

Inhibition of ACC₀ (1-aminocyclopropane 1-carboxylic acid oxidase) Activity of Mangoby Modified Atmosphere Storage

E. Basuki, A. Alamsyah and I W. S.Yasa

¹Faculty of Food Technology and Agroindustry University of Mataram, Indonesia.

ekobasuki10@gmail.com

ABSTRACT .nhibition of ACC Oxidase Activity of Mango by Modified Atmosphere Storage is aimed to extend the storage life were carried out at Food Technology Laboratory, University of Mataram from by using Completely Randomized Design and continued with Least Significant Different at five percent significance level. Mangoes were stored at Polyethylene (PE) bags; PE + KMnO₄; Polypropylene bags (PP); PP + KMnO₄ and unpacked (Control) for three weeks. The physical properties of fruit such as weight loss and decay percentage were determined, while physiological properties such as the rate of respiration, ethylene production including ACC₀ activity. Inactivation of ACC₀ occurred to almost half-time of its activity in mango stored at MAS as compared to unpacked mango. Therefore, paralleled the rate of respiration and production of ethylene at MAS leads to extend the storage life of mangoes. Weight loss and decay percentage of mango kept in MAS for 3 weeks were lower than unpacked.

Keywords: Key word: ACC₀, KMnO4, Mangoes, MAS. Polyethylene and Polypropylene.First Section

1 INTRODUCTION

In Indonesia, especially Nusa Tenggara Barat (NTB) Province, the area and production of mangoes increase gradually every year, from 27,187 tones in 1997 to 71,958 tones for financial year 2001 [1], indicated that recently horticultural commodities have been developed rapidly. It produces in almost all regency in NTB province. The most cultivated mangoes are the highly economic value varieties such as Madu, Arumanis, Manalagi, and Golek [2]. However they have short time storage at ambient temperature [3] which one of the important constraint that should be managed. Besides, other postharvest factor (pest and pathological decay) which developed rapidly during storage.

One of the method to inhibit the fruit ripening by using polyethylene/polypropylene bags packed with ethylene adsorbent (KMnO4) have been applied in bananas. The experiment on banana's storage by KmnO4 (400g/L) with vermiculite could extend the shelf life up to three weeks [4]. It application was combined with Plastic Polyethylene bags that created modified atmosphere which retard the physiological properties

Q. D. Utama et al. (eds.), *Proceedings of the 7th International Conference on Food, Agriculture, and Natural Resources (IC-FANRES 2022)*, Advances in Biological Sciences Research 35, https://doi.org/10.2991/978-94-6463-274-3_8

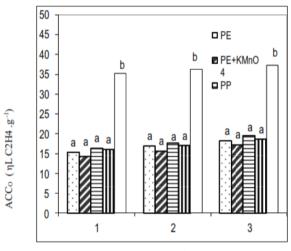
that leads to inhibit the activity of enzyme [5]. The enzyme was involved in fruit ripening by process ethylene biosynthesis (S-adenosyl methionine (SAM) \rightarrow 1-aminocyclopropane-1-carboxylic acid (ACC) \rightarrow ethylene), called 1-aminocyclopropane 1-carboxylic acid oxidase (ACCO). The activity of ACCO involved in the process from ACC to produce ethylene in climacteric fruit affected by oxygen concentration inside the bags [6]. Its activity is catalyzed by enzyme and required oxygen, highly regulated and closely parallels the level of ethylene biosynthesis [7] [8].

Modification Atmosphere Storage of Mangos is not only applicable methods in order to extend the shelf life, but also finding out the level of oxygen and carbon dioxide that inhibited the activity of ACCO. [9] explained that ACCO is influenced by fruit phase ripening, type of packaging, and storage temperature. In this study was examined the effect of modified atmosphere in plastic bags by using ethylene absorbent in relation to activity of ACCO. The aims of this study were to find out ACCO activity, the rate of respiration, ethylene production, weight losses and decay percentage during three weeks storage of mangoes in MAS.

