.66
Lasso PED 348.57 18.67
Ridge PED 348.33 18.66
Decision Tree 298.17 17.27
Random Forest 296.74 17.23
GBDT 267.18 16.35

From Table 2 we show that tree method is in general better than linear demand func-
tion since it captures more complex non-linear relationships. Furthermore, our model
(GBDT) outperforms other benchmarks significantly.

4.4  Model Analysis

Metric during training Feature importance
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Fig. 2. Demand Prediction Error

Figure 2 elucidates why our model surpasses other baselines. First, the training curve
demonstrates convergence on the validation set, achieving a low Mean Squared Error
(MSE). Second, we aggregate the reduction in MSE at each feature split across all trees.
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A feature's importance is proportional to its contribution to the MSE decrease. The
model suggests that the channel and product are the most pivotal factors for demand
prediction. Following these are the route, client, and depot associated with the goods.

5 Conclusion

In this paper, we address inventory demand prediction. In response to the challenges of
rigid assumptions, oversimplification, and limited generalizability presented by tradi-
tional economic demand estimation models, we employ Gradient Boosting Decision
Trees. This approach results in more accurate predictions compared to other bench-
marks. Additionally, our study bridges the gap between demand estimation literature
and contemporary machine learning techniques.
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