2 MATERIAL AND METHODS

This study was conducted at The Laboratory of Agricultural Product Technology and Analytical Laboratory, University of Mataram using Completely Randomized Design which consists of five treatments and three replications as follows:

PE	Plastic Polyethylene bags (PE)+ corrugated fiber board
PE+ KMnO ₄	PE + KMnO4 (450g/L)+ corrugated fiber board
PP	Plastic Polypropylene bags (PP)+ corrugated fiber board
PP+ KMnO ₄	$PP + KMnO_4 (450g/L) + corrugated fiber board$
K0	Without Packaging (Controlled)


Data was performed with Analysis of Variance (ANOVA) five percent significance level continued by Least Significant Difference LSD) [10]. Fresh harvested mangoes var Madu from West Lombok was sorted, packed and stored by MAS at ambient temperature (25-28oC) for three weeks. Parameters to be recorded were weight losses (Syarif and Irawati, 1988) and decay's percentage (Standar Nasional Indonesia, 2000). The rate of respiration and ethylene production during ripening days phase [11]. The activity of ACCO was determined in pulp tissue section according to Bufler methods [12] with following modification. The pulp of tissues was taken from equatorial region with a cork borer and sliced with a razor blade yielding 1 g FW. Then the samples was placed in 25 X 180 mm test tubes containing 10 mL of solution comprising 0.1 mM ACC dissolved in 0.4 M Sucrose and 0.02 M CaCl2 in distillated H2O. After 30 minutes the pulps were removed from the solution and they were quickly blotted dry with tissue paper and placed in a 10 mL plastic syringe. Immediately after enclosure in the syringe, CO2 was added to establish 5 % concentration. After 30 minutes the accumulated eth-

ylene was measured by removing 1 mL gas sample and analyzed with Gas Chromatography (Varian 3300) fitted with PID detector. Saturating concentrations of ACC were supplied to ensure that ACCO activity was not limited by substrate availability. ACCO activity (the ability to convert ACC to ethylene) was expressed in η L C2H4.g –1 of fruit tissue [11] [13].

3 RESULTS AND DISCUSSION

3.1 Inactivation of ACCo

After 3 weeks storage of mangos ACCO activity was measurable although the concentration was very low. The activity of ACCO in MAS packed fruit was inhibited in comparison with unpacked fruit. The activity of ACCO following removal from PE and PP bags every week stored were non-significant (Figure 1).

Storage time (weeks)

Fig. 1. ACCO activity at climacteric peak of mangoes during 1, 2, and 3 weeks storage in MAS. The graph that followed by the same letter at the same time storage indicated non-significant differences according to LSD 5 %.

These data indicated that inactivity of ACCO occurred in PE/PP bags with or without KMnO4, otherwise in air storage fruit ACCO activity was normal. Inactivation of ACCO occurred to almost half of its activity in mangoes stored in MAS as compared to air storage. ACCO activity in mangoes also paralleled to the changes of ethylene and be correspondent the change of the rate of respiration. This observation agree [14] who

102 E. Basuki et al.

showed that induction of ACCO is suppressed in CA treatments of apples compared to storage in air [15]. Similar parallel changes in ACCO activity and ACC concentration have been reported in apple [11], avocado [13] and tomato [16]. ACCO activity in freshly harvested fruit ripened at ambient temperatures rises constantly throughout the lag period increasing substantially at the onset of ethylene production in climacteric fruit [9][17] [6][18].

3.2 The rate of respiration and ethylene production

Climacteric patterns of CO2 and ethylene production in freshly harvested fruit expressed clearly with peak recorded on the 5th days during this experiment (Figure 2).

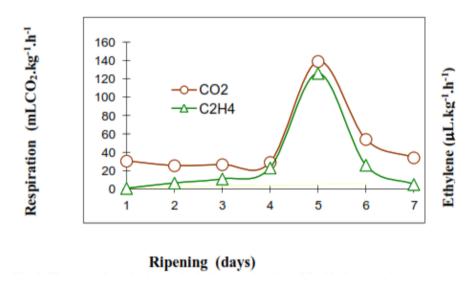
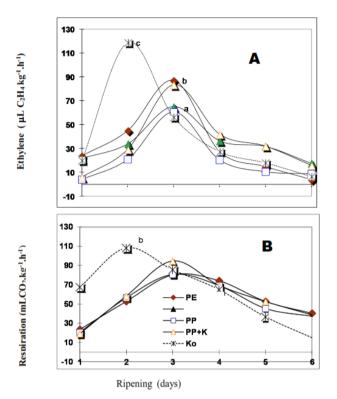
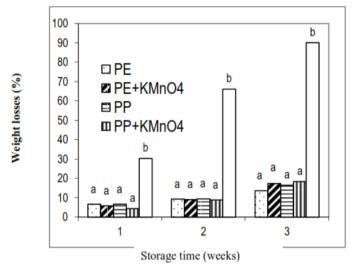



Fig. 2. The rate of respiration and ethylene production of freshly harvested Mangoes during ripening phase at ambient temperature.

The rate of respiration and ethylene production of fruit stored in air (control) was higher than fruit stored in MAS with or without ethylene absorbent. The lowest ethylene production found in fruit kept in PE bags with KMnO4, this indicated that MAS inhibited the production ethylene, therefore fruit climacteric time would be extended. MAS of mangoes by using PE/PP bags with ethylene absorbent (KMnO4) decrease the rate of respiration and ethylene production (Figure 3). Application of KMnO4 inside PE bags have been conducted in banana Cavendish that delayed the ripening up to three weeks [4].


Fig. 3. Ethylene production (A) and the rate of respiration (B) of mangoes during ripening process following transfer from MAS after 2 weeks storage. The graph that followed by the same letter at the same time storage indicated non significant difference according to LSD 5 %.

The respiration pattern and ethylene production of mangoes during ripening [19] seem to be similar with respiration pattern of avocado [13]. The climacteric rise and ethylene production during mangoes ripening was accelerated by temperature and type of packaging, it seem that the production of CO2 of mangoes stored in air higher than in MA. The rate of respiration was related to ethylene production, if high ethylene production which accelerated respiration rate and ripening [20]. Furthermore, high CO2 concentrations in MAS reduced the rate of respiration of banana [21]. CO2 production was lower in avocado pre treated in low O2 atmosphere (3 % O2 and 97 % N2) during storage at 2 oC and 17 oC [22] The rate of respiration and production of ethylene measured in sample after 2 weeks and monitored every day during 6 days (Figure 3). The increase of rate respiration following stored in CA or MA indicated that specific type of climacteric fruit [23]. Lange and Kader [24] [25] reported that avocado stored in air had higher respiration rates than fruit treated with high CO2 concentration.

104 E. Basuki et al.

3.3 Weight losses

Figure 4 showed that all treatments indicated non significant difference. After one weeks storage mangoes packed by PE + KMnO4 showed the lowest weight losses, while Ko showed the highest percentages compared to MAS treatments. Then, after removal from package all treated fruit indicated similar in weight losses. However, PE bags showed the lowest weight loss after 3 weeks storage in MAS. Therefore, the rate of respiration was inhibited as wells as weight losses. Meanwhile, unpacked fruit showed the highest weight loss due to normal respiration rate and transpiration.

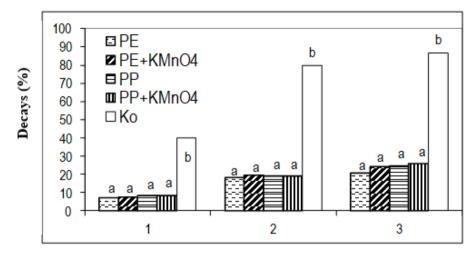


Fig. 4. Weight losses of mangoes stored in MAS for 1, 2 and 3 weeks. The graph that followed by the same letter at the same time storage indicated non significant according to LSD 5 %.

These indicated that application of KMnO4 as ethylene absorbent is suitable for inhibit respiration process. This result agrees [26] that MAS combined with KMnO4 would delay the rate of respiration and transpiration of fruit [27] [28].

3.4 Decay's percentage

The decay's percentage of mangoes during storage increase, only fruit kept in PE plastic bags after three weeks indicated the lowest decay (Figure 5).

Storage time (weeks)

Fig. 5. Decays percentage of mangoes stored in MAS for 1,2 and 3 weeks. The graph that followed by the same letter at the same time storage indicated non significant according to LSD 5 %.

It assumed that the lowest value because of PE plastic bags provide suitable condition of storage lead to low water release by respiration/ transpiration [29]. The symptoms of decays in mangoes were notice on the skin changes from green to brownish green lesions after 2 weeks storage. [30] stated that the advantage of MAS with KMnO4 was delayed ripening process due to low external ethylene in package. Supported by [31] who found that MAS reduced postharvest rind disorders in citrus fruit.

References

- 1. Diperta Propinsi NTB: Peluang Agribisnis Pertanian Tanaman Pangan dan Hortikultura Propinsi NTB. Mataram. (2002).
- 2. Yuniati dan Suhardjo: Penanganan Segar dan Olahan Mangga. Proseding Simposium Agribisnis Mangga. 6-17 Oktober. Malang. (1996).
- Pesis, E.; D.Aharoni; Z. Aharon; R Ben-arie; N.Aharoni and Y.Fuch: Modified atmosphere and modified humidity packaging alleviates chilling injury symptoms in mango fruit. Postharvest Biol. and Tech. 19, 90-101 (2000).
- 4. Wills, R.B.H.; W.B. McGlasson, D. Graham and D. Joice: Postharvest. An Introduction to the Physiology and Handling of Fruit Vegetables and Ornamentals, UNSW Press Sydney. (1998).

- Kader, A.A.: Modified and Controlled Atmosphere Storage of Tropical Fruits. Proceeding of Inter. Conf. of Postharvest Handling of Tropical Fruit. Chiang Mai 19-23 July, 239-49 (1993).
- 6. Smith, J.J; Z.H. Zhang; C.J. Schofield; P.John and J.E. Baldwin: Inactivation of ACC oxidase. J. Experimental Botany 45 (274) :521-27 (1994).
- 7. Kieber, J.J. and J.E. Ecker: Ethylene gas : it's not just for ripening anymore? Trends in Genet 9(10), 356-62 (1993).
- Kende, H.: Ethylene Biosynthesis. Ann Rev. Plant Physiol. Plant Mol. Biol. 44, 283-307 (1993).
- 9. Sitrit, Y.; J. Riov and A. Blumenfeld: Regulation of Ethylene Biosynthesis of Avocado Fruit during Ripening. Plant Physiology 81, 130-135 (1986).
- 10. Hanafiah, M. S.: Rancangan Percobaan Teori dan Aplikasi. PT Raja Grafindo Persada. Jakarta. (1994).
- 11. Jobling, J.: How Maturity Affects The Quality of New Cultivars of Apples. Ph.D Thesis University of Western Sydney, Hawkesbury, Richmod, Australia (1993).
- 12. Bufler, G.: Ethylene promoted conversion of ACC to Ethylene in Peel of apple at various stage of development. Plant Physiology 80, 539-43. (1986).
- 13. Basuki, E.: Relation of Low Oxygen Storage of Avocado to the Activity of ACC Oxidase. Agrivita 23 (2), 70-78. (2001).
- Gorny, J. R. and A. A. Kader: Low Oxygen and Elevated Carbon Dioxide Atmosphere Inhibit Ethylene Biosynthesis in Pre- climacteric and Climacteric Apple Fruit. J.Amer. Soc. Hort. Sci. 122 (4), 542-6 (1997).
- 15. Kalra, S.K.; D.K. Tandon and B.P. Singh: Mango, In. D.K. Salunkhe and S.S. Kadam. Handbook of Fruit Science and Technology. Marcel Dekker, NY, Basel. (1995).
- de Wild, Hans; P.A. Balk; E.C.A. Fernandez and H.W.Peppelembos. 2005. The action of CO₂ in relation to inhibition of ethylene production in tomato fruit. Postharvest Biology and Technology 36(3): 273-80.
- 17. Cua, A.U. and M.C.C. Lizada: Ethylene production in the 'Carabao''mango fruit during maturation and ripening. Acta Horticulturae 269, 169-79 (1990).
- Starrett, D.A. and G.G.Laties: The effect of Ethylene and Propylene Pulses on Respiration, Ripening Advancement, ACC₀ and ACC Synthase activity in Avocado Fruit. Plant Physiology 95, 921-7 (1991).
- 19. Singh, Z.: Chilling Injury in Mango. Proceeding of International Seminar On Tropical Fruit. 31 August. p:12-17. Denpasar. (2000).
- Harris, D.R; R.B.H. Wills and J.A. Seberry. Delayed of Ripening Bananas through Ethylene Control. Proceedings of Australasian Postharvest Horticulture Conference 28 Sep -3 Oct. pp: 362-3. Richmond.Australia. (1997).
- Liu, Shigang; Y. Yang; H. Murayama. S. Taira and T. Fukusima: Effect of CO₂ on respiratory metabolism in ripening banana fruit. Postharvest Biol. and Tech. 33(1), 27-34. (2004).
- Pesis, E.; R. Marinansky; G. Zauberman and Y. Fuchs.: Pre-Storage Low Oxygen Atmosphere Treatment Reduce Chilling Injury Symptom in Fuerte Avocados Fruit. HortScience 29 (9): 1042 6 (1994).

- 23. Wang, C. J.: Physiological and Biochemical Effect of Controlled Atmosphere on Fruit and Vegetable. In: M. Calderon and R. Barka-Golan (Eds). Food Preservation by Modified Atmosphere. CRC Boca – Raton. (1990).
- Lange, D.L. and A.A. Kader: Effect of elevated of Carbondioxide on Key Mitochondrial Respiratory Enzymes in Hass Avocado Fruit and Fruit Disc. Journal of American Soc. of Hort Science 122 (2): 238- 44 (1997a).
- 25. Lange, D.L. and A.A. Kader: Change in Pathway and Mitochondrial Respiration in Avocado in responses to elevated of CO2. J of Am. Soc.of Hort. Sci.122 (2), 245- 52 (1997).
- 26. Kader, A.A.: Biochemical and Physiological Basis for Effect of Controlled and Modified Atmosphere on Fruit and Vegetables, Food Technology 40(5), 99-104. (1986).
- Karikari, S.K;D.J. Pilcher and J. Marriott: Factors Affecting Handling and Transportation of Plantains (*Musa* AAB Group) pp: 250-6 In Proceeding International Symposium on Current Propylene on Fruit and Vegetables, Los Banos (1988).
- Artés-Hernandéz, F.; E. Aguayo and F. Artés. 2004. Alternative atmosphere treatments for keeping quality of Autumn seedless' tables grapes during long-term cold storage. Postharvest Biol. and Technol 31(1): 59-67.
- 29. Pantastico, Er. B.: Fisiologi Pasca Panen. Gadjah Mada University Press. Yogyakarta. (1997).
- Barmore, C.R.:. Packaging Technology for fresh and Minimally Processed Fruit and Vegetables. J. Food Quality 10: 207-17 (1987).
- Porat, R; B. Weies; L. Cohem; A. Dams and N. Aheroni. 2004. Reduction of postharvest rind disorders in citrus fruit by Modified Atmosphere Packaging. Postharvest Biology and Technology 33(1): 35-43.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

